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Abstract Learning versatile, reusable skills is one of
the key prerequisites for autonomous robots. Imitation

and reinforcement learning are among the most promi-
nent approaches for learning basic robotic skills. How-
ever, the learned skills are often very specific and cannot

be reused in different but related tasks. In the project

BesMan, we develop hierarchical and transfer learning

methods which allow a robot to learn a repertoire of

versatile skills that can be reused in different situations.

The development of new methods is closely integrated
with the analysis of complex human behavior.

Keywords Multi-Task Learning · Skill Learning ·
Movement Primitives · Transfer Learning · Reinforce-

ment Learning

1 Introduction

BesMan (“Behaviors for Mobile Manipulation”)1 is a

joint project of the Robotics Research Group of the Uni-

versity of Bremen (UoB) and the Robotics Innovation

Center of the German Research Center for Artificial In-

telligence (DFKI). The project started in May 2012 and

has a duration of four years. The goal of the project
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is the development of generic manipulation strategies

which do not depend on a specific robot morphology

and are suited for both one and two-arm systems such

as AILA (see Fig. 1). Novel, situation-specific behavior

shall be learned by means of a learning platform. The

development of manipulation procedures is mainly the

responsibility of the DFKI while the UoB develops the

learning platform. In this paper, we focus on the learn-

ing platform.

The main idea of the learning platform is to learn

skills based on human demonstrations of complex, task-

specific behavior like grasping and manipulating an ob-

ject. This complex behavior is split into simpler be-

havioral blocks (such as object grasping) using behav-

ior segmentation methods. The robot learns movement

primitives which correspond to these behavioral build-

ing blocks based on imitation learning [2,23] and re-

inforcement learning (RL) [12]. These movement prim-

itives are specific for the demonstrated tasks: for in-

stance, a movement primitive might encode how a spe-

cific object in a specific orientation can be grasped.

However, the learning platform will contain means for

Fig. 1 Humanoid robot AILA, see http://robotik.

dfki-bremen.de/en/research/robot-systems/aila.html.
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transfer learning [26], which allow to learn more generic

templates. Such a generic template may encode, e.g.,

how to grasp any object from a larger class of objects

from a multitude of orientations. These templates can

be instantiated to a movement primitive for a novel,

previously unseen task (e.g., an object with a certain

orientation). Furthermore, hierarchical RL [3] will al-

low to sequence movement primitives into more com-
plex behaviors like grasping an object and placing it at
a specific position (see, e.g., Stulp and Schaal [25]). This

can be considered to be the contrary of behavior seg-

mentation. The development of the learning platform

will be accompanied by behavioral studies with human

subjects that will give further insights into the learning,

adaptation, and combination of movement primitives as

well as their transfer between situations and tasks.

We present a summary of learning approaches for

robotic movement primitives, present the learning plat-

form used in BesMan, and propose learning skill tem-
plates based on transfer learning. Furthermore, we give

some preliminary results.

2 Learning of Movement Primitives

In this section, we give an overview of methods for

learning movement primitives, more specifically how
movement primitives for simple tasks can be learned in
the context of robotics. An overview paper summariz-

ing recent work in this area was published by Peters et

al. [19]. The most popular approach for learning move-

ment primitives is RL. However, due to the large num-

ber of degrees of freedom and the continuous state and

action spaces, classical, off-the-shelf RL algorithms are

not well suited for the learning of movement primitives.

