

SmartMote: A model-based Architecture for context-sensitive User Interfaces in

Future Factories

Marc Seissler*, Kai Breiner**, Mathias Schmitt*, Samuel Asmelash***, Johannes Koelsch***

*German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany

(e-mail: {surname}.{name}@dfki.de)

**Fraunhofer Institute for Experimental Software Engineering IESE, Kaiserslautern, Germany

(e-mail: kai.breiner@iese.fraunhofer.de)

***University of Kaiserslautern, Kaiserslautern, Germany

(e-mail: {asmelash; koelsch}@rhrk.uni-kl.de).

Abstract: Ubiquitous information access within intelligent environments – like the SmartFactory
KL

 –

will become more and more important in everyday life. Universal mobile interaction devices will

increase the flexibility of the service men during their maintenance task. Although this greater flexibility

can improve the maintenance processes it also results in new problems for the users (e.g. information

flood, remote function controls) and developers (e.g. multi-platform development) that have to be

addressed to guaranty the efficient development of usable, interactive systems for a safe human-machine

interaction in such environments. In this article we present a model-based architecture for the design of

context-sensitive mobile user interfaces that allow the abstract specification of an run-time adaptive user

interface. Based on the model-based architecture, a prototypical implementation of a model interpreter –

the SmartMote – and an industrial use case are presented that present the use of a run-time adaptive user

interface and the feasibility of the presented approach.

Keywords: Model-Based Design, Usability Engineering, Ambient Intelligence, Mobile Interaction.



1. INTRODUCTION

Mobile devices such as smartphones, tablet PCs and also

notebooks are already integrated into daily life fulfilling

various purposes. These devices work seamlessly together

since they are able to share (e.g., using the cloud) and gather

information (e.g., using positioning services). By

incorporating all these features, the devices are able to

provide much more functionality than similar stand-alone

versions. This new era of smart devices and “ubiquitous

computing” was already described in the vision of Marc

Weiser (Weiser, 1999).

As computational devices are getting smaller and are

produced for being used by a broader audience, they also

found their way into modern production facilities. While

taking profit of the new characteristics of these devices future

production environments will be much more dynamic and

intelligent as compared to current rather static facilities.

Profiting from the distributed computational power future

production environments will become “smart”. One example

is the SmartFactory
KL

, which is a demonstration environment

for the interplay of future technology, to increase the

flexibility of industrial production processes (Zuehlke, 2010).

Due to the popularity of standardized communication

protocols and wireless communication technologies (such as

TCP/IP and Bluetooth) mobile interaction systems can be

seamlessly integrated into the production environments,

enabling new forms of human machine interaction. Mobile

universal interaction devices (see Fig. 1) for example offer a

location independent information access and control of

production processes that increases the flexibility and

productivity during maintenance tasks. In the case of being

used in a maintenance scenario, the single devices do not

need to be approached directly as all relevant information is

also available remotely.

This makes such devices attractive for being used in

maintenance and repair tasks.

Fig. 1. Examples for mobile universal interaction devices for

production environments

Besides the easier information access mobile interaction

devices can be used to implement new interaction scenarios.

E.g. in case of an incident, the service men can be assisted by

the mobile interaction device with the context relevant

information that is frequently used in the particular situation.

This information can be in the event of a malfunction of a

field pump the provision of a description of steps the

maintenance staff has to follow to repair the pump.

Another example for an advanced usage scenario is the

SIMATIC MOBILE PANEL 277F
(Fa. Siemens AG)

UCP 450
(Fa. unipo GmbH)

©
 S

ie
m

en
s

A
G

©
 u

n
ip

o
G

m
b

H

adaptation of the information by the user interface according

to the location of the maintenance staff. While maintaining a

robot arm, there is the chance that the unsafe zone needs to be

entered to conduct certain physical activities. At the same

time the robot can reach the user which may lead to injuries

or death. This needs to be (and can be) detected by the smart

production environment via indoor positioning systems,

which in consequence has to deactivate all potential

dangerous functions of the smartphone that will lead to

human damage.

Fig. 2. Service staff approaching a robot arm and switching

from the “safe zone” (green – outer circle) to the “unsafe

zone” (red – inner circle), which is detected by the

positioning system.

