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Abstract

Electroencephalographic signals are commonly contaminated by eye artifacts,
even if recorded under controlled conditions. The objective of this work was to
quantitatively compare standard artifact removal methods (regression, filtered re-
gression, Infomax, and second order blind identification (SOBI)) and two artifact
identification approaches for independent component analysis (ICA) methods, i.e.
ADJUST and correlation . To this end, eye artifacts were removed and the cleaned
datasets were used for single trial classification of P300 (a type of event related
potentials elicited using the oddball paradigm). Statistical analysis of the results
confirms that the combination of Infomax and ADJUST provides a relatively bet-
ter performance (0.6% improvement on average of all subject) while the combi-
nation of SOBI and correlation performs the worst. Low-pass filtering the data at
lower cutoffs (here 4 Hz) can also improve the classification accuracy. Without
requiring any artifact reference channel, the combination of Infomax and AD-
JUST improves the classification performance more than the other methods for
both examined filtering cutoffs, i.e., 4 Hz and 25 Hz.

Keywords: Electroencephalogram, eye artifact removal, regression, Infomax,
SOBI, ADJUST.

1. Introduction

Because of the high temporal resolution and ease of use (compared with the
other acquisition techniques), electroencephalographic (EEG) signals have been
used widely in brain computer interfaces (BCIs). Among the others, P300 based
BCI systems exploit the brain responses to infrequent stimuli interspersed with
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frequent stimuli. The essential task of such BCIs is online detection of P300.
However, EEG data recorded for clinical, research or BCI purposes are always
contaminated by different artifacts, which can drastically affect further analysis re-
sults. The artifacts can be divided into two general categories of non-physiological
and physiological artifacts (Fatourechi et al., 2007). Non-physiological artifacts
include the power-line interference, noise in the environment, changes in the elec-
trode locations and impedances. On the other hand, physiological artifacts orig-
inate from sources inside the body of the subjects, e.g., electromyogram (EMG)
and electrocardiogram (ECG).

A major source of artifacts in EEG and event related potentials (ERPs) is the
eye activity. Blinks and eye movements are in most cases unavoidable during the
recording sessions. The frequency content and the amplitude of the eye artifacts
vary for different subjects and tasks (Gratton, 1998), and on different recording
electrodes. The amplitude of the artifacts in frontal electrodes can reach to several
hundred microvolts which is much higher than that of EEG (typically less than 50
microvolts) (Gratton, 1998). Therefore, removing the eye artifacts is an essential
step before further processing the EEG signals.

The most common opinion about the origin of eye electrical activities, known
as electrooculogram (EOG), is that they are generated as the result of the differ-
ence in electric potential between the cornea and the retina. It is believed that the
eye dipole is mostly due to the polarization of the retina (Berg, 1989) and that the
electric voltage at the eye is the result of eyelid movements over the eyeball, even
when there is no rotation of the eyeball (Croft and Barry, 2000). The electric field
generated by each eyeball is considered to be a dipole field with almost constant
amplitude. Such a dipole has different effects on each recording electrode. The
effects depend on the changes in the orientation of the eyeball (eye movements),
the location of the electrode on the scalp, and also changes in the propagation path
of the electric field across the head (e.g., blinks change the path through which the
electric field propagates to the surface of the head) (Gratton, 1998).

Different methods have been proposed so far to remove the eye artifacts. The
simplest method, which is widely used in neuroscience research, is based on re-
jection of the segments in which the amplitudes measure higher than a predefined
threshold. However, rejecting artifacts does not necessarily mean that the remain-
ing parts are clean. Furthermore, rejection bears the disadvantage that data is lost.

Linear regression is one of the most common EOG artifact removal methods
(Gratton et al., 1983; Croft and Barry, 2000; Romero et al., 2009). It is assumed
that the artifact component in each EEG lead is a multiplier of the pure electrical
eye activity. Using this idea and recording vertical and horizontal EOG channels,
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the eye artifacts are removed in the least squares sense. It is shown in (Kenemans
et al., 1991; Pham et al., 2009) that frequency domain and multi-lag time domain
regressions do not provide significant change over the standard time domain re-
gression method. Different adaptive filtering approaches have also been proposed
for EOG artifact removal, e.g., LMS (Puthusserypady and Ratnarajah, 2006), RLS
(He et al., 2007), H∞ (Puthusserypady and Ratnarajah, 2006).

