
A Semantic Basis for Proof Queries and
Transformations

David Aspinall1 ?, Ewen Denney2 ??, and Christoph Lüth3 ? ? ?

1 LFCS, School of Informatics, University of Edinburgh
Edinburgh EH8 9AB, Scotland

2 SGT, NASA Ames Research Center
Moffett Field, CA 94035, USA

3 Deutsches Forschungszentrum für Künstliche Intelligenz & Universität Bremen
Bremen, Germany

Abstract. We add updates to the query language PrQL, designed for
inspecting machine representations of proofs. PrQL natively supports
hiproofs that express proof structure using hierarchically nested labelled
trees, which we claim is a natural way of taming the complexity of huge
proofs. Query-driven updates allow us to change this structure, in par-
ticular, to transform proofs produced by interactive theorem provers into
forms that are easier for humans to understand, or that could be con-
sumed by other tools. In this paper we motivate and define basic up-
date operations, using an abstract denotational semantics of hiproofs
and queries. This extends our previous semantics for queries based on
syntactic tree representations. We define update operations that add and
remove sub-proofs or manipulate the hierarchy to group and ungroup
nodes. We show that these basic operations are well-behaved and hence
can form a sound core for a hierarchical transformation language. Our
study here is firmly in language design and semantics; implementation
strategies and study of sub-languages of our query language with good
complexity will come later.

1 Introduction

We are interested in ways to exploit machine representations of proofs con-
structed by interactive or automated theorem provers. These proof representa-
tions are produced so that they can be independently checked or imported into
other systems. We believe that they can be exploited beyond this. For example,
system inputs such as proof scripts are rarely given at the lowest level of detail,
even with interactive theorem provers. Therefore it can be useful for proof de-
velopers to understand how the system has found a proof: which inference rules
have been used, which axioms, which instantiations for existential variables, and

? Research supported by EPSRC grant EP/J001058/1.
?? Research supported by NASA contract NNA10DE83C.

? ? ? Research supported by BMBF grant 01IW10002 (SHIP).

2 David Aspinall, Ewen Denney, and Christoph Lüth

so on. More complex questions are also interesting. For example, whether a proof
contains unnecessary detours or replicated sub-proofs.

To this end, we recently introduced PrQL [2], a proof query language which
treats a large formal proof as an object that can be examined in a systematic
way. We are currently developing practical prototypes to experiment with proof
queries, so far based on exporting from Isabelle [2] and HOL Light [21]. But
it is clear already that as well asking questions, we also want to be able to
transform proofs to alter their structure in various ways. This may be used to
aid understanding (human or machine), by hiding certain kinds of details. Or it
could be used for optimisation or adaptation, to change proofs to more efficient
forms, or for consumption by different systems such as proof commentary tools
or machine learning tools. This paper is a study of a rigorous foundation for
such transformations, introducing update extensions for PrQL.

To study the foundations of updates, we need to have the right data model for
hiproofs and define operations that preserve the hiproof structure. Some trans-
formations may also preserve theoremhood of proved statements. This is why we
design our own query and transformation language, rather than immediately en-
coding our concepts into a more general graph or tree model (such as XML) with
an existing query and transformation language (such as XQuery Update [10] or
XDuce [20]) that could make arbitrary dissections and rearrangement.

When it comes to implementing our query and update language, it is obvi-
ously desirable to reuse existing systems which have looser semantics but opti-
mised implementations for query language fragments in good complexity classes.
We may consider for example, graph databases, other tools in the “NoSQL”
family or perhaps even SPARQL. We are conducting some early experiments in
parallel with the work described here.

Contributions and paper outline. This paper contributes towards generic foun-
dational aspects of theorem proving systems, in particular, the novel aspects of
querying and transforming the proof objects which can be recorded by proof
tools. Moreover, we contribute to the study of a structured representation for
these objects. Sect. 2 introduces the idea of proof transformations that we are
studying, with some informal examples and motivations. Sect. 3 recaps the tech-
nical background of hiproofs and PrQL. Sect. 4 introduces a revised denota-
tional semantics for hiproofs; this extends previous work, connecting the syn-
tactic strand of [3] with the previous denotational semantics of [14]. The new
extensions add explicit orderings among subtrees and the ability to model open,
i.e., incomplete, proofs. Sect. 5 gives a new denotational semantics to our query
language. This interpretation provides two advances: (1) the ability to return
locations in the hiproof where a query is satisfied, and (2) a close connection to
a graph model that we can use to encode hiproofs. Sect. 6 builds on top of this
to define our four kinds of update operations. We show that these operations
are well-behaved and preserve proofs in certain senses. Finally, we give a more
detailed comparison to related work in the concluding Sect. 7.

A Semantic Basis for Proof Queries and Transformations 3

2 Querying and transforming hierarchical trees

We start from hiproofs [3, 14], which provide an abstract, generic notion of proof
tree with hierarchical structure. Hiproofs are composed from atomic rules of
inference from an unspecified underlying logic, but additionally provide a notion
of hierarchy, by allowing labelling and nesting of subtrees inside boxes. This
succinct notion of structuring in a proof can be used, for example, for noting
where a lemma was applied, or where a particular tactic or external proof tool
produced a subtree. The hierarchical structure of hiproofs and its interaction
with the proof-tree is more complex than the straightforward tree structure, in
particular because hiproofs allow nesting of partially completed proofs.

