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Abstract: Ubiquitous information access within intelligent environments – like the SmartFactory
KL

 – 

will become more and more important in everyday life. Universal mobile interaction devices will 

increase the flexibility of the service men during their maintenance task. Although this greater flexibility 

can improve the maintenance processes it also results in new problems for the users (e.g. information 

flood, remote function controls) and developers (e.g. multi-platform development) that have to be 

addressed to guaranty the efficient development of usable, interactive systems for a safe human-machine 

interaction in such environments. In this article we present a model-based architecture for the design of 

context-sensitive mobile user interfaces that allow the abstract specification of an run-time adaptive user 

interface. Based on the model-based architecture, a prototypical implementation of a model interpreter – 

the SmartMote – and an industrial use case are presented that present the use of a run-time adaptive user 

interface and the feasibility of the presented approach. 
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1. INTRODUCTION 

Mobile devices such as smartphones, tablet PCs and also 

notebooks are already integrated into daily life fulfilling 

various purposes. These devices work seamlessly together 

since they are able to share (e.g., using the cloud) and gather 

information (e.g., using positioning services). By 

incorporating all these features, the devices are able to 

provide much more functionality than similar stand-alone 

versions. This new era of smart devices and “ubiquitous 

computing” was already described in the vision of Marc 

Weiser (Weiser, 1999). 

As computational devices are getting smaller and are 

produced for being used by a broader audience, they also 

found their way into modern production facilities. While 

taking profit of the new characteristics of these devices future 

production environments will be much more dynamic and 

intelligent as compared to current rather static facilities. 

Profiting from the distributed computational power future 

production environments will become “smart”. One example 

is the SmartFactory
KL

, which is a demonstration environment 

for the interplay of future technology, to increase the 

flexibility of industrial production processes (Zuehlke, 2010). 

Due to the popularity of standardized communication 

protocols and wireless communication technologies (such as 

TCP/IP and Bluetooth) mobile interaction systems can be 

seamlessly integrated into the production environments, 

enabling new forms of human machine interaction. Mobile 

universal interaction devices (see Fig. 1) for example offer a 

location independent information access and control of 

production processes that increases the flexibility and 

productivity during maintenance tasks. In the case of being 

used in a maintenance scenario, the single devices do not 

need to be approached directly as all relevant information is 

also available remotely. 

This makes such devices attractive for being used in 

maintenance and repair tasks. 

 

Fig. 1. Examples for mobile universal interaction devices for 

production environments 

Besides the easier information access mobile interaction 

devices can be used to implement new interaction scenarios. 

E.g. in case of an incident, the service men can be assisted by 

the mobile interaction device with the context relevant 

information that is frequently used in the particular situation. 

This information can be in the event of a malfunction of a 

field pump the provision of a description of steps the 

maintenance staff has to follow to repair the pump.  

Another example for an advanced usage scenario is the 
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adaptation of the information by the user interface according 

to the location of the maintenance staff. While maintaining a 

robot arm, there is the chance that the unsafe zone needs to be 

entered to conduct certain physical activities. At the same 

time the robot can reach the user which may lead to injuries 

or death. This needs to be (and can be) detected by the smart 

production environment via indoor positioning systems, 

which in consequence has to deactivate all potential 

dangerous functions of the smartphone that will lead to 

human damage. 

 

Fig. 2. Service staff approaching a robot arm and switching 

from the “safe zone” (green – outer circle) to the “unsafe 

zone” (red – inner circle), which is detected by the 

positioning system. 

Despite all advantages of ubiquitous and mobile interaction 

devices in smart production environments there are also 

challenges that have to be addressed to enable the 

implementation of the before mentioned usage scenarios. 

Besides the need of an adequate infrastructure (e.g. indoor 

positioning system, wireless technology) systematic and 

scalable development processes are demanded to support the 

developers during the designs phase. To guarantee the design 

of usable interactive systems, user centred-development 

processes that involve the users during the system design are 

vital. 

The remainder of the paper is structured as follows: 

In section 2 we present the related work in the field of model-

based development of context-sensitive user interfaces 

followed by our model-based architecture in section 3. 

