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ABSTRACT
Support Vector Machines (SVMs) have been one of the most
successful machine learning techniques for the past decade.
For anomaly detection, also a semi-supervised variant, the
one-class SVM, exists. Here, only normal data is required
for training before anomalies can be detected. In theory,
the one-class SVM could also be used in an unsupervised
anomaly detection setup, where no prior training is con-
ducted. Unfortunately, it turns out that a one-class SVM
is sensitive to outliers in the data. In this work, we apply
two modifications in order to make one-class SVMs more
suitable for unsupervised anomaly detection: Robust one-
class SVMs and eta one-class SVMs. The key idea of both
modifications is, that outliers should contribute less to the
decision boundary as normal instances. Experiments per-
formed on datasets from UCI machine learning repository
show that our modifications are very promising: Comparing
with other standard unsupervised anomaly detection algo-
rithms, the enhanced one-class SVMs are superior on two
out of four datasets. In particular, the proposed eta one-
class SVM has shown the most promising results.
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1. INTRODUCTION
Anomalies or outliers are instances in a dataset, which

deviate from the majority of the data. Anomaly detection
is the task of successfully identifying those records within a
given dataset. Applications that utilize anomaly detection
include intrusion detection [22], medical diagnosis [17], fraud
detection [29] and surveillance [3].

In the anomaly detection domain, three different learning
setups based on the availability of labels exist [7]: Similar to
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standard classification tasks, a supervised learning approach
can be used to detect anomalies. In this case, a training
dataset containing normal and outlying instances, which is
used to learn a model. The learned model is then applied
on the test dataset in order to classify unlabeled records
into normal and anomalous records. The second learning
approach is semi-supervised, where the algorithm models
the normal records only. Records that do not comply with
this model are labeled as outliers in the testing phase. The
last learning setup is unsupervised. Here, the data does not
contain any labeling information and no separation into a
training and testing phase is given. Unsupervised learning
algorithms assume that only a small fraction of the data is
outlying and that the outliers exhibit a significantly different
behavior than the normal records.

In many practical application domains, the unsupervised
learning approach is particularly suited when no labeling in-
formation is available. Moreover, in some applications the
nature of the anomalous records is constantly changing, thus
obtaining a training dataset that accurately describe out-
liers is almost impossible. On the other hand, unsupervised
anomaly detection is the most difficult setup since there is
no decision boundary to learn and the decision is only based
on intrinsic information of the dataset.

Unsupervised anomaly detection algorithms can be cate-
gorized according to their basic underlying methodology [7].
The most popular and also often best performing category
for unsupervised learning are nearest-neighbor based meth-
ods. The strength of those algorithms stem from the fact
that they are inherently unsupervised and have an intuitive
criteria for detecting outliers. Their limitations include the
quadratic computational complexity and a possible incor-
rectness when handling high dimensional data.

Support Vector Machines are today a very popular ma-
chine learning technique that can be used in a variety of
applications. This includes for example handwritten digit
recognition, object recognition, speaker identification, text
categorization [6] and also anomaly detection. In those ap-
plications, SVMs perform at least as good as other methods
in terms of the generalization error [6]. SVMs take the ca-
pacity of the model into account, which is the flexibility of
the learned model to represent any training dataset with a
minimal error. This makes SVMs a Structure Risk Mini-
mization (SRM) procedure which is a stimulating alterna-
tive to the traditional Empirical Risk Minimization (ERM)
procedures.



There are many factors that contributed to the high pop-
ularity of SVMs today. First of all, its theory is heavily
investigated and it comes with a convex optimization ob-
jective ensuring that the global optimum will be reached.
Moreover, its solution is sparse making it really efficient in
comparison to other kernel-based approaches [4]. Finally,
some kernels even allow SVMs to be considered as a dimen-
sionality reduction technique [32]. Thus it is argued that
it can be used to overcome the “curse of dimensionality”,
which make SVMs theoretically very attractive for the un-
supervised anomaly detection problem.

2. RELATED WORK
As already mentioned, the most popular category for un-

supervised anomaly detection are nearest-neighbor based al-
gorithms. Here, global methods, for example the k-nearest
neighbor [23, 2] and local methods exist. For the latter a
huge variety of algorithms have been developed, many based
on the Local Outlier Factor (LOF) [5]: the Connectivity-
Based Outlier Factor (COF) [27], the Local Outlier Proba-
bility (LoOP) [15], the Influenced Outlierness (INFLO) [14]
and the parameter-free Local Correlation Integral (LOCI) [21].
All basically assume that outliers lie in sparse neighborhoods
and are far away from their nearest-neighbors [7].