Induction

Solver

∃y. y < 0 + 1 [∃y. y < k + 1] ∃y. y < k + 2

Y < k + 1 −→ Y < k + 2

StepBase

∀x : nat.∃y. y < x+ 1

Rule

Rewrite

(a)

Induction

Solver

StepBase

Rule

Rewrite

(b)

Apply IH

RewriteTrivial

Rule

ExIntro(-1)

(c)

Fig. 1. Different hiproof structures on the same underlying proof

The picture shown in Fig. 1(a) is an example hiproof, shown at a certain
level of abstraction. It corresponds with an ordinary (but upside-down) natural
deduction style proof tree: the theorem being proved, ∀x.∃y.y < x+ 1 is shown
at the top, and then the proof outline shows how the proof is achieved by de-
composing the goal theorem into pieces. The labelled boxes correspond to tactics
which have been applied to do this. Notice how the Induction box encapsulates
an incomplete proof; it has the dangling edge which is passed into the Solver box.
We suppose that boxes such as Base may contain further details, perhaps right
down to atomic inferences in the underlying system; the diagram only hints at
the full hiproof. Fig. 1(a) shows the statements being proved along edges. In a
visualisation tool (such as the web-based HipCam [21]) the goals may be shown
in pop-ups so as not to clutter the display, and boxes such as Base can be opened
and closed dynamically.

4 David Aspinall, Ewen Denney, and Christoph Lüth

Variations of hierarchy. Further right in Fig. 1 we see some alternative structur-
ing of this simple inductive proof. Fig. 1(b) shows the complete step case being
enclosed by the induction box; whereas Fig. 1(c) shows just the induction rule
itself being boxed. These pictures motivate our main kind of desirable trans-
formations: to alter and introduce hierarchical structure. For example, when an
inductive proof appears in the proof tree, we might like to give it the uniform
structure on the left so it can be easily picked apart. However, the proofs which
arise by a naive labelling of tactics in HOL Light without hiproof adaptation [21],
for example, have the form in Fig. 1(c).

Basic transformations. Generally, the life cycle of data management is cap-
tured by functions to create, read, update, and delete. We already have mecha-
nisms to create proof objects: abstractly, via the syntax for hiproofs reviewed in
Sect. 3, and in practice by functions for exporting proof objects from systems
like Isabelle [2] and HOL Light [21]. To inspect proof objects, PrQL provides a
language of structured queries, reviewed further below. To manipulate existing
hiproofs, we need to add update and delete operations. But we want to do this
in a way that respects the proof structure, rather than as arbitrary edits to a
tree or graph. This motivates the following four types of operation.

Introduce hierarchy is used moving from Fig. 1(c) to Fig. 1(a): we introduce
a nested hiproof called Base for the two steps ExIntro and Trivial, which hides
the detail. We also push in the children of Rule into the Induction box.

Remove hierarchy is the opposite transformation. Visualisation tools perform
this reversibly under user control, but here we want to permanently trans-
form the underlying structure by pulling out individual pieces, such as when
moving from Fig 1(b) to Fig 1(a).

Remove subproof deletes part of a hiproof. This is a radical operation, and
will change what is being proved, popping out an unproved subgoal to the
top level. For example, if we remove the Solver tactic in Fig. 1(a), the proof
is left unfinished with the subgoal Y < k + 1 =⇒ Y < k + 2 remaining.

Complete subproof is the inverse operation, and grafts on a new subtree. This
can resolve a previously unproved subgoal, or generate new subgoals.

2.1 Finding somewhere to transform

First, to apply a transformation, we need to know where in a target hiproof it
should be applied. A natural way to find a transformation point is to search
for a node satisfying some properties: this is where queries enter the picture.
(Similarly, update languages that have been defined elsewhere for semistructured
data and graphs also use queries to position updates; see Sect. 7.)

We have already designed PrQL, a query language for hiproofs, so it is nat-
ural to reuse it. PrQL is a structured query language which combines property
queries (that look at local properties on nodes) with structuring operations (that
combine queries across connected nodes, decomposing the tree). These can be

A Semantic Basis for Proof Queries and Transformations 5

defined with recursion and logical connectives, giving a powerful language that
can encode search in queries. For example, the PrQL query

somewhere (atomic ExIntro then atomic Trivial)

is satisfied by the hiproof in Fig. 1(c). The atomic operator examines a label
on a bottom-most nested node. The then operator decomposes the target graph
across the proof tree sequence. Similarly, we can decompose sibling hiproofs
with beside and nested hiproofs with inside, building up patterns. Patterns
may contain match variables that get instantiated with names of rules or box
labels. Using recursion we can define operators like somewhere (finds a match
in any subtree) and nearby (finds a match in any subtree at the same nesting
depth). See Sect. 3.1 for more details of PrQL.

However, so far there is not yet a notion of where a query is satisfied; we do
not have a way to describe where ExIntro or Trivial rules were actually found.
To pick out specific nodes in a hiproof, we extend the query language to return
positions: a new type of match variable standing for a (sub)hiproof where a query
is satisfied. We add the new query term “at X” which matches X against the
“currently examined” node in the tree. So

somewhere inside Induction nearby (at X ∧ atomic Trivial)

returns locations X where Trivial appears immediately inside an Induction box.
Unlike labels for boxes and atomic rule names, nodes in our proof trees are

abstract: we do not need user-level syntax for writing their identities. So at can
only locate a position by properties; it cannot pick out a specific node concretely.
But the query language is precise enough that, for any specific node in the tree,
there is a query which picks out that node uniquely (see Prop. 1 in Sect. 5).