Independent component analysis (ICA) methods are a set of algorithms that
having mixtures of unknown source signals estimate the underlying sources. In
the ICA methods the main assumption is the statistical independence of the sources.
Therefore, assuming that the brain signals and the artifacts have independent ori-
gins, different ICA based methods have been used to estimate and remove the
artifacts from EEG signals (Delorme et al., 2007; Kachenoura et al., 2008; Al-
bera et al., 2012; Nazarpour et al., 2008; Mennes et al., 2010). The effects of
the ICA and regression based methods on topographic and spectral distribution of
the cleaned data are compared in (Romero et al., 2009; Wallstrom et al., 2004).
ICA methods have also been used in BCI systems to separate the sources of inter-
est and hence improve the overall performance. In (Naeem et al., 2006; Winkler
and Tangermanna, 2011) the effect of ICA algorithms in motor imagery tasks has
been analyzed. Investigations about using ICA algorithms in P300 based BCIs are
reported in (Li et al., 2009; Serby et al., 2005).

A major challenge with component based methods is correct identification of
the artifacts in the derived independent components (ICs). In some papers e.g.,
(Lagerlund et al., 1997) the artifact channels are selected by visual inspection
which is not a suitable approach for on-line applications. As an alternative, one
can record extra EOG channels to compare with the ICs and select those with the
highest correlation. For the sake of fully automatic solutions, different temporal,
spatial, spectral and statistical properties of the components are exploited to iden-
tify artifact channels (Wallstrom et al., 2004; Romero et al., 2009; Mognon et al.,
2011). Classification methods have also been used to improve the selection pro-
cedure (Halder et al., 2007). Recently a novel method for automatic identification
of artifacts is proposed (Mognon et al., 2011). The method, called ADJUST, can
identify the artifacted ICs using the artifact-specific spatial and temporal features.

Apart from the research works that focused on developing artifact removal
methods, several studies have been reported that compare the methods in differ-
ent performance aspects, e.g., least squares linear regression (Croft et al., 2005),
spectral distortion and time domain mean error (Wallstrom et al., 2004), corre-
lation and transfer function estimation (Kenemans et al., 1991), and signal to
interference-plus-noise ratio (Kachenoura et al., 2008). However, to the best of
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our knowledge, no research on comparison of the effects of eye artifact removal
methods on single trial detection of P300 has been published so far .

The objective of this paper is to quantitatively compare the effects of artifact
removal methods on the performance of single trial P300 detection. To this end,
we used datasets (Tabie and Kirchner, 2013; Kirchner et al., 2013) recorded pre-
viously in a controlled condition in order to develop/evaluate single trial EEG
analysis methods in the context of BCI control. The main constraint in selecting
the removal methods was the possibility of automatic operation and also possible
extension to on-line applications. Considering the previous reports on the per-
formance of the ICA methods, we selected Infomax (Hyvärinen et al., 2001) and
SOBI (Belouchrani et al., 1997) methods among the others. We also used two re-
gression based methods due to their simple structure and approved performance in
removing artifacts. It is also known that the spectral filtering can affect the P300
detection performance (Jansen et al., 2004; Ghaderi, 2013). The interaction of re-
moval methods and filtering cutoff frequencies was investigated by repeating the
experiments for data filtered at two different cutoff frequencies. For comparison,
the accuracy of single trial P300 classification was reported for all experiments.

2. Methods

2.1. Experimental setup
To evaluate the eye artifact removal methods, a dataset that was recorded un-

der controlled conditions was selected. Here, controlled conditions refers to the
setup in which first, all experiments were conducted in a shielding cabin. By
doing so, we reduced external, non-physiological noise that would otherwise con-
taminate the EEG signals. Second, subjects had to perform a well defined motion
task. By this, differences between subjects that are common for complex inter-
action scenarios could be reduced. Third and the most important, subjects were
asked to fixate a fixation cross all through the experiment. By asking the subjects
to fixate a certain point, the amount of saccades triggered by presenting a visual
command that require directed movement was reduced. This was important be-
cause we wanted to prevent eye artifacts, especially saccades, from being strongly
correlated with the evoked event related activity in the EEG.