Despite all advantages of ubiquitous and mobile interaction

devices in smart production environments there are also

challenges that have to be addressed to enable the

implementation of the before mentioned usage scenarios.

Besides the need of an adequate infrastructure (e.g. indoor

positioning system, wireless technology) systematic and

scalable development processes are demanded to support the

developers during the designs phase. To guarantee the design

of usable interactive systems, user centred-development

processes that involve the users during the system design are

vital.

The remainder of the paper is structured as follows:

In section 2 we present the related work in the field of model-

based development of context-sensitive user interfaces

followed by our model-based architecture in section 3.

Afterwards, in section 4 we present the software architecture

of our model-interpreter prototype that is used to generate the

run-time adaptive user interface. In section 5 we give a

summary of the lessons learned in this project and give an

outlook about challenges that have to be addressed in future

work.

2. STATE OF THE ART

One basic principle of software engineering is the “separation

of concerns”. This principle supports the scalability of

development processes and is implemented within the

paradigm of model-based user interface development

(MBUID). Here, multiple declarative models are used to

describe different aspects (e.g., presentation, behaviour and

context) of the user interface and user interaction. These

models are structured within an architecture according to

their level of abstraction.

One of the most recent model-based architectures is the

CAMELEON Reference Framework (CRF) (Calvary et al.,

2003) which describes four layers of abstraction to structure

the models according to a user centred development process.

According to the CRF, many reference implementations have

been proposed that allow the model-based description of user

interfaces. In (Meixner et al., 2011) a model-based

architecture for the design of multi-platform UIs is presented.

In this approach, task models represent the initial design

models in which the users tasks are specified in an

hierarchical task model, specified with the Useware Markup

Language (useML) (Mukasa et al., 2004; Meixner et al.,

2009). Based on this model, transformations are used to

derive modality independent abstract user interfaces and the

platform independent concrete user interface describing the

presentation and behaviour aspects of the UI. In the last step

the final user interface is generated for a specific target

toolkit (e.g. Java Swing, HTML).

To enable the design of context-sensitive, run-time adaptive

user interfaces, new approaches have been presented that use

additional context, adaption and user models to describe the

user interface adaptations that should be performed during

run-time. For the description of the use context extend task

models like the Room-based Use Model (RUM) (Goerlich et

al., 2007) (Breiner et al., 2009) and MARIA (Paternò et al.,

2011) have been introduced. This model is capable of

defining situation specific to the user’s tasks. While in this

approach the usage situations can be described on a very high

abstraction level, the approach only supports an implicit

description of the presentation and behavior aspects and

adaptation effects that should be performed during run-time.

In the Multiple-Access Service Platform (MASP)

(Blumendorf et al., 2008), explicit models for the description

of the context and adaptation strategies of the UI are used

which offers a greater flexibility for the developers.

Nevertheless, most of the presented approaches suffer from

different problems that hinder their direct application in the

domain of production automation for the design of context-

sensitive universal interaction devices.

In our previous work we identified the lack of expressiveness

and redundancies between the models as a critical

shortcoming of the earlier approaches (Seissler et al., 2010).

The limited expressiveness resulted in the generation of user

interfaces with a low usability while the redundancies

between the models had a negative effect on the extensibility

of the model renderer which generates the run-time adaptive

user interface.

In the next section we present a model-based architecture that

addresses the before mentioned issues and gives the UI

developers a greater flexibility in designing context-sensitive

user interfaces for smart production environments.

3. A MODEL-BASED ARCHITECTURE FOR

CONTEXT-SENSITIVE USER INTERFACES IN

FUTURE FACTORIES

To support the developers during the design of context-

sensitive user interfaces a model-based architecture that

allows the separated description of the user interfaces

Safety Critical
Interaction Zone

Safe
Interaction Zone

Indoor
Positioning
System

presentational, behavioural and adaptation aspects has been

developed.

The architecture specifies three core-models that allow the

explicit specification of the run-time adaptive user interface.

According to the CRF the user interface is described via a

modality- and platform-independent abstract user interface

(AUI) model that is refined by a platform independent,

concrete user interface (CUI) model. The run-time

adaptations that have an effect on both models are defined in

a separated adaptation model.

Fig. 3. The model-based architecture

Associated analysis models are used for the informal and

semi-formal documentation of the user requirements to give a

task-oriented perspective on the user interface.