2.2 Updating proofs

Now we have a way to specify transformation points, we can show how our up-
date operations are written. Several language design choices are possible. We
have followed an SQL-like paradigm, matching positions then using one-shot
operations which can update a large proof in-place, based on the selected posi-
tions. A more ambitious choice would be to design a hybrid query and update
language, with looping and branching to build up complex transformations. But
we first want to understand the update combinators that are common to both.

As a first example, to turn Fig. 1(c) into Fig. 1(b) we use a transformation
which adds a box around a given subtree, called box:

box X to Y Z as Induction where
(at X ∧ atomic Rule) then (seq Y beside seq Z)

(1)

where the recursive query seq X picks out a sequence ending at X:

seq X
def
= µQ. ∗ then Q ∨ (at X ∧ ¬(∗ then ∗))

6 David Aspinall, Ewen Denney, and Christoph Lüth

Besides adding boxes, we can remove them with unbox:

unbox X where at X ∧ inside Solver

which removes the Solver box around the result of an automatic tactic. Instead
we could rename it, simply writing: rename Solver as Auto.

So far, these operations have not changed what is proved in the hiproof.
Other updates change the underlying proof tree, but maintain its validity. For
example, maybe we are not interested in a particular subtree of a proof

deletetree X where inside Meson at X

then this removes the subtree generated by an automatic procedure, just leav-
ing the name of the procedure. In the hiproof structure, we do not forget that
something is unproved; the subtree leaves a dangling edge.

Dually, we can fill in a proof for such a dangling edge; this is a refinement
operation in the sense that it extends the proof:

refine X with s where at X ∧ unproved γ

Here, s is a literal term in the syntax for hiproofs, which proves the goal γ.

Finally, it can be useful to use a more general replacement transformation
which is defined using deletetree then refine. For example, to find useless
detours in a proof tree, we use the query:

useless X Y
def
= (at X ∧ goal G) then nearby (at Y ∧ goal G)

this identifies a path from X to Y where we hit the same goal G = γ. It might
even be a tactic which is worse than useless, in that it has transformed a goal γ
into several more goals to prove including γ again. Now the replace update

replace X by Y where (useless X Y)

removes this detour.

3 Syntactic Hiproofs and PrQL queries

This section introduces previous material as background. We are as concise as
possible and refer the reader to previous papers for more details [2, 3, 14].

Hiproofs add structure to an underlying derivation system, a simple kind of
logical framework. A derivation system is given by a set G of goals (intuitively:
possibly provable sequents or judgements), ranged over by γ, and a set of atomic
inference rules ranged over by a. Atomic rules are composed to give hiproofs,
which have a functional reading: a hiproof maps a finite list of input goals g1 =
[γ1, . . . , γn] to a list of output subgoals g2 = [γ′1, . . . , γ

′
m].

A Semantic Basis for Proof Queries and Transformations 7

Informally, we draw hiproofs as inverted trees with a nested structure. For-
mally, a hiproof is given by two forests on the same set of nodes, as explained in
Sect. 4. Syntactically, a hiproof can be written as a term:

s ::= a | id atomic and identity
| [l] s | s1 ; s2 labelling and sequencing
| 〈〉 | s1 ⊗ s2 empty and tensor (juxtaposition)

where l ∈ L, an arbitrary set of names and a ∈ A for some special subset
A ⊂ L. We think of labels as standing for names of tactics or proof rules, or
atomic steps; they have no semantic content. For example, the proofs in Fig. 1
are written syntactically as

([Induction]Rule ; Base ⊗ Step) ; [Solver]Rewrite (2)

[Induction]Rule ; Base ⊗ (Step ; [Solver]Rewrite) (3)

Rule ; (ExIntro ; Trivial) ⊗ (ApplyIH ; Rewrite) (4)

3.1 Structured queries in PrQL

The definition of PrQL starts with matches built from wildcards and match
variables, constants (atoms, sets and predicates) and negation (to construct the
complement of a match). Let VarN be a set of schematic variables standing for
names, ranged over by N in general and A when we suggest an atomic rule name
or L a label name. Let VarG be a set of variables standing for lists of goals. The
name matches and goal matches are given by:

nm ::= a | l | • | ξ | N | ¬nm gm ::= γ | ψ | G | ¬gm

where ξ stands for a logic-dependent predicate on names, and ψ stands for a
logic-dependent predicate on goals used to check some structural property of
the goal term. For example we might have a predicate that checks whether a
goal γ is in the form of a horn clause, when φhorn(γ) holds. The special name •
is used to label unproved goals; the name ∗ = ¬• serves as a wildcard.

We use matches to build up queries, q, as below. The extension to PrQL to
locate vertices uses a set of match variables VarH , ranged over by X.

q ::= ∗ anything non-empty
| at X matches at node X
| atomic nm atomic rule match
| inside nm q q satisfied inside box with label matching nm
| q1 then q2 q1 and q2 satisfied by successive nodes
| q1 beside q2 q1 and q2 satisfied by adjacent nodes
| goal gm proved goal matches gm
| q1 ∧ q2 | q1 ∨ q2 | ¬q compound queries
| µQ.q recursive query

8 David Aspinall, Ewen Denney, and Christoph Lüth

Queries are built from schematic hiproof terms. They are posed against an im-
plicit hiproof subject, instantiating the match variables and testing goals. Com-
pound queries are built using logical connectives and recursion. This core lan-
guage allows many useful derived forms, like the search operator somewhere.
We can examine gaps in proofs too; to assert that the hiproof has γ as an un-
solved goal we write:

unproved γ
def
= goal γ ∧ atomic •

This works because we model ‘dangling’ edges as empty boxes labelled with •.