During the last years, several new RL algorithms

from the field of direct policy search have been proposed

that are specifically tailored to the learning of move-

ment primitives: Peters et al. [21] propose an extension

of ‘vanilla’ policy gradient methods by using the natural
gradient. The method is shown to converge faster than
classical policy gradient methods. Reward-weighted re-

gression (RWR) [20] and “Policy learning by weighting

exploration with the returns” (PoWER) [15] are based

on the principle of reward-weighted self-imitation and

allow to learn complex tasks such as the ball-in-a-cup

benchmark. Relative Entropy Policy Search (REPS) [18]
is a policy search method whose objective is to bound
the loss of information during exploration. Hierarchical

REPS [4] is a recent extension of REPS which allows in

situations, where several locally optimal behaviors ex-

ist, to learn all these optima simultaneously. PI2 [27] is
a direct policy search method based on stochastic op-

timal control. PI2 requires to specify an initial policy

and a covariance matrix which governs exploration in

weight space (often a multiple of the identity matrix).
CMA-ES [8] is a metaheuristic for black-box optimiza-
tion which is well suited for direct policy search [9].

All these methods are policy search approaches that

optimize the weights of a fixed policy representation.
The most popular class of policy representations that
have been used to learn movement primitives for robotic

manipulation are Dynamical systems Movement Prim-

itives (DMPs) [10,13,16,17]. DMPs encode arbitrarily

shapeable, goal-directed trajectories. The different vari-

ants of DMPs have in common that the encoded move-

ment is governed by two superimposed attractor forces:

(1) a fixed attraction to a goal position and (2) a mod-

ifiable and time-varying attractor force with decaying

influence over time. Because the second attractor force

loses its influence at the end of the movement, it is guar-

anteed that the goal is eventually reached. The second

attractor force can be modified by adjusting a weight

vector by means of imitation learning and RL.
Two main advantages of DMPs in comparison to

other policy representations for our purposes are: (1)

The DMP’s goal position is always reached eventually,

and thus, RL algorithms explore only movements that

reach the goal and the exploration is more focused on

promising policies. (2) Imitation learning is simplified

for DMPs compared to other approaches, e.g., SEDS

[11], since the optimal weights for a given demonstra-

tion can be determined by a closed-form formula.

3 Learning Platform

This section describes the architecture of the learning
platform (see Fig. 2) which is used within the project
BesMan for learning so-called skill templates. In gen-

eral, learning complex behaviors at once is very time
consuming or even impossible for artificial as well as
biological agents. It is known from behavioral studies
in rodents that learning of complex skill behavior takes

place incrementally, i.e., smaller individual behavioral
blocks are learned separately and later on combined
during consolidation of the complex behavior by chunk-

ing them into sequences [7]. Considering this princi-

pal from skill learning in rodents, we have shown in

a computational study that decomposing complex be-

havior into smaller behavioral blocks helps to simplify

the learning problem and allows to learn more complex
behavior than by a monolithic learning approach [1].

In BesMan, learning of new skill templates for a

certain task is based on repeated demonstrations of suc-
cessful behaviors for variations of this task by a human
demonstrator. These demonstrations are recorded, pre-

processed and synchronized. The preprocessed demon-
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Fig. 2 Dataflow-diagram of the BesMan Learning Platform. Target behavior is demonstrated by a human and segmented into
simpler behavioral building blocks. Movement primitives corresponding to these building blocks are learned using imitation
learning and refined using reinforcement learning. The resulting movement primitives are specific for a certain task context
but can be generalized to more generic skill templates. Once a new task is encountered, the skill template is instantiated and
yields a task-specific movement primitive. This movement primitive can either be applied directly or can be refined further.

strations are then automatically decomposed into be-

havioral blocks by the module ”Behavior Segmenta-
tion” of the learning platform. This module uses un-
supervised behavior segmentation algorithms to auto-
matically identify sequences in the recorded trajectories

which correspond to behavioral building blocks. The

segmentation algorithms used in BesMan are based
on Bayesian inference. Each behavior segment is repre-

sented by a linear regression model, whose parameters

are inferred by a segmentation algorithm. It is assumed

that a new behavior segment begins when the underly-

ing model changes. The multiple changepoint inference

of Fearnhead and Liu [5] and the beta process autore-

gressive hidden Markov model (BPARHMM) of Fox et

al. [6] are two methods to infer segments based on this

assumption. In these probabilistic segmentation meth-

ods, noise in the data as well as variations in the exe-

cution of a behavior can be handled. Additionally, the

BPARHMM labels the segments and assigns the same

label to segments represented by the same regression

model. In this way it gives the possibility to identify

segments which belong to the same behavioral building
block and thus represent multiple demonstrations for
the same movement primitive.