Clustering based algorithms cluster the data and measure
the distance from each instance to its nearest cluster center.
The basic assumption is that outliers are far away from the
normal clusters or appear in small clusters [7]. Algorithms
include the Cluster-based Outlier Factor (CBLOF) [12] and
the Local Density Cluster-based Outlier Factor (LDCOF) [1].
For the unsupervised anomaly detection problem, the nearest-
neighbor based algorithms tend to be more capable of accu-
rately identifying outliers [1]. On the other hand, clustering
based anomaly detection has theoretically a lower computa-
tional effort, such that it could be preferred in cases where
large datasets have to be processed.

Among these two often used categories, also others have
been investigated: Classification algorithms, statistical ap-
proaches, Artificial Neural Networks (ANNs) and Support
Vector Machine (SVMs) [7]. The majority of these cat-
egories require a labeled training set and hence they are
of little applicability in an unsupervised learning setting.
The Histogram-based Outlier Score (HBOS) is an unsuper-
vised statistical based approach that was suggested in [10].
It computes a histogram for each feature individually and
then the univariate results are combined in order to pro-
duce the final score. It is significantly faster than the other
unsupervised anomaly detection algorithms at the expense
of precision. Replicator Neural Networks (RNNs) [11] are
a semi-supervised neural network based approach. Here, an
artificial neural network is trained such that the output is a
replica of the input. The reconstruction error is then used as
an anomaly score. Another semi-supervised approach is the
one-class SVM [25], a special variant of a SVM that is used
for novelty detection. Details of which are covered in Sec-
tion 3. However, a one-class SVM could also be used in an
unsupervised setup. Then, training and testing is applied on
the same data. Unfortunately, the training on a dataset al-
ready containing anomalies does not result in a good model.
This is due to the fact that outliers can influence the decision
boundary of a one-class SVM significantly.

In a supervised anomaly detection setting, Mukkamala et
al. [20] showed that SVM based algorithms are superior com-

pared to ANN based algorithms for the intrusion detection
problem. SVMs had a shorter training time and produced
better accuracy. The authors stated that the main limita-
tion of SVMs is the fact that it is a binary classifier only.
This limits the breadth of information that can be obtained
about the type and degree of intrusions.

One class classification (OCC) is the task of learning to de-
scribe a target class in order to effectively identify its mem-
bers. Following Vapnik’s [31] intuition, most approaches
attempt to find a boundary around the dataset. The for-
mulation of one-class SVM proposed by Schölkopf et al [25]
finds the boundary in the form a hyperplane. This is the
formulation that we attempt to enhance. Support vector do-
main description (SVDD) proposed by Tax et al. [28] strives
to find the minimum enclosing hypersphere that best de-
scribes the data. Both of the above mentioned formulations
produce an equivalent solution in case of constant kernel
diagonal entries [25]. Quarter-sphere support vector ma-
chines [16] were designed to handle intrusion detection data
which have one-sided features centered around the origin.
It fixes the center of the quarter sphere at the origin yield-
ing a much simpler linear programming optimization objec-
tive. Liu and Zheng [18] proposed a SVM variant called
MEMEM that combines between the discriminative capa-
bilities of SVMs and the descriptive capabilities of one-class
SVMs. This makes it particularly suited for handling un-
balanced datasets. However it is a completely supervised
approach.

3. ONE-CLASS SVMs

3.1 Motivation
In contrast to traditional SVMs, one-class SVMs attempt

to learn a decision boundary that achieves the maximum
separation between the points and the origin [24]. Interest-
ingly this was the initial idea from which traditional super-
vised SVMs emerged. Its origin date back to the earliest
work of Vapnik et al. in 1963 [30]. The idea was hindered
by the inability to learn non-linear decision boundaries as
well as the inability to account for outliers. Both of these
problems were solved by the introduction of kernels and the
incorporation of soft margins. A one-class SVM uses an im-
plicit transformation function φ(·) defined by the kernel to
project the data into a higher dimensional space. The algo-
rithm then learns the decision boundary (a hyperplane) that
separates the majority of the data from the origin. Only a
small fraction of data points are allowed to lie on the other
side of the decision boundary: Those data points are con-
sidered as outliers.