4 Denotational hiproofs

A hiproof consists of two forests on the same set of nodes, with a distinguished
root, satisfying some conditions [14]. To relate to a derivation system (where
premises of inference rules have an ordering), we add a left-to-right ordering
among siblings. To relate to the syntax, we use a more general forest notion
first, then restrict to hiproofs. To model incomplete (partial) proofs, we add
nodes corresponding to unproved goals. Lastly, we extend labelling to attach to
each node the goal it validates, as shown on edges entering nodes in Fig. 1(a).

Given a forest F defined by a relation R on a set of vertices, we write
siblingsR(v, v′) if v and v′ are children of the same R-parent. Given a vertex
v, we write isrootR(v) for the assertion that v is a root wrt R, i.e., ∀v′.v′ R
v =⇒ v = v′, and isleaf R(v) for the dual, i.e., ∀v′.v R v′ =⇒ v = v′.

Definition 1 (Ordered Hiforest). An ordered hiforest H = 〈V,L,≤i,→s,.〉
consists of a finite set of vertices V with a labelling function L : V → (L∪{•})×G
and three relations on V × V . The relations are an inclusion order ≤i (which
captures the nesting of vertices; >i is proper containment), a sequencing relation
→s (which captures the functional composition of nodes) and a child order ..
These are subject to the following conditions:

0. 〈V,≤i〉 and 〈V,→s〉 each form forests; ≤i and . are partial orders.
1. arrows target outer nodes: v→sw and v′ >i w =⇒ v′ >i v.
2. arrows emanate from inner nodes: v→sw and v′ ≤i v =⇒ v = v′.
3. inclusion & sequence are mutually exclusive: v ≤i w and v→s

∗w =⇒ v = w.
4. boxes have unique roots:

siblings≤i
(v, v′) ∧ isroot→s

(v) ∧ isroot→s
(v′) =⇒ v = v′.

5. children or top-level roots are totally ordered:
siblings→s

(v, v′) ∨ (isroot>i(v) ∧ isroot>i(v
′)) =⇒ v . v′ ∨ v′ . v.

6. only leaves (wrt. sequencing and inclusion) may have • label:
L(v) = (•, γ) =⇒ leaf→s∪>i

(v).

Each node in a hiforest is given a name and a goal. The goal is the theorem
proved at that node. The unproved parts are the ‘dangling’ holes labelled by
•. An ordered hiforest proves a sequence of top-level goals, whereas a hiproof
proves just one.

A Semantic Basis for Proof Queries and Transformations 9

Definition 2 (Ordered Hiproof). An ordered hiproof is an ordered hiforest
which satisfies the additional constraint:

7. Top-level roots are unique: isroot→s∪>i
(v) ∧ isroot→s∪>i

(v′) =⇒ v = v′.

We are mainly interested in valid hiproofs, which are those corresponding to
a proof in the underlying derivation system.

Definition 3 (Validity). A hiforest H is valid if it corresponds to a sequence
of (possibly incomplete) proof trees in the underlying derivation system; we write
H |= g1 −→ g2 if this holds and where g1 is the list of goals on the outermost
roots of H, and g2 is the list of unproved goals on the holes, as ordered by
extending . to the leaves of the tree.

A map between two hiforests is a map between the vertices and the labels
which preserves the orderings and the labelling. We say a hiforest H1 refines
to a hiforest H2, H1 v H2, if there is an inclusion from H1 to H2 which also
preserves the roots wrt >i.

We now define some operations on the two dimensions of hiforests which will
form the semantic foundations of our transformations. For brevity, definitions
are given informally here, and made precise in the appendix. Given two hiforests
H1 and H2 such that H1 |= g1 −→ g and H2 |= g −→ g2, we define a com-
position operation graft(H1, H2) that ‘grafts’ the roots of H2 into the dangling
goals of H1, such that graft(H1, H2) |= g1 −→ g2; it can be characterised at the
smallest hiforest H3 which refines H1, H1 v H3, for which there is a (necessarily
injective) map α : H2 −→ H3. This is an instance of a more general opera-
tion graft(H1, H2, v1, . . . , vm) which grafts the m roots of H2 into the specified
danglers v1, . . . , vm of H1, where H1 may contain more than m danglers.

Given a vertex v ∈ V in hiforest H, we define cover(v,H) as the hiproof
containing the set of vertices in H reachable from v by >i or →s, includ-
ing v itself. If H |= g1 −→ g2 then cover(v,H) |= γv −→ gv where
L(v) = (l, γv) and g2 = g′2

∧ gv
∧ g′′2 (with ∧ denoting list concatenation). The op-

eration chop(v,H) removes exactly these vertices, replacing them with a hole. So
chop(v,H) |= g1 −→ g3 where g3 is the list g′2

∧ [γv]
∧ g′′2 . Together, these oper-

ations are inverse to grafting, i.e. graft(chop(v,H), cover(v,H), v) = H (modulo
some technical restrictions). The final operations are box (l,H) and unbox (H)
which add and remove ‘boxes’ around the roots of H, where a box is a node
(labelled l) including all the other nodes (below that root). These are inverse as
well: unbox (box (l,H)) = H. These two operations preserve validity and input
and output goal lists.