Besides the associated analysis models the architecture

consists of an explicit functional model that specifies the

backend services of the machines and devices within the

factory. Within the associated context model the interaction

zones of the factory are described that are used to trigger the

user interface adaptations. For the acquisition of the location

information an external “interpretation server” (see (Stephan

et al., 2010)) is used that aggregates location information

from different sensors and sends the triggers to the run-time

architecture.

Since the AUI, CUI and adaptation model represent the core

of the model-based architecture for the design of run-time

adaptive user interfaces these models are presented in the

following subsections.

3.1 Abstract User Interface (AUI) Model

The abstract user interface (AUI) model is used for the

modality-independent description of the interactions. For the

specification of the AUI model we introduced the XML-

based “Useware Dialog Modelling Language” (useDM)

(Seissler et al., 2012) that extends the main concepts of the

“Dialog and Interaction Specification Language” (DISL)

(Bleul et al., 2004) for an effective description of context-

sensitive UIs.

Fig. 4. The meta-model of the Useware Dialog Modeling

Language

In useDM Dialogs are used to describe the static UI

structures and presentational aspects. The contents of a dialog

can be in turn described by six abstract and modality-

independent interaction objects. Five of the abstract objects

(“input”, “output”, “change”, “select” and “trigger”) are

based on the “elementary use object” of useML (Goerlich et

al., 2007; Meixner et al., 2011), which represent the basic

modality-independent information exchange between the user

and the machine. The “container” element helps to group and

structure the abstract interaction objects in hierarchies.

Additionally, containers allow assigning further semantics to

the sub-elements. For instance, navigational objects that are

grouped in a container can later be mapped onto a consistent

layout by specifying one rule for all elements of this

container.

While the presentation model part of useDM allows

specifying the static aspects of the UI e.g. the structure and

content, the dialog model part is used to describe the

dynamical aspects. The dialog model part in useDM is based

on an Event-Condition-Action (ECA) concept which allows

the specification of holistic behaviours. The “Behaviour”-

Element represents the entry-point into the dialog model and

is further refined by global variables and conditions, which

can be referenced in transitions. Transitions represent the

core of the behavioural description. Using these elements, we

can describe complex UI behaviours by means of four

different action types.

The “call”-Element is used to link the UI with the field

devices and machine functions, which are implemented in the

functional model of the architecture and which are accessed

by interfaces in the architecture.

The “statement”-Element is used for setting attribute values

of interaction objects in the presentation model (e.g. title of

an interaction object) as well as variable values within the

dialog model.

The “navigation”-Element enables the specification of

absolute and relative dialog changes in the UI. The absolute

navigation allows the specification of dialog-id based

navigations. On the other hand, relative navigations are used

for the specification of generic navigations in reusable

dialogs by using navigation symbols (e.g. “next”, “parent”,

etc.)

3.2 Concrete User Interface Model (CUI-Modell)

After the definition of the AUI the information and functions

specified in the AUI model have to be mapped into a

modality-specific concrete user interface (CUI). This CUI

Requirements

Context-InformationMachine Services

Function-
Model

Task Model
(e.g. useML)

Context-
Model

AUI-Model
(useDM)

Adaptation-
Model

CUI-Model
(UIML)

«adapts»

«uses»

«calls»

Run-time Models

Use Case
Descriptions

Mockups

Associated
Analysis Models

Core-Models

«references»

Associated Environment Models

Dialog

Structure Behavior

Templates
Meta-

Information

useDM

Abstract Interaction
ObjectContainer

Input Change SelectOutput Trigger

Variable TransitionCondition

Call Navigation RestructureStatement

represents the UI in a specific target modality (e.g. graphical

or vocal UI) but still abstracts from the platform-specific

aspects. For a graphical UI this means that e.g. the abstract

interaction objects have to be mapped onto concrete

interaction objects (e.g. a “trigger”-element can be mapped

onto a “button”-element) and arranged in a layout. The CUI

then can be further refined by adding additional, modality-

specific design information (e.g. colour schemes, pictures,

icons).

For the platform-independent description of the graphical

concrete UI we use in our model-based architecture the User

Interface Markup Language (UIML) 4.0. Since in our

architecture the CUI only is used for the refinement of the

information architecture that is specified in the AUI model,

the language had to be extended by an explicit mapping

mechanism. This mapping mechanism is used to interlink the

AUI model elements with the CUI model elements via rules.