Afterwards, in section 4 we present the software architecture 

of our model-interpreter prototype that is used to generate the 

run-time adaptive user interface. In section 5 we give a 

summary of the lessons learned in this project and give an 

outlook about challenges that have to be addressed in future 

work. 

2. STATE OF THE ART 

One basic principle of software engineering is the “separation 

of concerns”. This principle supports the scalability of 

development processes and is implemented within the 

paradigm of model-based user interface development 

(MBUID). Here, multiple declarative models are used to 

describe different aspects (e.g., presentation, behaviour and 

context) of the user interface and user interaction. These 

models are structured within an architecture according to 

their level of abstraction. 

One of the most recent model-based architectures is the 

CAMELEON Reference Framework (CRF) (Calvary et al., 

2003) which describes four layers of abstraction to structure 

the models according to a user centred development process. 

According to the CRF, many reference implementations have 

been proposed that allow the model-based description of user 

interfaces. In (Meixner et al., 2011) a model-based 

architecture for the design of multi-platform UIs is presented. 

In this approach, task models represent the initial design 

models in which the users tasks are specified in an 

hierarchical task model, specified with the Useware Markup 

Language (useML) (Mukasa et al., 2004; Meixner et al., 

2009). Based on this model, transformations are used to 

derive modality independent abstract user interfaces and the 

platform independent concrete user interface describing the 

presentation and behaviour aspects of the UI. In the last step 

the final user interface is generated for a specific target 

toolkit (e.g. Java Swing, HTML). 

To enable the design of context-sensitive, run-time adaptive 

user interfaces, new approaches have been presented that use 

additional context, adaption and user models to describe the 

user interface adaptations that should be performed during 

run-time. For the description of the use context extend task 

models like the Room-based Use Model (RUM) (Goerlich et 

al., 2007) (Breiner et al., 2009) and MARIA (Paternò et al., 

2011) have been introduced. This model is capable of 

defining situation specific to the user’s tasks. While in this 

approach the usage situations can be described on a very high 

abstraction level, the approach only supports an implicit 

description of the presentation and behavior aspects and 

adaptation effects that should be performed during run-time. 

In the Multiple-Access Service Platform (MASP) 

(Blumendorf et al., 2008), explicit models for the description 

of the context and adaptation strategies of the UI are used 

which offers a greater flexibility for the developers. 

Nevertheless, most of the presented approaches suffer from 

different problems that hinder their direct application in the 

domain of production automation for the design of context-

sensitive universal interaction devices. 

In our previous work we identified the lack of expressiveness 

and redundancies between the models as a critical 

shortcoming of the earlier approaches (Seissler et al., 2010). 

The limited expressiveness resulted in the generation of user 

interfaces with a low usability while the redundancies 

between the models had a negative effect on the extensibility 

of the model renderer which generates the run-time adaptive 

user interface. 

In the next section we present a model-based architecture that 

addresses the before mentioned issues and gives the UI 

developers a greater flexibility in designing context-sensitive 

user interfaces for smart production environments. 

3. A MODEL-BASED ARCHITECTURE FOR 

CONTEXT-SENSITIVE USER INTERFACES IN 

FUTURE FACTORIES 

To support the developers during the design of context-

sensitive user interfaces a model-based architecture that 

allows the separated description of the user interfaces 
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presentational, behavioural and adaptation aspects has been 

developed. 

The architecture specifies three core-models that allow the 

explicit specification of the run-time adaptive user interface. 

According to the CRF the user interface is described via a 

modality- and platform-independent abstract user interface 

(AUI) model that is refined by a platform independent, 

concrete user interface (CUI) model. The run-time 

adaptations that have an effect on both models are defined in 

a separated adaptation model. 

 

Fig. 3. The model-based architecture 

Associated analysis models are used for the informal and 

semi-formal documentation of the user requirements to give a 

task-oriented perspective on the user interface. 

Besides the associated analysis models the architecture 

consists of an explicit functional model that specifies the 

backend services of the machines and devices within the 

factory. Within the associated context model the interaction 

zones of the factory are described that are used to trigger the 

user interface adaptations. For the acquisition of the location 

information an external “interpretation server” (see (Stephan 

et al., 2010)) is used that aggregates location information 

from different sensors and sends the triggers to the run-time 

architecture. 