5 Semantics for queries

The query semantics we gave in [2] was based on querying syntax models di-
rectly. Since hiproofs are constructed syntactically, this is in a sense the most
direct approach. However, syntactic representations are not canonical, because

10 David Aspinall, Ewen Denney, and Christoph Lüth

a particular underlying tree structure can be denoted by many terms in the
syntax. E.g., the proof in Fig.1(c) can be expressed as in (4) or as

Rule ; (ExIntro ⊗ ApplyIH) ; (Trivial ⊗ Rewrite)

For the definition of boolean satisfaction of a query given in [2], this is not prob-
lematic as we can close under the syntactic equivalence given by the algebraic
structure of hiproofs. But to define updates it is more delicate, since we need a
firm notion of focus in the hiproof to anchor changes; e.g., example (1) does not
work with the syntactic form above. We could use normal forms for syntactic
terms, but the denotational model is more direct and also fits well with parallel
work on implementation using graph databases, building on [21].

The definition of query satisfaction in the denotational semantics uses a sub-
stitution to instantiate variables: σ : (VarN ⇀ L)] (VarG ⇀ G)] (VarH ⇀ V),
where V is the set of vertices of the hiproof being queried. The base case for
query satisfaction is for names and goals, treated very similarly:

n |=σ n′ iff n = n′

ξ |=σ n iff ξ(n)
N |=σ n iff σ(N) = n

(¬N) |=σ n iff ¬(N |=σ n)

γ |=σ γ′ iff γ = γ′

ψ |=σ γ iff ψ(γ)
G |=σ γ iff σ(G) = γ

(¬G) |=σ γ iff ¬(G |=σ γ)

For a relation R and distinct a, b, we write a R1 b if a R b and there is no
intermediate c such that a R c and c R b.

Definition 4 (Query satisfaction). Let H be an ordered hiforest with vertices
V and q a query. Satisfaction of q for H at a vertex v ∈ V wrt a substitution σ
is defined as the least relation v |=σ q satisfying the following clauses:

v |=σ ∗ always
v |=σ at X iff σ(X) = v
v |=σ goal gm iff gm |=σ γ where L(v) = (l, γ) for some l
v |=σ inside nm q when nm |=σ l where (v) = (l, γ) for some γ

and ∀w.w ≤1
i v =⇒ w |=σ q

v |=σ q1 beside q2 when v |=σ q1 and ∃w.v .1 w with w |=σ q2
v |=σ q1 then q2 when v |=σ q1 and ∃w.v→1

sw with w |=σ q2
v |=σ q1 ∧ q2 when v |=σ q1 and v |=σ q2
v |=σ q1 ∨ q2 when v |=σ q1 or v |=σ q2
v |=σ ¬q when ¬(v |=σ q)
v |=σ µQ.q when v |=σ q[µQ.q/Q]

A query q is satisfied by a substitution σ on a hiforest H, written H |=σ q, if it is
satisfied on each outermost root vertex of H, i.e., ∀v.isroot→s∪>i

(v) =⇒ v |=σ q.

Def. 4 works by navigating in a fixed hiproof h to find satisfying vertices v.
Because a vertex determines a sub-hiproof, this is equivalent to a structural
definition as given in [2], which works by decomposing the subject hiproof during
navigation, defining a relation s |=σ q. Note that in this model atomic is
defineable as an empty box: atomic nm = inside nm (¬∗).

A Semantic Basis for Proof Queries and Transformations 11

Definition 5 (Query interpretation). Let H be an ordered hiforest and q
a query. Then we define the interpretation of q in H as the set of satisfying
substitutions: [[q]]H = {σ | H |=σ q }.

Our language is expressive but queries can be expensive. In [2] we gave a naive
algorithm for [[q]] using unification to instantiate variables, which is exponential
in the number of match variables. Recursion and match variable unification
unavoidably affect the data complexity of our queries (see basic results e.g., [1,
12, 18]). For large proofs, we would want a fragment that is more feasible but
captures most desirable examples. The following proposition is the denotational
counterpart of a similar proposition in [2].

Proposition 1. Given a hiproof H, one of its vertices v and a variable X, there
is a query Q(v,X) which locates v at X, i.e., [[Q(v,X)]]H = {σ} with σ(X) = v.

6 Transformations and their semantics

We now introduce the core update operations formally. Note that we do not
want to allow arbitrary “tree surgery” of the hiproof structure; we want update
operations to preserve semantic validity. Updates have the syntax:

u ::= box Xr to X1 . . . Xn as l add nested box around Xr . . . X1 . . . Xn

unbox X unfold nested box at X
rename X as l change label on box at X
refine X with s add a new sub-hiproof at X
deletetree X delete subtree at X
replace X by Y replace subtree at X by that at Y

The box operation is the most interesting. It introduces a nested box, whose
contents are nodes in the partial subtree with Xr as root and X1 . . . Xn as leaves.
This allows us to gather to an arbitrary depth, using a query to select either end
of the path; this is useful to package up repeated applications of rules. The other
update operations are straightforward to understand. An update is applied by
combining with a query to instantiate node variables in a hiproof, written as
update u q. This matches q to the root of the hiproof; a more common pattern
is to search the hiproof for matches, as seen in the examples in Sect. 2.2. This
is written and defined as u where q = update u (somewhere q).