This helps to avoid redundancies between the AUI and CUI

models and increases the flexibility of the model based

architecture. The developers can manually specify their own

mapping rules without having to change the implementation

like in other concepts (see e.g. (Goerlich et al., 2007)).

3.3 Adaptation Model

For the specification of the run-time adaptions of the UI an

explicit adaption model has been developed that

interconnects the context-information of the associated

“Interpretation Server” (Stephan et al., 2010) and the AUI-

and CUI-model elements. Like in the CUI model, rules are

used to specify how the situations described in the context

model affect the design aspects of the UI. Since the

adaptation rules can address elements of both models,

adaptations on different abstraction layers of the UI can be

modeled. Modality-independent adaptations, which support

the context-sensitive information filtering, have an effect on

the AUI model, while modality-specific adaptation rules that

have an effect on the information presentation (e.g. color,

size, layout), are specified for the CUI model.

While each of the three presented core models describes one

aspect of the UI, they all together allow the description of the

context-sensitive UI. For the run-time adaption of the user

interface a model interpreter is needed. In the next section the

SmartMote, a model-interpreter for the presented model-

based architecture is presented.

4. SMARTMOTE – A RUN-TIME ADAPTIVE

UNIVERSAL REMOTE CONTROL

To test the feasibility of the model-based architecture a

prototypical model interpreter has been designed that

supports the generation of the run-time adaptive UI (Seissler

et al., 2012). Based on the architecture and the model

interpreter we’ve designed a context-sensitive UI that

supports the service personal in a maintenance scenario. In

this scenario the context-sensitive UI is used for the

interaction with a cyber-physical production system (CPPS)

that has been presented by the DFKI at the international

Hannover Fare (HMI) 2012. This CPPS consists of four

independent production modules which demonstrate the

automated production of an intelligent key-finder. The UI

allows the interaction with two production modules of the

CPPS and their field devices. To present the core-benefits of

the context-sensitive UI the interaction with the Assembly-

Module, which handles the housing and the PCB of the key-

finder, and the Picking-Module, which handles the product

via a robot, is presented.

For the situation-aware information presentation both

production modules have been augmented via two distinct

interaction zones that are modeled within the “Interpretation

Server”. These interaction zones are interlinked in the

adaptation model with according adaptation rules that

implement the run-time adaptations for the AUI and CUI

model.

The result of the UI modeling is depicted in Fig 5.

Fig. 5. The generated context-sensitve UI

The users are supported by two different adaptations that

have been incorporated in the UI. A dynamical navigation

between the dialogs “Assembly-Module” and “Picking-

Module” has been specified which automatically presents the

correct dialog to the user according to her current location.

While this comforts the interaction in larger industrial

settings it also has a positive effect on the safety of the

mobile interaction. Additional adaptions can be used to

enable/disable certain functionalities (e.g. robot arm) that

demand for a continuous, visual feedback. Therefore, if the

user leaves the interaction zone of the Picking Module

(Interaction Zone “Unsafe”) and has no direct sight on the

robot, the manipulation functions are disabled (see Fig. 5).

Adaptation rules that have an effect on the CUI model have

been used to give the users a feedback for the adaptations.

The adaptation of the color scheme of the status bar has been

used in this use case to offer feedback about the current

interaction zone and the respective adaptation that has been

Home Dialog
Interaction Zone „Global“

Assembly-Module Dialog
Interaction Zone

„Assembly-Module“

Picking-Module Dialog
Interaction Zone „Safe“

Picking-Module Dialog
Interaction Zone „Unsafe“

Manuel
Navigation

Context-
sensitive
Adaptation

triggered by the system. This makes the adaptation process

for the users more transparent since they can see when and in

which interaction zone an adaptation has been performed.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented a model-based architecture for the

development of context-sensitive user interfaces which

support mobile maintenance tasks in smart production

environments. Due to the use of three independent, but

interlinked, user interface models the separated description of

the presentation, behavioral and adaptation aspects is

enabled. To show the feasibility of the architecture, a

demonstrator of a model-interpreter, the SmartMote, and a

prototypical context-sensitive UI for a cyber-physical

production system has been developed.