Since the AUI, CUI and adaptation model represent the core 

of the model-based architecture for the design of run-time 

adaptive user interfaces these models are presented in the 

following subsections. 

3.1 Abstract User Interface (AUI) Model 

The abstract user interface (AUI) model is used for the 

modality-independent description of the interactions. For the 

specification of the AUI model we introduced the XML-

based “Useware Dialog Modelling Language” (useDM) 

(Seissler et al., 2012) that extends the main concepts of the 

“Dialog and Interaction Specification Language” (DISL) 

(Bleul et al., 2004) for an effective description of context-

sensitive UIs. 

 

Fig. 4. The meta-model of the Useware Dialog Modeling 

Language 

In useDM Dialogs are used to describe the static UI 

structures and presentational aspects. The contents of a dialog 

can be in turn described by six abstract and modality-

independent interaction objects. Five of the abstract objects 

(“input”, “output”, “change”, “select” and “trigger”) are 

based on the “elementary use object” of useML (Goerlich et 

al., 2007; Meixner et al., 2011), which represent the basic 

modality-independent information exchange between the user 

and the machine. The “container” element helps to group and 

structure the abstract interaction objects in hierarchies. 

Additionally, containers allow assigning further semantics to 

the sub-elements. For instance, navigational objects that are 

grouped in a container can later be mapped onto a consistent 

layout by specifying one rule for all elements of this 

container. 

While the presentation model part of useDM allows 

specifying the static aspects of the UI e.g. the structure and 

content, the dialog model part is used to describe the 

dynamical aspects. The dialog model part in useDM is based 

on an Event-Condition-Action (ECA) concept which allows 

the specification of holistic behaviours. The “Behaviour”-

Element represents the entry-point into the dialog model and 

is further refined by global variables and conditions, which 

can be referenced in transitions. Transitions represent the 

core of the behavioural description. Using these elements, we 

can describe complex UI behaviours by means of four 

different action types. 

The “call”-Element is used to link the UI with the field 

devices and machine functions, which are implemented in the 

functional model of the architecture and which are accessed 

by interfaces in the architecture. 

The “statement”-Element is used for setting attribute values 

of interaction objects in the presentation model (e.g. title of 

an interaction object) as well as variable values within the 

dialog model. 

The “navigation”-Element enables the specification of 

absolute and relative dialog changes in the UI. The absolute 

navigation allows the specification of dialog-id based 

navigations. On the other hand, relative navigations are used 

for the specification of generic navigations in reusable 

dialogs by using navigation symbols (e.g. “next”, “parent”, 

etc.) 

3.2 Concrete User Interface Model (CUI-Modell) 

After the definition of the AUI the information and functions 

specified in the AUI model have to be mapped into a 

modality-specific concrete user interface (CUI). This CUI 
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represents the UI in a specific target modality (e.g. graphical 

or vocal UI) but still abstracts from the platform-specific 

aspects. For a graphical UI this means that e.g. the abstract 

interaction objects have to be mapped onto concrete 

interaction objects (e.g. a “trigger”-element can be mapped 

onto a “button”-element) and arranged in a layout. The CUI 

then can be further refined by adding additional, modality-

specific design information (e.g. colour schemes, pictures, 

icons). 

For the platform-independent description of the graphical 

concrete UI we use in our model-based architecture the User 

Interface Markup Language (UIML) 4.0. Since in our 

architecture the CUI only is used for the refinement of the 

information architecture that is specified in the AUI model, 

the language had to be extended by an explicit mapping 

mechanism. This mapping mechanism is used to interlink the 

AUI model elements with the CUI model elements via rules. 

This helps to avoid redundancies between the AUI and CUI 

models and increases the flexibility of the model based 

architecture. The developers can manually specify their own 

mapping rules without having to change the implementation 

like in other concepts (see e.g. (Goerlich et al., 2007)). 