For each of the identified segments, imitation learn-
ing methods are used to map the recorded trajectory
segments onto movement primitives. These movement
primitives describe trajectories in task space that mimic

the trajectories presented by the human demonstrator

while executing one behavioral building block. Because

of potentially considerable differences in morphology

and dynamic properties between human demonstrators
and the robotic target systems, the mimicked move-
ment primitives might not be optimal or even feasi-

ble for the respective target system and the optimal

movement primitive will typically differ between target

systems. To account for this, the “Movement Primi-

tive Refinement” module adapts the learned movement

primitives for the target system using RL. This requires

interaction with the target system or with a simulation

of it and the specification of a reward function which

assesses the quality (the “cost”) of the movement prim-

itive for the setting.
The learned movement primitives are solutions for

very specific tasks. In general, it is desirable to learn

more generic capabilities that can be applied in an en-

tire class of different but related tasks. This is achieved

by the “Skill Template Learning” module which al-

lows learning skill templates that generalize the learned

movement primitives to new but similar settings (see

Section 4). For this, demonstrations of behavior for dif-

ferent settings are required as well as examples of task
settings and corresponding optimal movement primi-
tives to generalize beyond these examples. A second ca-
pability of the module is to learn templates for complex

behaviors that consists of several building blocks (and

thus of a sequence of movement primitives). This re-

quires to learn and handle dependencies between subse-

quent behavioral building blocks. Once a skill template
has been learned and adapted to the specific target sys-
tem, the skill template is added to the “Skill Template

Pool”. The skill templates in this pool can be used ei-

ther directly during online operation or can be further

refined for a specific task.

4 Skill Template Learning

Transfer Learning: A crucial factor for the performance

of policy search methods is that the search is properly
initialized, i.e., starts from a policy which is not too
different from a successful solution of the task. As dis-

cussed, one way for obtaining such a policy is imitation
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Fig. 3 DMPs are able to generalize over some metaparame-
ters, e.g., the goal of a movement. The 2D trajectory of the
original DMP is indicated by the black line. Changing the
goal position to the colored dots results in the trajectories
represented by the correspondingly colored lines. Note that
the trajectories’ shapes remain similar despite different goals.

learning. However, if movement primitives for a large

number of different tasks shall be learned, this approach

is cumbersome since every movement primitives needs

to be demonstrated separately.

A more promising approach is thus to transfer knowl-

edge learned in one task to a different but related task.

If movement primitives are represented by DMPs, they

contain some basic adaptivity inherently. That is, since

they are controlled by metaparameters like the move-

ment duration and the goal of the movement, they allow

to generalize to some extent over these parameters. For

instance, a DMP can be adapted directly to a slightly

different goal position (see Fig. 3). Furthermore, it is

also possible to modify the DMP formulation to incor-

porate more metaparameters, for example the velocity

at the end of the movement [16]. However, for more

complex problem classes, the dimensions of variations

may not be easily encoded in the structure of the DMP.

For instance, when learning throwing movements, it is

not straightforward to encode the target of the throw

as a metaparameter in the DMP formulation.

Another approach is to learn an explicit mapping

which defines how movement primitives can be trans-

ferred from one specific task to a different but related

task. To this end, Kober et al. propose Cost-regularized
Kernel Regression (CrKR) [14], which is an extension of
the RWR method. In contrast to RWR, the algorithm

can change the policy based on task parameters sup-

plied and thus generalize over a larger variety of task

configurations. CrKR is shown to outperform RWR on

a robotic dart-throwing task with varying goal positions

(the task parameters). da Silva et al. [24] have proposed

a method for learning parametrized skill which is built

on top of the PoWER method: first, PoWER learns

the optimal solutions for several different task config-

urations. Thereupon, supervised and manifold learning

methods are used to generalize these example solutions

to the entire task space. In this work, we propose an

extension of this approach for learning so-called skill

templates, which are similar to parametrized skills but

in addition allow the agent to initialize the exploration

strategy properly as we explain below.