To give the users a better support during the interaction with

the universal interaction device, further context sources can

be integrated into the architecture. One possible enhancement

which seems to be fruitful is the integration of status

information from the production system itself (e.g. “big

data”). Having more precise information from the single field

devices in the production process, the user can be triggered

from the system, when there seems to be an anomaly in the

system that has to be fixed before a failure occurs.

However, for the industrial application of this approach other

issues like safety of the wireless communication or the user

authentication that have been neglected in this concept.

ACKNOWLEDGMENTS

Our work as well as the “GaBi” project is funded by the

German Research Foundation (DFG) reference number ZU

79/16-1 and -2 as well as RO 3343/1-1 and -2. Additionally

we thank Malte Brunnlieb, Philipp Diebold, Markus Kleine,

Thilo Rauch, Peter Reuter and Lars Scherer for their work

contributing to this project.

REFERENCES

Abrams, M. et al., 1999. UIML: An Appliance-Independent

XML User Interface Language. In Proc. of the 8
th

 Int.

World Wide Web Conf, Elsevier, 1695-1708.

Bleul, S. et al., 2004. Multimodal Dialog Description for

Mobile Devices. In Proceedings of the International

Working Conference on Advanced Visual Interfaces.

(Costabile, M. (Ed.)), ACM Press, New York, NY, USA.

Blumendorf, M. et al., 2008. Multimodal user interfaces for

smart environments: the multi-access service platform.

In Proceedings of the working conference on Advanced

Visual Interfaces (AVI '08). (Levialdi, S. (Ed.)), 478–
479. ACM Press, New York, NY, USA.

Breiner, K. et al., 2009. Run-Time Adaptation of a Universal

User Interface for Ambient Intelligent Production

Environments, In Proc. of the 13
th

 Int. Conf. on Human-

Computer Interaction, 663-672. Springer.

Calvary, G. et al. 2003. A Unifying Reference Framework for

Multi-Target User Interfaces, Interacting with

Computers, 15(3), 289-308.

Goerlich, D. and Breiner, K., 2007. Intelligent Task-oriented

User Interfaces in Production Environments. In

Proceedings of the the workshop on Model-Driven User-

Centric Design & Engineering (MDUCDE'07), 10th

IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design,

and Evaluation of Human-Machine-Systems, (Goetz

Botterweck (Ed.)), CEUR-WS.org.

Meixner, G. et al., 2011. Model-Driven Useware

Engineering. In Model-Driven Development of Advanced

User Interfaces : Model-driven development of advanced

user interfaces. (: Hussman, H.; Meixner, G.; Zuehlke,

D. (Ed)) 1-26. Springer, Berlin.

Seissler, M. et al., 2010. Using HCI Patterns within the

Model-Based Development of Run-Time Adaptive User

Interfaces. In Proceedings of the 11th

IFAC/IFIPS/IFORS/IEA Symposium on Analysis,

Design, and Evaluation of Human-Machine Systems,

(Vanderhaegen, F. (Ed)) 477–482. IFAC-PapersOnline.

Seissler, M. et al., 2012. SmartMote – A run-time adaptive

universal control device for ambient intelligent

production environments : W3C Working Group

Submission. URL:

http://www.w3.org/wiki/images/0/06/2012-02-

09_SmartMote_Architecture_useML_useDM.pdf - Last

checked on October 22, 2012.

Stephan, P. et al., 2009. Evaluation of Indoor Positioning

Technologies under industrial application conditions in

the SmartFactoryKL based on EN ISO 9283. In

Proceedings of the 13th IFAC Symposium on

Information Control Problems in Manufacturing

(INCOM 09).870–875. IFAC-PapersOnline.

Stephan, P. System architecture for using location

information for process optimization within a factory of

things. In Proceedings of the Third International

Workshop on Location and the Web. 1-4. ACM Press,

New York, NY, USA.

Paternò, F. et al., 2011. Engineering the authoring of usable

service front ends. In Journal of Systems and Software

84(10), 1806–1822

Weiser, M., 1999. The computer for the 21
st
 century. In

SIGMOBILE Mob. Comput. Commun. Rev., 3(3), 3-11.

Zuehlke, D., 2010. SmartFactory - Towards a factory-of-

things. In Annual Reviews in Control 34(1), 129–138.

	ACKNOWLEDGMENTS