Data from six healthy male subjects (age: 26.5±3.8 years; right-handed; nor-
mal or corrected-to-normal vision) was used in this study. The subjects were
seated in a comfortable chair in front of a table. Two input devices were placed
on the table at a distance of approximately 30 cm from each other. A monitor was
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Figure 1: Schema of the experiment. Subjects were asked to move their right hand from a
flat micro switch board to a buzzer upon replacement of the fixation cross with a vertical
line. No movement was required on the presentation of horizontal lines. For presentation
purposes the fixation cross and its green background are slightly faded in this figure.
However, in the real experiments this was not the case.

used to give commands and feedback to the subjects. If no instructions or feed-
back was given a black fixation cross was presented in the middle of the screen on
a green circle and the subjects had to put their right hand on the left input device.
Subjects were instructed to keep their eyes fixed on the fixation cross all through
the experiment. Schema of the experiments is illustrated in Fig. 1.

After presentation of a target stimulus (visual task-relevant command), the
subjects had to perform a slow movement of the right arm between the two input
devices. For this, the subjects had to move their hand from the left to the right
input device, push the device and return their hand to the left device. Each input
device had a micro switch that was used to monitor the begin (left device) and end
(right device) of a performed movement. Events that were detected by the devices
(pressing/releasing) were marked in the EEG and EOG data. Each movement to
the right had to take at least 1 second. Visual commands were given in an oddball
fashion. Here, task-irrelevant frequent standard stimuli (change of fixation cross
to horizontal line) mixed with infrequent target stimuli (change of fixation cross
to vertical line) with a ratio of 8 : 1 and inter stimulus intervals (ISI) of 900 to
1100 ms were presented to the subjects. Duration of stimulus presentation was
100 ms (see Fig. 1).

For each subject we recorded 3 runs. Too early movements or false move-
ments on standard stimuli were reported to the subjects by changing the color of
the green circle behind the fixation cross to red for 100 ms. Such wrong move-
ment trials were not used for later data analysis. Each run ended after 40 correctly
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performed movements. The experiment was designed with Presentation software
[Neurobehavioral Systems, Inc., Albany, USA]. The study was conducted in ac-
cordance with the Declaration of Helsinki and approved with written consent by
the ethics committee of the University of Bremen.

Data Acquisition
EEG and EOG signals were acquired with 5 kHz, filtered between 0.1 to 1 kHz

using BrainAmp DC amplifiers [Brain Products GmbH, Munich, Germany] and
saved to a computer. A 128-channel actiCap system was used (referenced at FCz).
Four of the active electrodes, i.e., I1, OI1h, I2, and OI2h were used to record EOG
data. The first pair of electrodes were placed above and below right eye to obtain
the vertical eye movements (vEOG). The other pair of electrodes were placed at
the left and right outer canthi to record horizontal eye movements. The hEOG
and vEOG data were obtained by subtracting the data from the corresponding
channels.

2.2. Artifact removal methods
In this section, we first address the effects of spectral filtering on P300 de-

tection. Then theories behind regression, filtered regression, Infomax and SOBI
methods are presented. Finally, deflation approach for removing the artifacted ICs
and the artifact identification methods (ADJUST and correlation) are introduces.

2.2.1. Filtering effect
EEG channels have to be low-pass filtered before further processing to remove

the high frequency noise and artifacts. Selecting appropriate cutoff frequency has
an important impact on the overall performance of BCI systems (Ghaderi, 2013).
Considering that P300 is mostly associated with activities in the delta band, in
(Jansen et al., 2004) it is suggested to use the data in the 0-4 Hz band. How-
ever, P300 can be found in other spectral bands as well (Kolev et al., 1997).
In P300 classification applications, different low-pass cutoff frequencies are re-
ported, ranging from 4 Hz (Jansen et al., 2004) to 30 Hz (T. Kaufmann, 2011).
There is no specific guideline for selecting the appropriate spectral filtering band
in the literature. Therefore we repeated the experiments with all artifact removal
methods for two low-pass cutoff frequencies, i.e., 4 Hz and 25 Hz.