The Gaussian kernel in particular guarantees the existence
of such a decision boundary [24]. By observing that all the
kernel entries are non-negative, it can be concluded that
all the data in the kernel space lies in the same quadrant.
This makes the Gaussian kernel well suited to deal with any
arbitrary dataset. Let the function g(·) be defined as follows:

g(x) = wTφ(x)− ρ (1)

where w is the vector perpendicular to the decision boundary
and ρ is the bias term. Then, Equation 2 shows the decision
function that one-class SVMs use in order to identify normal
points. The function returns a positive value for normal



points, negative otherwise:

f(x) = sgn(g(x)). (2)

One-class SVMs are traditionally used in a semi-supervised
setting. The output of the algorithm is a binary label spec-
ifying whether the point is normal or not.

3.2 Objective
Equation 3 shows the primary objective of one-class SVMs:

minw,ξ,ρ
‖w‖2

2
− ρ+

1

νn

n∑
i=1

ξi

subject to: wTφ(xi) ≥ ρ− ξi, ξi ≥ 0,

(3)

where ξi is the slack variable for point i that allows it to lie
on the other side of the decision boundary, n is the size of
the training dataset and ν is the regularization parameter.

The deduction from the theoretical to the mathemati-
cal objective can be stated by the distance to the decision
boundary. The decision boundary is defined as:

g(x) = 0. (4)

In this context, the distance of any arbitrary data point to
the decision boundary can be computed as:

d(x) =
|g(x)|
‖w‖ . (5)

Thus, the distance that the algorithm attempts to maximize
can be obtained by plugging the origin into the equation
yielding ρ

‖w‖ . This can also be stated as the minimization

of ‖w‖
2

2
− ρ.

The second part of the primary objective is the minimiza-
tion of the slack variables ξi for all points. ν is the regu-
larization parameter and it represents an upper bound on
the fraction of outliers and a lower bound on the number of
support vectors. Varying ν controls the trade-off between ξ
and ρ.

To this end, the primary objective is transformed into a
dual objective, shown in Equation 6. The transformation
allows SVMs to utilize the kernel trick as well as to reduce
the number of variables to one vector. It basically yields a
Quadratic Programming (QP) optimization objective.

minα
αTQα

2

subject to: 0 ≤ αi ≤
1

νn
,

n∑
i=1

αi = 1,

(6)

where Q is the kernel matrix and α are the Lagrange multi-
pliers.

3.3 Outlier Score
A continuous outlier score reveals more information than a

simple binary label such as the output of Equation 2. Similar
to [1], our goal is to compute an anomaly score such that a
larger score corresponds to significantly outlying points.

In Equation 7, we propose a possible way to compute such
a score. Here, gmax is the maximum directed distance be-
tween the dataset points and the decision boundary. The
score is scaled by that distance such that the points that are
lying on the decision boundary would have an outlier score

of 1.0 similar to [5]. A score larger than 1.0 indicates that
the point is a potential outlier.

f(x) =
gmax − g(x)

gmax
(7)

3.4 Influence of Outliers

i
ξ

support
vectors

Figure 1: A 2 dimensional example of the decision
boundary in the kernel space learned by a one-class
SVM.

Figure 1 shows an example of a resulting decision bound-
ary in the presence of outliers in the dataset. The decision
boundary is shifted towards the outlying black points and
they are additionally the support vectors in this example.
Thus the outliers are the main contributors to the shape of
the decision boundary. Whilst the shifting of the decision
boundary might not have a great influence on the overall
rank of the points when using Equation 7, the shape of the
decision boundary will. To overcome this problem, in the fol-
lowing section two methods are proposed in order to make
the decision boundary less dependent on these outliers.

4. ENHANCING ONE-CLASS SVMs
In this section two approaches are proposed to tackle the

challenge that outliers do significantly contribute to the de-
cision boundary. Both approaches are inspired from work
done in order to make traditional supervised SVMs more
robust against noise in the training dataset. They have the
additional advantage of maintaining the sparsity of the SVM
solution.

4.1 Robust One-class SVMs

4.1.1 Motivation
The approach is based on Song et al. [26], where the au-

thors attempted to make the supervised SVM more robust
in case of existing outliers in the training data. The key
idea is the minimization of the of the Mean Square Error
(MSE) for tackling outliers using the center of class as an
averaged information. The conducted experiments showed
that the generalization performance improved and the num-
ber of support vector decreased compared to the traditional
SVM.