3.3 Adaptation Model 

For the specification of the run-time adaptions of the UI an 

explicit adaption model has been developed that 

interconnects the context-information of the associated 

“Interpretation Server” (Stephan et al., 2010) and the AUI- 

and CUI-model elements. Like in the CUI model, rules are 

used to specify how the situations described in the context 

model affect the design aspects of the UI. Since the 

adaptation rules can address elements of both models, 

adaptations on different abstraction layers of the UI can be 

modeled. Modality-independent adaptations, which support 

the context-sensitive information filtering, have an effect on 

the AUI model, while modality-specific adaptation rules that 

have an effect on the information presentation (e.g. color, 

size, layout), are specified for the CUI model. 

While each of the three presented core models describes one 

aspect of the UI, they all together allow the description of the 

context-sensitive UI. For the run-time adaption of the user 

interface a model interpreter is needed. In the next section the 

SmartMote, a model-interpreter for the presented model-

based architecture is presented. 

4. SMARTMOTE – A RUN-TIME ADAPTIVE 

UNIVERSAL REMOTE CONTROL 

To test the feasibility of the model-based architecture a 

prototypical model interpreter has been designed that 

supports the generation of the run-time adaptive UI (Seissler 

et al., 2012). Based on the architecture and the model 

interpreter we’ve designed a context-sensitive UI that 

supports the service personal in a maintenance scenario. In 

this scenario the context-sensitive UI is used for the 

interaction with a cyber-physical production system (CPPS) 

that has been presented by the DFKI at the international 

Hannover Fare (HMI) 2012. This CPPS consists of four 

independent production modules which demonstrate the 

automated production of an intelligent key-finder. The UI 

allows the interaction with two production modules of the 

CPPS and their field devices. To present the core-benefits of 

the context-sensitive UI the interaction with the Assembly-

Module, which handles the housing and the PCB of the key-

finder, and the Picking-Module, which handles the product 

via a robot, is presented. 

For the situation-aware information presentation both 

production modules have been augmented via two distinct 

interaction zones that are modeled within the “Interpretation 

Server”. These interaction zones are interlinked in the 

adaptation model with according adaptation rules that 

implement the run-time adaptations for the AUI and CUI 

model. 

The result of the UI modeling is depicted in Fig 5.  

 

Fig. 5. The generated context-sensitve UI 

The users are supported by two different adaptations that 

have been incorporated in the UI. A dynamical navigation 

between the dialogs “Assembly-Module” and “Picking-

Module” has been specified which automatically presents the 

correct dialog to the user according to her current location. 

While this comforts the interaction in larger industrial 

settings it also has a positive effect on the safety of the 

mobile interaction. Additional adaptions can be used to 

enable/disable certain functionalities (e.g. robot arm) that 

demand for a continuous, visual feedback. Therefore, if the 

user leaves the interaction zone of the Picking Module 

(Interaction Zone “Unsafe”) and has no direct sight on the 

robot, the manipulation functions are disabled (see Fig. 5). 

Adaptation rules that have an effect on the CUI model have 

been used to give the users a feedback for the adaptations. 

The adaptation of the color scheme of the status bar has been 

used in this use case to offer feedback about the current 

interaction zone and the respective adaptation that has been 
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triggered by the system. This makes the adaptation process 

for the users more transparent since they can see when and in 

which interaction zone an adaptation has been performed. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we presented a model-based architecture for the 

development of context-sensitive user interfaces which 

support mobile maintenance tasks in smart production 

environments. Due to the use of three independent, but 

interlinked, user interface models the separated description of 

the presentation, behavioral and adaptation aspects is 

enabled. To show the feasibility of the architecture, a 

demonstrator of a model-interpreter, the SmartMote, and a 

prototypical context-sensitive UI for a cyber-physical 

production system has been developed. 

To give the users a better support during the interaction with 

the universal interaction device, further context sources can 

be integrated into the architecture. One possible enhancement 

which seems to be fruitful is the integration of status 

information from the production system itself (e.g. “big 

data”). Having more precise information from the single field 

devices in the production process, the user can be triggered 

from the system, when there seems to be an anomaly in the 

system that has to be fixed before a failure occurs. 

However, for the industrial application of this approach other 

issues like safety of the wireless communication or the user 

authentication that have been neglected in this concept. 
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