2.2.2. Regression
The assumption that the EOG artifacts are added linearly to EEG data in dif-

ferent channels is widely accepted in the community. Under this assumption re-
gression is known as one of the standard methods for eye artifact removal (Gratton
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et al., 1983; Kenemans et al., 1991; Croft and Barry, 2000). The governing model
is as follows:

yi(t) = xi(t)+αi ∑
j

r j(t) (1)

where yi(t) is the recorded EEG signal at electrode i, xi(t) is the pure EEG signal
at the same electrode, each r j(t) is one of the artifact channels, and αi is the
propagation factor at electrode i. Having the recorded data at each electrode, and
also the reference channel for vertical and horizontal EOG, the propagation factors
can be estimated using the least squares method (Croft et al., 2005).

2.2.3. Filtered regression
Main concern about removing eye artifacts using regression method is the so

called bidirectional contamination, i.e., at the same time that EEG recordings are
contaminated by eye activities, the data recorded at the EOG electrodes are con-
taminated by the brain activity (mostly from frontal and temporal lobes) (Wall-
strom et al., 2004). Therefore, removing the EOG artifacts would also remove
parts of the EEG data.

In a derivation of the regression method, called filtered regression, the EOG
reference channels are low-pass filtered before regression to overcome the bidi-
rectional contamination problem (Gasser et al., 1992; Romero et al., 2009). This
idea is based on the studies that show the high frequency components in EOG
channels are generated from brain activity (Gasser et al., 1992). Different cutoff
frequencies between 6 to 9.5 Hz have been used. A typical value for the cutoff
frequency (which we use here) is 7.5 Hz (Romero et al., 2009).

2.2.4. Infomax
This algorithm maximizes the output entropy or information flow of a neural

network with nonlinear outputs. Assume x is the input vector to the artificial
neural network and y is the output vector. The following equation describes the
relation between the inputs and the outputs of neurons:

yi = φi(wT
i x)+ni (2)

where φi is a nonlinear scalar function, wi = [wi j] is the weight vector correspond-
ing to the ith output channel, ni is the additive Gaussian white noise vector at
sensor i, and superscript T denotes the transpose of a vector or matrix. The en-
tropy of the output is expressed by

H(y) = H(φ1(wT
1 x), . . . ,φn(wT

n x)) (3)

7



For a typical invertible transformation of the random vector x, i.e., y = f(x),
the relationship between the entropies of y and x can be expressed as

H(y) = H(x)+E{log |detJf(x)|} (4)

where Jf(.) is the Jacobian matrix of the function f(.) (Hyvärinen et al., 2001).
Using (4) and assuming that y = f(x) = [φ1(wT

1 x), . . . ,φn(wT
n x)] denotes the

nonlinear function defined by the artificial neural network, the transformation of
the entropy in (3) is obtained as

H(y) = H(x)+E{log |det
∂f

∂W
(x)|} (5)

The second term in the right hand side of (5) can be easily derived and simpli-
fied as follows:

E{log |det
∂f

∂W
(x)|}= ∑

i
E{logφ

′
i(w

T
i x)}+ log |detW| (6)

The wi vectors are estimated using the stochastic gradient of the log-likelihood
expression in (6) and using appropriate non-linear functions φi, (Hyvärinen et al.,
2001).

2.2.5. SOBI
If x(t) is the input vector, and z(t) =Wx(t) is the estimate of underlying sources,

the SOBI method estimates W by simultaneously diagonalizing the covariance
matrices of z(t) calculated at different time delays, i.e., Cz

τ = E{z(t)z(t − τ)},
where τ is a typical time delay (Belouchrani et al., 1997). The objective of the
method is to minimize the value of the following cost function:

J (W) = ∑
τ∈T

off(WCz
τWT ) (7)

where T is the set of delays and off(.) is the sum of squared off diagonal elements.
Minimizer of J (W) is found using an extension of the Jacobi method (Belouchrani
et al., 1997).

2.2.6. Deflating independent components
In the ICA based artifact removal methods, the independent component (IC)

channels that are more likely to be artifacts are deflated. That is, they are set to
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zero and the remaining data is projected back to the sensor space. There is no
general solution for selecting the appropriate channels, and setting the selection
criteria is an application specific task. The need to identify the artifacts in these
methods is one of the main challenges of using the ICA methods for artifact re-
moval, specially in applications that are supposed to be automatic. Here we use
two artifact identification methods as follows:

Correlation
In some experimental setups there exist reference channels, here hEOG and

vEOG channels, that represent some similarities with the artifacts. In such cases,
the IC(s) that have the highest correlation with the reference can be selected as an
artifact channel and be deflated consequently. The disadvantage of this method is
that recording extra channels that contain enough information about the artifacts,
is not always practical.