Approach: Skill templates are learned in the context of

parameterized reinforcement learning problems. We as-

sume for a parameterized reinforcement learning prob-

lem class T that a task, i.e., an instance of the problem

class, is defined by a task parameter vector τ ∈ T ⊆ R
n

and an associated interpretation. Likewise, a movement

primitive is considered as a parameterized policy with

parameter vector θ ∈ R
m. Using this notation, a param-

eterized skill [24] is a mapping Θ from task vector τ to

a movement primitive vector θτ , i.e., Θ : τ 7→ θτ . Let
J(θ, τ) be the expected return of the movement prim-

itive parametrized by θ in task τ ; the goal of learn-
ing parameterized skills is a mapping Θ∗ such that

Θ∗ = argmaxΘ
∫
P (τ)J(Θ(τ), τ)dτ , where P (τ) is the

task distribution. As the parametrized skill Θ will typ-

ically not predict the optimal θ∗τ = argmaxθ J(θ, τ),

it is desirable to not only learn a point-estimate of θ∗τ
but also to give a measure of uncertainty of this pre-

diction. We propose to learn a so-called skill template
Ψ = (Θ,Ω), which contains a function Ω : τ 7→ Στ with

Στ ∈ R
m×m that provides this uncertainty. Στ can be

interpreted as the covariance of a Gaussian distribution
over the movement primitive’s parameter space. Thus, a
skill template Ψ can be seen as a mapping from a task to
a Gaussian distribution over the movement primitive’s

parameter space, with Θ predicting the distribution’s
mean and Ω predicting the distribution’s covariance.

Skill templates are learned based on a set of move-
ment primitive weights that have been learned for spe-

cific task instances. Let E = {(τi, θτi)|i = 1, . . . ,K}

be a training set consisting of experience collected in

K tasks with J(θτi , τi) ≈ J(θ∗τi , τi). Learning the pa-

rameterized skill Θ can be considered as a regression

problem, trained with the pairs in E. While da Silva et

al. [24] used Support Vector Regression for this regres-

sion task, we use Gaussian Process Regression (GPR)

[22] since it naturally provides an uncertainty along

with each prediction. Different ways of learning Ω from

E are imaginable; for this paper, we only consider the

case of diagonal Στ with (Στ )jj either being propor-

tional to the typical scale of the j-th component of |θ|

in E or (Στ )jj being the uncertainty of the GPR’s pre-
diction for the j-th dimension of θτ .

We represent movement primitives by DMPs and
use CMA-ES [8] for learning the DMP’s parameters θτi
in the training tasks τ1, . . . , τK and thus generating E.



Towards Learning of Generic Skills for Robotic Manipulation 5

Fig. 4 Throwing a ball with a simulated Mitsubishi PA-10.

When faced with a new task τ , either the parameterized

skill’s prediction θτ = Θ(τ) can be used as movement

primitive parameters or the parameters can be learned

by means of CMA-ES. While the former might suffer

from generalization errors, the latter might require too

many trials to be practical. Skill templates provide a
reasonable compromise: instead of using the standard
CMA-ES initialization, the skill template’s prediction

θτ can be used for the initial policy and the skill tem-

plate’s covariance Στ as exploration matrix. This al-

lows to explore more strongly in dimensions of the skill
parameters where the GPR’s prediction has larger un-

certainty.