6.1 Interpretation of transformations

We can specify positions in a hiproof, but we still need to solve a well-known
problem with tree and graph updates. Suppose a query picks out several nodes
and a transformation changes the structure; then simultaneous updates may
overlap. The result may be ill-defined, or may depend on the execution order.
The semantics as given here is based on single-valued answers to queries; where
a query has several answers, there may be several update results, representing

12 David Aspinall, Ewen Denney, and Christoph Lüth

applying the operation to different positions in the tree. To have a global effect,
the update results may be merged if they do not conflict, or we may simply re-
peatedly apply a query and update. We are not yet investigating implementation
in detail, so making any such choices for PrQL could be premature; we prefer
to first pin down an accurate semantics. Later on, we plan to extend the lan-
guage to allow more efficient constructs, avoiding multiple passes and using type
systems to ensure safety; we will relate back to the present, intended semantics.

To interpret updates, we use the operations in Sect. 4 and extra definitions:

(i) A combinator to transform a subforest of H with a function f :

at(H, v, f) = graft(chop(H, v), f(cover(H, v)), v)

(ii) The box operator specialised to box only down to vertices v1, . . . , vn:

addbox (H, l, v1, . . . , vn) = graft(box (l, chopn(H, v1, . . . , vn)),
covern(H, v1, . . . , vn), v1, . . . , vn)

where chopn(H, v1, . . . , vn) and covern(H, v1, . . . , vn) are the obvious gen-
eralisations of chop and cover to n arguments.

(iii) To add or remove boxes at the subforest given by vr:

addboxat(H, vr, v1, . . . , vn) = at(H, vr, λH.addbox (H, l, v1, . . . , vn))

unboxat(H, vr) = at(H, vr, unbox)

(iv) To change the label of a vertex: let H = 〈V,L,≤i,→s,.〉, v ∈ V and l ∈ L,
then L′ is defined as L′(v′) = (l, γ) for v′ = v, where L(v) = (l′, γ) and
L′(v′) = L(v) otherwise. Then relabel(l,H, v) = 〈V,L′, <i,→s,.〉.

Definition 6 (Interpretation of transformations). Let H be a hiproof and
q[X1 . . . Xn] a query with match variables instantiated by σ. The meaning of an
update wrt σ is a partial function, defined when the RHS is defined:

[[box Xr to X1 . . . Xn as l]]σH = addboxat(H, l, σ(Xr), σ(X1), . . . , σ(Xn))

[[unbox X]]σH = unboxat(H,σ(X))

[[rename X as l]]σH = relabel(H,σ(X), l)

[[refine X with s]]σH = graft(H, [[s]], σ(X))

[[deletetree X]]σH = chop(H,σ(X))

[[replace X1 by X2]]σH = graft(chop(H,σ(X1)), cover(H,σ(X2)), σ(X1))

[[update u q]]H = { [[u]]σH | σ ∈ [[q]]H and [[u]]σH is defined }

Def. 6 gives a non-deterministic semantics; the result may be empty (if opera-
tions are undefined) or there may be several results (for different instantiations).
We do not say anything here about how to combine several results into one,
as this may depend on the implementation; as hinted above, an implementa-
tion may encode our core operations using a more general update language. In
this setting, a better alternative would be to give criteria which guarantee a
deterministic result. For the same reason, we do not yet investigate complexity
results.

A Semantic Basis for Proof Queries and Transformations 13

7 Related work and conclusions

This paper introduced an update extension of PrQL, a query language for
hiproofs. We interpret queries and transformations using denotational seman-
tics of hiproofs, which are graph-like structures subject to well-formedness con-
straints. We showed that the basic operations are enough to capture desirable
transformations, and that they preserve well-formedness and the connection to
underlying proof trees.

Connections in theorem proving. As larger proof developments are being con-
structed, people are starting to explore ways to investigate them. Besides PrQL, a
query language has been proposed for OmDoc proofs [22]. The Proviola tool [24]
provides another means for proof understanding, by recording the output is-
sued by an interactive proof during its execution development; impressively, it
has been used to annotate source code of large proofs in both Coq (the Feit-
Thompson proof [17]) and HOL Light (Hales’s Flyspeck proof [23]). However,
Proviola sheds no light on a proof that proceeds in a single tactic execution
step. A hiproof-based tool would allow more dynamic exploration, by zooming
into proof objects to look at the fine detail — although the practical details of
managing such large proof objects will be challenging. Other researchers have
used proof as the subject for search and machine learning (e.g., [19, 25]). Again
this work might be usefully adapted to proof trees.

Conversely, we hope that our work can be adapted to transforming proof
scripts. Rather than altering the extracted proof trees for HOL Light, we might
want to impose the structural changes on the input proofs themselves, where
possible. Work has been started on tools and foundations for proof refactoring
towards this [5, 15, 27], but it is challenging: it requires understanding the mean-
ing of input proof scripts, and how to transform them. By contrast, it is much
easier to manipulate recorded output proof structures.

Update languages for structured data. There is a large body of work from the
last decade on query and update languages for general forms of structured data.
PrQL was inspired by, among others, UnQL [7] and Graph Logic [9]; the latter
was extended to Context Logic to consider updates [8] and the former extended
to a language of functional transformations [11], in the setting of XML Update.
The approach taken by the W3C to extend XQuery [10] has a more SQL-like
flavour, similar to our approach.