ADJUST
This method exploits the combination of temporal course and spatial distri-

bution of the independent components. Three different classes of eye artifacts
are considered in this method, i.e., blinks, vertical and horizontal eye movements.
First, ICA method is applied to the EEG data. For each artifact class, a detector
is implemented by computing a class-specific set of spatial and temporal features
on all independent components. For each feature, a threshold, which separates ar-
tifacts from non-artifacts is estimated on the whole set of ICs by the Expectation-
Maximization automatic thresholding method. If all artifact-specific spatial and
temporal features of a detector are larger than their respective thresholds, the IC
is classified as an artifact channel. This way, for each artifact class a sorted list
of channel indexes is returned (for more details of the method see (Mognon et al.,
2011)).

2.3. Data processing
The analysis was done in offline mode, i.e., datasets were first cleaned using

the removal methods and the cleaned data were used for further processing. It is
worth to mention that in order to prevent losing the data, we used all the epochs
and did not reject any part of the EEG recordings. Data was down-sampled to
100 Hz and high-pass filtered at 0.1 Hz. Continuous data from each dataset was
further low-pass filtered at 4 Hz and 25 Hz using 2nd order Butterworth filter. In
order to avoid phase shifts, forward-backward filtering technique was used. All
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artifact removal methods were applied independently to the continuous data of
each filtered dataset.

The EEGLAB (Delorme and Makeig, 2004) implementations of the Infomax
and SOBI methods were used and for both methods we assumed that the number
of ICs is equal to the number of EEG channels. For Infomax, maximum number of
training steps and the initial learning rate was set to 512 and 0.00065/log(n), re-
spectively, where n is the number of samples. The learning rate is updated during
execution of the algorithm. For SOBI, the number of delayed covariance matrices
and the convergence threshold were set to min(100,m/3) and 1

100
√

m , respectively,
where m is the number of channels. In order to identify and deflate artifact chan-
nels, we used ADJUST and correlation measures. The ADJUST method provides
a sorted set of channel indices that are likely to be blink, horizontal or vertical
EOG. In a conservative approach we only used the first channel in the union of
the three sets. For correlation, all IC channels were compared with the recorded
EOG channels and the two with the largest (absolute value) correlations were se-
lected as hEOG and vEOG channels. Next, the artifact channels were deflated one
by one. This way, three cleaned datasets (1. hEOG deflated, 2. vEOG deflated,
and 3. hEOG and vEOG deflated) were obtained.

To evaluate the effect of removal methods on single trial ERP detection, the
ERP samples in each cleaned dataset were cut 100-900 ms after the onsets of the
stimuli. For each channel, the mean was subtracted and the variance was normal-
ized to one. Feature vectors were generated by concatenating samples form all
channels and support vector machines (SVM) classifier (C-SVC with linear ker-
nel and complexity equal to 1) was used to discriminate the two ERP classes. We
used LIBSVM (Chih-Chung and Chih-Jen, 2011) implementation of the classi-
fier. ERP samples in each dataset were randomly divided into 3 separate splits,
i.e., roughly 40

3 targets and at least 320
3 non-targets in each split (the experiment

in each run was continued until 40 valid movements were captured). The meth-
ods were cross-validated using the leave-one-out technique. This procedure was
repeated for 30 independent evaluations, i.e., for each evaluation, ERP samples
in each dataset were randomly divided into three groups with identical number
of targets and non-targets in each group. Results of the experiments are reported
in terms of true positive rate (TPR), true negative rate (TNR), and balanced ac-
curacy (BA) of classification. BA is the average of TPR and TNR and therefore
unaffected by unbalanced class distributions.

For each filtering frequency (4 Hz and 25 Hz) the results of seven different
approaches are reported, i.e., Noop (no artifact removal applied), Reg (regression),
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F Reg (filtered regression), A Info (Infomax and ADJUST), C Info (Infomax and
correlation), A SOBI (SOBI and ADJUST), and C SOBI (SOBI and correlation).
For those cases that correlation coefficients were used for artifact identification
we only used the best result from three cleaned datasets.