The main modification of robust one-class SVMs is with
respect to the slack variables. As illustrated in Figure 1, a
non-zero slack variable ξi allows a point xi to lie on the other
side of the decision boundary. In the case of robust one-class
SVMs, the slack variables are proportional to the distance
to the centroid. This allows points that are distant from the
center to have a large slack variable. Since the slack variables
are fixed, they are dropped from the minimization objective.
On the one hand, this causes the decision boundary to be
shifted towards the normal points. On the other hand, it
loses part of the interpretability of the results as there is
no restriction on the number of points that can appear on
the other side of the decision boundary. Theoretically, all
the points can be labeled as outlying using Equation 2 and
consequentially, the majority could have a score greater than
1.0 when using Equation 7.

support 
vectors

center

Di

iλD

Figure 2: Modifying the slack variables for robust
one-class SVMs. Each slack variable is proportional
to the distance to the centroid. Dropping the min-
imization of the slack variables from the objective
function causes the decision boundary to be shifted
towards the normal points.

Figure 2 illustrates how the slack variables are modified.
Points that are further away from the center of the data
are allowed to have a larger slack variable. Then, the deci-
sion boundary is shifted towards the normal points and the
outliers are no longer support vectors.

4.1.2 Objective
The objective of the proposed robust one-class SVMs is

stated in Equation 8. Here, the slack variables are dropped
from the minimization objective. They only appear in the
constraints as D̂i, whereas λ is the regularization parameter.

min w,ρ
‖w‖2

2
− ρ

subject to wTφ(xi) ≥ ρ− λ ∗ D̂i
(8)

The slack variable Di is computed using Equation 9. It
represents the distance to the centroid in the kernel space.
Since the transformation function is implicitly defined by the
kernel (Q), Equation 9 can not directly be used. Thus, an
approximation that was introduced by Hu et al [13] is com-
puted instead. This approximation is summarized in Equa-
tion 10. Here, the expression 1

n

∑n
i=1 φ(xi)

1
n

∑n
i=1 φ(xi) is

a constant and hence it can be dropped. The normalized
distance D̂i appears in the optimization Objective 8.

Di = ‖φ(xi)−
1

n

n∑
i=1

φ(xi)‖2

D̂i =
Di

Dmax

(9)

Di = ‖φ(xi)−
1

n

n∑
i=1

φ(xi)‖2

= Q(xi, xi)−
2

n

n∑
j=1

Q(xi, xj)−
1

n

n∑
i=1

φ(xi)
1

n

n∑
i=1

φ(xi)

≈ Q(xi, xi)−
2

n

n∑
j=1

Q(xi, xj)

(10)
The dual objective of the robust one-class SVM can be

summarized as follows:

min α
αTQα

2
+ λDTα

subject to 0 ≤ α ≤ 1, eTα = 1

(11)

It can be seen that it is only a minor modification to the
dual objective of the one-class SVM objective in Equation 6
and hence it can be incorporated easily in the original solver.

4.2 Eta One-class SVMs

4.2.1 Motivation
In contrast to robust one-class SVMs, this approach uses

an explicit outlier suppression mechanism. The methodol-
ogy for supervised SVMs was first proposed by Xu et al. [33].
This suppression mechanism is achieved by introducing a
variable η, which represents an estimate that a point is nor-
mal. Thus an outlying point would ideally have η set to zero.
This variable controls the portion of the slack variables that
is going to contribute to the minimization objective.

support
vectors

η=0

Figure 3: The idea of the eta one-class SVM: Out-
liers have small values for η and do thus not con-
tribute to the decision boundary.

Figure 3 shows how the introduction of η affects the deci-
sion boundary. The outlying points would be assigned η = 0
thus they would not be considered whilst learning the deci-
sion boundary. Here, the decision boundary would be influ-
enced only by the normal points.



4.2.2 Objective
Equation 12 shows the objective of the eta one-class SVM.

Outlying points would have η set to 0 and hence they would
not be contributing to the optimization objective. The dis-
advantage of introducing η is that the objective loses part
of its intuitive interpretation: Minimizing the slack variable
is equivalent to minimizing the number of outliers. A vari-
able β is introduced in order to cope with this challenge. It
controls the maximum number of points that are allowed to
be outlying:

min w,ρ min ηi∈{0,1}
‖w‖2

2
− ρ+

n∑
i=1

ηimax(0, ρ− wT ∗ φ(xi)),

subject to eT η ≥ βn.
(12)

The objective is composed of two parts: A convex quadratic
problem in w for a fixed η, and a linear problem in η for a
fixed w. However, the objective is not jointly convex. This
means that minimizing each part alternatively is not guar-
anteed to yield a global minimum. The above formulation
will be relaxed similar to what was proposed in the origi-
nal work [33] into a semi-definite problem. Then, it will be
relaxed into a iterative formulation due to the limited prac-
ticability of semi-definite programs. The iterative relaxation
is achieved using concave duality similar to what was used
by Zhou et al. [36].