Transformations and hierarchy. To study PrQL updates and extensions further,
fundamental results on tree queries [18], transformation operations [16] and com-
plexity [4] should be possible to adapt. However, without restricting our language
we are unlikely to improve on earlier complexity results [2], so instead we want
to focus on translation into an efficient underlying XML or graph-based system.
Having worked out the language design and semantics, we need to use the right
level of abstraction before translation, taking hierarchy as a native construct.
Hierarchical graphs have recently been studied in another setting, for structuring

14 David Aspinall, Ewen Denney, and Christoph Lüth

safety cases in a hierarchical way, providing a tool that performs transformations
like those studied here [13]. Related ideas for managing hierarchy in understand-
ing provenance have recently been proposed [6].

Future and ongoing work. Several extensions to our update language are desir-
able; at the least, to add constructs for composing and iterating transformations.
Before pursuing that, we want to extend our practical experiments to transfor-
mations. Taking the implementation of hiproofs in HOL Light [21], we can output
them in a form suitable for a graph database system such as Neo4j [26], which
can store and process very large structures on disk. Some of our queries and
transformations can be captured in Neo4j’s query and update language Cipher,
although it remains to investigate how efficient the encoding is; alongside prac-
tical experiments, we need to give a further theoretical analysis.

Acknowledgements. The authors thank James Cheney and Domagoj Vrgoc for
helpful discussions.

References

[1] Alfred V. Aho. Algorithms for finding patterns in strings. In: Handbook of
theoretical computer science (vol. A). Ed. by Jan van Leeuwen. Cambridge,
MA, USA: MIT Press, 1990, pp. 255–300.

[2] David Aspinall, Ewen Denney, and Christoph Lüth. Querying proofs. In:
Logic for Programming, Artificial Intelligence, and Reasoning. 2012, pp. 92–
106.

[3] David Aspinall, Ewen Denney, and Christoph Lüth. Tactics for Hierarchi-
cal Proof. In: Mathematics in Computer Science 3.3 (2010), pp. 309–330.

[4] Pablo Barceló Baeza. Querying graph databases. In: Proceedings of the
32nd symposium on Principles of database systems. 2013, pp. 175–188.

[5] Timothy Bourke et al. Challenges and Experiences in Managing Large-
Scale Proofs. In: Intelligent Computer Mathematics. Ed. by Johan Jeuring
et al. LNCS 7362. Springer, 2012, pp. 32–48.

[6] Peter Buneman, James Cheney, and Egor V. Kostylev. Hierarchical models
of provenance. In: Proceedings of the 4th USENIX conference on Theory
and Practice of Provenance. 2012, pp. 10–10.

[7] Peter Buneman, Mary Fernandez, and Dan Suciu. UnQL: a query language
and algebra for semistructured data based on structural recursion. In: The
VLDB Journal 9.1 (2000), pp. 76–110.

[8] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context logic and
tree update. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages. POPL ’05. New York, NY,
USA: ACM, 2005, pp. 271–282.

[9] Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. A Spatial Logic for
Querying Graphs. en. In: Automata, Languages and Programming. Ed. by
Peter Widmayer et al. LNCS 2380. Springer, 2002, pp. 597–610.

A Semantic Basis for Proof Queries and Transformations 15

[10] Donald D. Chamberlin et al. XQuery Update Facility 1.0 (W3C Recom-
mendation). 2011.

[11] James Cheney. FLUX: functional updates for XML. In: SIGPLAN Not.
43.9 (2008), pp. 3–14.

[12] Rance Cleaveland and Bernhard Steffen. A Linear-Time Model-Checking
Algorithm for the Alternation-Free Modal Mu-Calculus. In: Proceedings of
the 3rd International Workshop on Computer Aided Verification. CAV ’91.
London, UK, UK: Springer-Verlag, 1992, pp. 48–58.

[13] Ewen Denney, Ganesh Pai, and Iain Whiteside. Hierarchical Safety Cases.
In: NASA Formal Methods. Ed. by Guillaume Brat et al. LNCS 7871.
Springer, 2013, pp. 478–483.

[14] Ewen Denney, John Power, and Konstantinos Tourlas. Hiproofs: A Hier-
archical Notion of Proof Tree. In: ENTCS 155 (2006), pp. 341–359.

[15] Dominik Dietrich, Iain Whiteside, and David Aspinall. POLAR: A Frame-
work for Proof Refactoring. In: Logic for Programming, Artificial Intelli-
gence, and Reasoning. 2013.

[16] Hartmut Ehrig. Fundamentals of algebraic graph transformation. English.
Berlin; New York: Springer, 2006.

[17] Georges Gonthier et al. A Machine-Checked Proof of the Odd Order The-
orem. In: Interactive Theorem Proving. Ed. by Sandrine Blazy et al. LNCS
7998. Springer, 2013, pp. 163–179.

[18] Martin Grohe and Nicole Schweikardt. Comparing the succinctness of
monadic query languages over finite trees. In: RAIRO - Theoretical In-
formatics and Applications 38.4 (2004), pp. 343–373.

[19] Jónathan Heras and Ekaterina Komendantskaya. ML4PG in Computer Al-
gebra Verification. In: Intelligent Computer Mathematics. Ed. by Jacques
Carette et al. LNCS 7961. Springer, 2013, pp. 354–358.

[20] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML
processing language. In: ACM Trans. Internet Technol. 3.2 (2003), pp. 117–
148.