2.4. Statistical analysis
The classification performances obtained from artifact removal methods were

statistically analyzed in two steps. First, in order to find the best method, the
results were analyzed by repeated measures ANOVA with three within-subjects
factors: a) filter types (2 levels: 4 Hz, 25 Hz), b) removal method types (7 levels),
and c) subjects (6 levels). Next, only the best artifact removal method (based on
the results of the first analysis) was compared with the baseline (Noop). To this
end, the classification performances were analyzed by repeated measures ANOVA
with filter types (2 levels), removal methods (2 levels: A Info, and Noop), and
subjects (6 levels) as within-subjects factors. If necessary, the Greenhouse-Geisser
correction was performed and the corrected p-values were reported. For multiple
comparisons, the Bonferroni correction was applied.

3. Results

Figure 2 depicts the grand average ERPs at electrode Pz evaluated separately
for each removal method at the two low-pass cutoff frequencies, i.e., 4Hz and
25Hz. Illustrated are the averages of ERPs from all subjects after correcting the
baseline (subtracting mean of 100-0 ms prior to stimulus onset). The C SOBI
method has changed the ERP waveforms, in a way that both amplitude and la-
tency of the P300 are considerably different from those of the outputs of the other
methods. Table 1 shows the classification performances obtained by cleaning the
data using different artifact removal methods and the baseline (no artifact removal
method used). The true positive and negative rates, and also the balanced accura-
cies are reported.

The A Info was the only approach that performed better than Noop [main
effect of method type: F(6,534) = 11876.64, p < 0.001, multiple comparisons:
Noop vs. A Info: p < 0.001]. The C Info and C SOBI methods showed lower
classification performances compared with Noop [Noop vs. C Info: p < 0.001,
Noop vs. C SOBI: p < 0.001]. Other methods, Reg, F Reg, and A SOBI were
not significantly better than Noop [Noop vs. other remaining methods: p = n.s.].
This pattern was observed for both filter types [interaction between filter type and
method type: F(6,534) = 167.08, p < 0.001, multiple comparisons: Noop vs.
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(b) Data low-pass filtered at 25 Hz

Figure 2: Grand average ERPs at electrode Pz extracted from data cleaned using different
EOG artifact removal methods. Average ERPs were calculated over all subjects. Baseline
was corrected by subtracting mean of 100-0 ms prior to stimulus onset. Solid line and
dashed lines show the targets and non-targets, respectively.

A Info: p < 0.05 for 4Hz, Noop vs. A Info: p < 0.004 for 25Hz, Noop vs.
C Info: p < 0.001, Noop vs. C SOBI: p < 0.001 for both filter types, Noop vs.
all other method types: p = n.s. for both filter types].

Analyzing the results, it is confirmed that higher classification performances
were achieved by filtering the data at 4Hz compared with filtering at 25Hz [main
effect of filter type: F(1,89) = 1686.51, p < 0.001, pairwise comparisons: 4Hz.
vs. 25Hz: p < 0.001]. Such higher classification performance was observed for
all method types [interaction between filter type and method type: F(6,534) =
167.08, 4Hz. vs. 25Hz: p < 0.001 for all method types] and for all subjects
[interaction between filter type and subject: F(5,445) = 58.80, p < 0.001, 4Hz.
vs. 25Hz: p < 0.001 for all subjects]. However, not all subjects showed a higher
classification performance for data filtered at 4 Hz for all method types [interac-
tion of filter type with method type and subject: F(30,2670) = 50.67, p < 0.001,
multiple comparisons, see below]. Subject 3, 4, 5, and 6 showed this pattern for
all method types [4Hz. vs. 25Hz: p < 0.001 for Subject 3, 4, and 5; p < 0.006
for Subject 6]. However, Subject 1 and Subject 2 showed a higher classification
performance with the data filtered below 4Hz for some method types [Subject 1:
4Hz. vs. 25Hz: p < 0.001 for A Info, C Info, A SOBI, otherwise: p = n.s.;
Subject 2: 4Hz. vs. 25Hz: p = n.s. for C Info, otherwise: p < 0.001]. Also not
all subjects showed a higher classification performance for A Info compared to
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Table 1: Classification performance for 6 different artifact removal approaches including
the baseline (no artifact removal method applied). The results are reported for each filter
type (4 Hz, 25 Hz) separately and averaged over 6 subjects, 3 splits, and 30 evaluations.
Reported is averages and standard deviations of true positive, and true negative rates and
the balanced accuracies for different artifact removal methods.