Semi-Definite Programming Problem
The non-convex optimization objective of Equation 12 can
be relaxed by relaxing the constraints on η. For a fixed η,
introducing Lagrange multipliers would yield the following
dual objective:

min 0≤η≤1,M=η∗ηT max0≤α≤1
αTQ ·Mα

2
,

subject to eT ∗ η ≥ βn, αT η = 1, 0 ≤ α ≤ 1.

(13)

The formulation in Equation 13 is convex in both, η and
α. The final obstacle is the constraint on matrix M as it is
a non-convex quadratic constraint. The constraint can be
approximated to M � η ∗ ηT yielding a convex optimization
objective:

min 0≤η≤1 min M�η∗ηT max0≤α≤1
αTQ ·Mα

2
(14)

Objective 14 is equivalent to solving the following semidef-
inite programming (SDP) problem:

minη,δ,γ,σ,Mδ

subject to eT η ≥ βn, 0 ≤ η ≤ 1, γ ≥ 0, σ ≥ 0,

M � η ∗ ηT[
2∗(δ−eT ∗σ) (γ−σ)T

γ−σ Q·M

]
� 0[

1 ηT

γ−σ Q·M

]
= 0.

(15)

Iterative Relaxation
The SDP solution is expensive to compute and hence an al-
ternative approach was proposed by Zhou et al. [36]. It uses
a concave duality in order to relax Equation 12 into a multi-
stage iterative problem. A discussion of why the procedure

yields a good approximation is given by Zhang [35]. The re-
laxation yields an objective that has a convex and a concave
part, which makes the iterative approach a generalization of
a concave convex procedure (OCCC) [34] that is guaranteed
to converge.

Let the non-convex regularization in Equation 12 corre-
spond to g(h(w)), where h(w) = max(0, ρ − wTφ(x)) and
g(u) = infη∈{0,1}[η

Tu], using concave duality, the objective
can be reformulated into

min w,ρ,ηEvex + Ecave

Evex =
‖w‖2

2
− ρ+ ηTh(w), Ecave = g∗(η),

(16)

where g∗ is the concave dual of g.
Equation 16 can be solved by iteratively minimizing Evex

and Ecave. Initially η is set to a vector of ones. Then the
following steps are done until convergence:

1. For a fixed η, minimize Evex which corresponds to the
following dual objective:

minα
αTQ ·Nα

2
,

where N = η ∗ ηT ,

subject to αT η = 1, 0 ≤ α ≤ 1.

2. For fixed w and ρ, the minimum of Ecave is at:

ui = max(0, ρ− wTφ(xi)),

ηi = I(βn− s(i))

where s(i) is the order of function over u arranged in
ascending order and I is the indicator function.

5. EXPERIMENTS
In this section, all the proposed one-class SVM based al-

gorithms are compared against standard nearest-neighbor,
clustering and statistical based unsupervised anomaly de-
tection algorithms. The experiments were conducted us-
ing RapidMiner [19], where all of the algorithms are im-
plemented in the Anomaly Detection extension1. The SVM
based algorithms are all using the Gaussian kernel, the spread
of the kernel was tuned similar to what is proposed by Evan-
gelista et al. [8]. For the Gaussian Kernel, it is desirable to
attain diverse kernel entries as it is a measure of similar-
ity between data points. Evangelista et al. achieved that
by maximizing the ratio of the standard deviation of the
non-diagonal entries of the kernel matrix to its mean. The
maximization objective is solved using gradient ascent.

The area under the ROC curve (AUC) is used as a per-
formance measure, where the curve is created by varying
the outlier threshold. It basically measures the quality of
the ranking of outliers among normal records. The results
of the AUC of running the different algorithms are included
in Table 4. Figure 4 shows exemplary ROC curves of the
algorithms for two different datasets. In each subfigure, the
three SVM based algorithms are compared against the best
performing algorithm from each of the other categories.