Results: We investigate how the prediction performance

of parametrized skill depends on the size of the training

set E. Furthermore, we empirically evaluate to which
extent skill templates can reduce the sample complex-

ity of policy search methods like CMA-ES. We give
results on a physical simulation of a Mitsubishi PA-
10 robot (see Fig. 4). The objective in this problem

is to throw a simulated ball to an externally speci-

fied target position on the floor. Each task corresponds

to a uniform-randomly sampled target position τ =
(xτ , yτ ) ∈ [−7,−1]×[−5, 1], where the the unit is meter

and the origin of the coordinate frame corresponds to

the base of the PA-10. The robot is controlled in joint

space and each joint’s trajectory is determined by a sep-

arate DMP with 10 parameters. Additionally, the end

position and velocity of each joint is learned. The re-

sulting parameter vector θ is 96-dimensional. Reward is

given only at the end of each trial based on the squared

distance between the target position τ and the reached
position (x, y), more precisely: r = −||τ−(x, y)||2

2
. Note

that there is typically not a single globally optimal so-

lution. The skill weights θτ in the training set E have

been learned using 200 rollouts with CMA-ES starting

from initial weights which correspond to throwing the

ball to position (−3.5,−3.6).

The upper graph of Fig. 5 depicts the relation of

the number of training tasks K and the performance

(distance from target) for movement primitive weights
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Fig. 5 Top: Quality of parametrized skill and skill template
(after 25 episodes learning) for varying number of training
tasks |E| = K. Bottom: Learning curves of CMA-ES under
different initializations for K = 10. Shown are mean and stan-
dard error of mean of the distance to target averaged over a
8× 8 grid over task space. Note the logarithmic scale.

learned with different approaches: weights predicted by

the parameterized skill Θ and weights learned after 25
rollouts with CMA-ES starting from Θ’s prediction and

using the skill template’s uncertainty for exploration

(“ST Uncertainty”). The figure shows that (a) the pa-

rameterized skill’s prediction improves with the number

of training tasks K to a level considerably better than

the baseline behavior (“No Learning”) and (b) the skill

template allows to learn considerable better weights for

small K even after only 25 additional rollouts in the

target task. Both curves show a similar pattern with

the parameterized skill reaching a comparable level of

performance as the skill template for approximately 6

more training tasks. Thus, 6 additional training tasks

are worth approximately 25 rollouts in the target tasks.

The graph at the bottom of Fig. 5 depicts learning
curves for K = 10. Shown are CMA-ES in the tab-

ula rasa case and CMA-ES starting from the skill tem-

plate with weight proportional Στ (“ST Weight Pro-

portional”) and with Στ based on the GPR’s uncer-

tainty. One can see that it takes tabula rasa CMA-
ES approx. 20 rollouts to reach the parametrized skill’s

performance. The skill template with uncertainty ex-
ploration performs consistently better than tabula rasa
learning. In contrast, weight-proportional exploration

quickly loses the advantage compared to tabula rasa

learning. Thus, the results show that learning the ex-
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ploration matrix Στ along with the prediction is impor-

tant.

5 Conclusion and Outlook

We have outlined the concept of a learning platform
which is developed in the project BesMan and pre-

sented first results on the learning of movement prim-

itives and skill templates in a simulated robotic prob-

lem. The results show that effective transfer of learned

movement primitives between related tasks is possible.

Furthermore, exploiting the uncertainty in this transfer

for controlling exploration increases the learning speed

in the target task considerably. Since the proposed ap-

proach is not tailored to the specific problem, we expect

that similar results can be obtained in other robotic

problems.
Future work is to implement all parts of the learn-

ing platform and to test them in more realistic robotic

scenarios with robots like AILA. Transfer learning and

hierarchical approaches will play a key role in the learn-

ing of versatile and reusable skills. Furthermore, we will

conduct behavioral studies with human subjects in or-

der to investigate how movement primitives are trans-

ferred, adapted, and combined in human subjects. The

resulting insights will be closely connected to the ap-
proaches implemented in the learning platform.
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