Artifact removal method
Noop Reg F Reg A Info C Info A SOBI C SOBI

4 Hz TPR 0.893 ± 0.035 0.884 ± 0.036 0.883 ± 0.036 0.895 ± 0.035 0.672 ± 0.037 0.894 ± 0.035 0.502 ± 0.068
TNR 0.985 ± 0.002 0.992 ± 0.002 0.993 ± 0.003 0.993 ± 0.002 0.981 ± 0.003 0.992 ± 0.003 0.965 ± 0.017

25 Hz TPR 0.845 ± 0.034 0.840 ± 0.035 0.838 ± 0.036 0.852 ± 0.035 0.687 ± 0.034 0.845 ± 0.036 0.372 ± 0.035
TNR 0.986 ± 0.003 0.990 ± 0.002 0.991 ± 0.002 0.992 ± 0.002 0.98 ± 0.002 0.99 ± 0.002 0.978 ± 0.003

BA 4Hz 0.938 ± 0.019 0.938 ± 0.019 0.938 ± 0.019 0.944 ± 0.019 0.826 ± 0.019 0.943 ± 0.019 0.733 ± 0.035
25Hz 0.915 ± 0.019 0.915 ± 0.019 0.915 ± 0.019 0.921 ± 0.019 0.833 ± 0.019 0.917 ± 0.019 0.674 ± 0.020

Noop for all filter types [interaction of method type with filter type and subject:
F(30,2670) = 50.67, p < 0.001, Noop vs. A Info: p < 0.022 for Subject 1 and
Subject 3; otherwise: p = n.s.].

For more in depth investigations, only the results of A Info method (which
performed better than Noop) were further analyzed. Figure 3 illustrates the clas-
sification performances of A Info and Noop for two filter types and six subjects.
A higher classification performance was obtained for A Info compared to Noop
[main effect of method type: F(6,534) = 11876.64, p < 0.001, A Info vs. Noop:
p < 0.001]. This pattern can be observed for both filter types [interaction between
method type and filter type: F(1,89) = 0.645, p = 0.424, pairwise comparisons:
A Info vs. Noop: p < 0.003 for 4Hz, A Info vs. Noop: p < 0.001 for 25Hz].

Higher classification performance was achieved for the data filtered below
4Hz compared to the data filtered below 25Hz [main effect of filter type: F(1,89)=
1686.56, p < 0.001, pairwise comparisons: 4Hz vs. 25Hz: p < 0.001]. This
pattern could be observed for both method types [interaction between method
type and filter type: F(1,89) = 0.645, p = n.s., pairwise comparisons: 4Hz vs.
25Hz for A Info and Noop, respectively]. However, only one subject (Subject
1) did not show such a filter-specific difference [4Hz vs. 25Hz: p = n.s. for
Noop and p = n.s. for A Info, all other remaining subjects: p < 0.001 for both
methods]. Also not all subjects showed a higher classification performance for
A Info compared to Noop [interaction of method type with filter type and subject:
F(5,445) = 2.38, p < 0.047, multiple comparisons, see Fig. 3]. Figure 3 shows
that the higher classification performance was not consistently obtained by the
A Info for all subjects.
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Figure 3: Classification performances for different subjects obtained from Noop and
A Info applied to the data filtered at 4 Hz and 25 Hz. Mean classification performance and
standard error of mean (SEM) for each subject, each filter, and each method are depicted
(*=p <0.05; n.s.=p >0.05). A: (4 Hz, Noop), B: (4 Hz, A Info), C: (25 Hz, Noop), B:
(25 Hz, A Info).

4. Concluding discussions

Evaluating the effects of standard artifact removal methods on single trial P300
classification indicates that using the combination of Infomax and ADJUST al-
gorithms leads to a relatively better performance compared with the other ap-
proaches. The Infomax algorithm is based on maximizing the joint entropy be-
tween the source signal estimates and has approved performance for separating
biomedical signals. In comparison with regression and filtered regression, the
better performance of Infomax is the result of taking advantage of multi-channel
analysis and the assumption that the underlying sources are independent. Consid-
ering the theory behind the regression based methods, high quality reference data
is always required. However, because of the bidirectional contamination problem,
the recorded EOG channels also contain some sort of brain activity.