Another important comparison is between the standard
semi-supervised one-class SVM and the proposed improve-
ments of this work: the robust one-class SVM and eta one-
class SVM. In addition to the performance measured by the
1Available at
http://code.google.com/p/rapidminer-anomalydetection/



AUC, also the number of support vectors is an important
factor to consider as it directly affects the computation time
of the SVM based algorithms. The number of support vec-
tors are shown in Table 2. The average CPU execution time
of the algorithms over 10 runs is shown in Table 3.

5.1 Datasets
Datasets from the UCI machine learning repository [9]

are used for the evaluation of the anomaly detection algo-
rithms. Most of the datasets of UCI repository are tradi-
tionally dedicated for classification tasks. Hence they have
to be preprocessed in order to serve for the evaluation of un-
supervised anomaly detection algorithms. This is typically
performed by picking a meaningful outlying class and sam-
pling the outliers to a small fraction [1]. Table 1 summarizes
the characteristics of the preprocessed datasets.

The preprocessing was also performed using RapidMiner.
For ionosphere, shuttle and satellite, stratified sampling was
used to reduce the number of outliers (for reproducibility,
the pseudo random generator seed was set to 1992). The
preprocessing of the breast-cancer dataset was identical to
the one proposed in [15].

5.2 Results
The results of the shuttle dataset are shown in Figure 4(a).

Here, the eta one-class SVM is superior to all the other algo-
rithms. The statistical based algorithm Histogram outper-
forms the nearest-neighbor and clustering based algorithms.
It also outperforms the robust one-class SVM. Surprisingly,
the standard one-class SVM outperforms the robust one-
class SVM for the shuttle dataset. However, robust one-class
produces a much sparser solution with only 5 support vec-
tors dropping the CPU execution by two thirds. Figure 4(b)
illustrates the results of the satellite dataset. Here, the SVM
based algorithms performed worst among all existing cate-
gories. The performance of the algorithms is comparable
at the first portion of the dataset. Which means that they
perform equally well in predicting the top outliers.

Table 4 summarizes the results in terms of AUC for all
algorithms on all four datasets. It can be seen that all SVM
based algorithms perform generally well on all datasets. For
ionosphere and shuttle the eta one-class SVM is even supe-
rior. For the breast-cancer dataset, SVM based algorithms
score on average. For the satellite dataset, where also many
support vectors have been found, results are below the av-
erage.

Table 2: Number of support vectors of SVM based
algorithms

Algorithm ionosphere shuttle breast-cancer satellite

One-class 106 21374 144 2085
Robust One-class 116 5 90 385
Eta One-class 37 8 48 158

6. DISCUSSION AND CONCLUSION
The experiments showed that the proposed SVM based

algorithms are well suited for the unsupervised anomaly de-
tection problem. In two out of four datasets, SVM based
algorithms are even superior. They constantly outperform
all clustering based algorithms. In general, they perform at
least average on unsupervised anomaly detection problems.

For the satellite dataset, the performance of the SVM based
algorithms is slightly below the average. The main reason
why this is a challenging dataset for SVM based algorithms
is not known exactly, but we can observe that in this case
the number of support vectors is comparably high.

When comparing the SVM based algorithms with each
other, the eta one-class SVM seems to be the most promis-
ing one. On average, it produces a sparse solution and it
also performs best in terms of AUC. In general, the robust
one-class SVM produces a sparser solution than the stan-
dard one-class SVM, but in term of performance, there is
no significant improvement. In terms of time efficiency, for
larger datasets the enhanced algorithms are more efficient
due to the sparsity property.

When looking at computational effort, SVM based algo-
rithms have in general less than a quadratic time complexity
due to the sparsity property. However, the parameter tuning
for the Gaussian kernel similar to [8] pushes the complexity
back to quadratic time.

Additionally, we introduced a method for calculating an
outlier score based on the distance to the decision boundary.
In contrast to the binary label assigned by standard one-
class SVMs, it allows to rank the outliers, which is often
essential in an unsupervised anomaly detection setup. The
score also has a reference point, which means that scores in
the range of [0,1] can be considered to be normal.

In conclusion, SVM based algorithms have shown that
they can perform reasonably well for unsupervised anomaly
detection. Especially the eta one-class SVM is a suit-
able candidate for investigation when applying unsupervised
anomaly detection in practice.
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Table 1: Datasets used for evaluation. The preprocessing selects particular classes as outliers and samples it
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