Successful applications of the SOBI method in different fields have been re-
ported so far, however the combination of this method with correlation was not
successful in separating the eye artifacts from EEG signals without distorting
the sources of interest. In contrast to Infomax method that assumes underlying
sources are statistically independent, the SOBI method is based on joint diagonal-
ization of a number of delayed covariance matrices. The lower performance of
this approach (compared with Infomax) indicates that exploiting the time struc-
ture of the data might not be suitable for separating the underlying sources in EEG
recordings, especially when correlation is used to identify the IC channels. Also,
it might be possible that the time delays used for calculating covariance matrices
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are not selected properly. Although from the grand averages in Fig. 2 it is not
possible to infer about the the effects of the removal methods on the single trial
ERP waveforms, the worst approach (SOBI, correlation) has clearly affected the
signals. These results are in line with the previous research on application of ICA
methods in BCI systems (Naeem et al., 2006).

The ADJUST method and correlation with the recorded vEOG and hEOG
channels were used for identifying the artifacted IC channels. Results confirm
that ADJUST outperforms the correlation coefficients, both for SOBI and Info-
max methods. ADJUST exploits temporal and spatial properties of the compo-
nents and therefore is more suitable than temporal correlation coefficients for ar-
tifact identification. Considering the contamination of EOG channels with brain
activity, correlation based artifact identification suffers from the same problem as
regression based methods do. Furthermore, acquisition of EOG channels usually
requires extra effort during recording sessions and is not a comfortable experience
for subjects.

The objective of the current study was not to deeply investigate the effects of
different cutoff frequencies on P300 detection performance. However, the results
show that low-pass filtering the data at 4 Hz results in a better performance com-
pared with filtering at 25 Hz for all artifact removal methods (p < 0.001) except
for one subject. This is because the main frequency components of P300 are in
lower ranges (Jansen et al., 2004). On the other hand, filtering at 4 Hz removes
significant parts of non-physiological and physiological artifacts in the data.

The data used in this study was recorded in a controlled condition. The sub-
jects were asked to perform defined hand movements and to fixate on a certain
point on the screen. This way, arbitrary eye movements were avoided to a high
degree. Even under such a controlled condition, eye artifacts are still induced.
Our analysis confirms that using ICA for removing the artifacts induced under
such condition can improve the accuracy of single trial P300 classification. How-
ever, the absolute values of performance improvements were not so big here. This
can be the result of controlled condition in the experiments, which yields high
classification performance even without removing the artifacts. Artifact removal
methods can increase the classification performance if the artifacts are not corre-
lated with the tasks. In other words, depending on the behavior of the subjects,
the eye movements can be correlated with the evoked event related activity in the
EEG. In such cases, the classifiers would easily learn the eye artifacts properties
because of their high amplitude. Therefore, cleaning the artifacts may eventually
decrease the classification accuracy.

Movement related potentials, directly generated by brain, can affect P300 sig-
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nals. In other words, P300 can be correlated with movement. High classification
performances in our study might be the result of correlation between P300 and
movement potentials. However, this does not violate the artifact removal evalu-
ation procedure. Movement related potentials and P300 are brain potentials, but
EOG artifacts are related to eye movements. Here, we showed that if eye artifacts
are not correlated with tasks, removing the artifacts can improve the performance
even in systems with high classification rates. It is also very unlikely that move-
ment artifacts were classified in our experiments, because the EMG artifacts are
maximal at frequencies above 30 Hz (Fatourechi et al., 2007). In our experiments
these components were filtered out using 4 Hz and 25 Hz low-pass filters. Obtain-
ing higher performances from the data filtered at 4 Hz is another clue to conclude
that EMG artifacts were probably not used by the classifier.

Because of the uncorrelated eye and hand movements in our experiments, the
effectiveness of the artifact removal methods does not depend on the hand move-
ments of the subjects. The hand movements can improve the overall classification
performance, but not the artifact removal performance. In other words, if there
is no movement in a paradigm, e.g., BCI applications, similar artifact removal
performance patterns are expected.

The follow up of this work will focus on artifact removal methods for on-line
single trial P300 detection systems. The main limitation of using Infomax in such
applications is the high computational costs of the algorithm. However, applying
the method to short EEG windows can reduce computational costs significantly.
Adaptive ICA algorithms can also be used to overcome this problem.
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