[21] Steven Obua, Mark Adams, and David Aspinall. Capturing Hiproofs in
HOL Light. In: Intelligent Computer Mathematics. Ed. by Jacques Carette
et al. LNCS 7961. Springer, 2013, pp. 184–199.

[22] Florian Rabe. A Query Language for Formal Mathematical Libraries. In:
Intelligent Computer Mathematics. Ed. by Johan Jeuring et al. LNCS 7362.
Springer, 2012, pp. 143–158.

[23] Carst Tankink et al. Formal Mathematics on Display: A Wiki for Flyspeck.
In: Intelligent Computer Mathematics. Ed. by Jacques Carette et al. LNCS
7961. Springer, 2013, pp. 152–167.

[24] Carst Tankink et al. Proviola: A Tool for Proof Re-animation. In: Intel-
ligent Computer Mathematics. Ed. by Serge Autexier et al. LNCS 6167.
Springer, 2010, pp. 440–454.

[25] Josef Urban et al. MaLARea SG1 - Machine Learner for Automated Rea-
soning with Semantic Guidance. In: Automated Reasoning. Ed. by Alessan-
dro Armando et al. LNCS 5195. Springer, 2008, pp. 441–456.

16 David Aspinall, Ewen Denney, and Christoph Lüth

[26] Chad Vicknair et al. A comparison of a graph database and a relational
database: a data provenance perspective. In: Proceedings of the 48th An-
nual Southeast Regional Conference. ACM SE ’10. New York, NY, USA:
ACM, 2010, 42:1–42:6.

[27] Iain Whiteside et al. Towards Formal Proof Script Refactoring. In: Intel-
ligent Computer Mathematics. Ed. by James H. Davenport et al. LNCS
6824. Springer, 2011, pp. 260–275.

A Additional technical details

Definition 7 (Grafting). Let H = 〈V,L,≤i,→s,.〉 be a valid hiforest with
H |= g1 −→ g. Let v1, . . . , vn be distinct vertices in V , with L(vi) = (•, γi)
(and hence n ≤ length(g)). Let H ′ = 〈V ′, L′,≤′i ,→s

′,.′〉 be another hiforest
with H |= g′ −→ g2, so it has n overall roots {vr1 . . . vrn} ∈ V ′ ordered by .′

with L(vri) = (li, γi). Suppose (wlog) V ∩ V ′ = ∅.
Then we can define a new hiforest by

graft(H,H ′, v1, . . . , vn) = 〈V − {v1 . . . vn} ∪ V ′, L|V−{v1...vn} ∪ L
′,≤′′i ,→s

′′,.′′〉

The relations ≤′′i , →s
′′ and .′ are defined by:

v ≤′′i w iff either

v ≤i w ∧ w 6∈ {v1 . . . vn}
v ≤′i vri ∧ vi ≤i w

v ≤′i w

v→s
′′w iff either

v→sw ∧ w 6∈ {v1 . . . vn}
v→svi ∧ vri→s

′w

v→s
′w

v .′′ w iff either

v . w ∧ w 6∈ {v1 . . . vn}
(v . vi ∧ vri = w) ∨ (v = vri ∧ vi .′ w)

v .′ w

If H has exactly n holes v1, . . . , vn (i.e., g = [γ1, . . . , γn] and L(vi) = (•, γi)),
then we write graft(H,H ′) as an abbreviation.

Definition 8 (Cover). Given a hiforest H = 〈V,L,≤i,→s,.〉 and vertex v ∈
V , we define the cover of v as all nodes below or inside v by V ′ = cover→s∪>i(v),
where the cover of a relation R is defined as coverR(x) = {y | xR∗ y}. and the
labellings and orderings restricted accordingly:

cover(H, v) = 〈V ′, L|V ′ ,≤i|V ′×V ′ ,→s|V ′×V ′ . |V ′×V ′ 〉.

When defining the chopping operation, we do not take out the node v, but
replace its label with • to make it a dangler:

A Semantic Basis for Proof Queries and Transformations 17

Definition 9 (Chopping). Given a hiforest (or hiproof) H = 〈V,L,≤i,→s,.〉
and vertex v, then we define a new hiforest without nodes below or inside v by
setting V ′ = (V − cover→s∪>i

(v)) ∪ {v} and

chop(H, v) = 〈V ′, L|V−cover→s∪>i
∪ {v 7→ (•, γ) | L(v) = (l, γ)},

≤i|V ′×V ′ ,→s|V ′×V ′ ,. |V ′×V ′ 〉

We can generalise chop and cover to n arguments. Chopping n vertices re-
moves them sequentially from H, whereas the cover of n vertices is a hiforest
with n roots:

chop1(H, v1) = chop(H, v1)

chopn(H, v1, . . . , vn) = chopn−1(chop(H, v1), v2, . . . , vn)

cover1(H, v1) = cover(H, v1)

covern(H, v1, . . . , vn) = cover(H, v1) ∪ covern−1(H, v2, . . . , vn)

To avoid notational difficulties when dealing with more than one root si-
multaneously, we define boxing and unboxing only for hiproofs. The definitions
extend easily to hiforests by boxing reach root of the forest separately (although
that is not needed in this paper). Note how the danglers in H are not included
in the box introduced with box (l,H).

Definition 10 (Boxing and Unboxing). Given a non-empty hiproof H =
〈V,L,≤i,→s,.〉 with overall root vr, i.e., isroot→s∪>i

(vr), then the boxing of
H with a label l is defined as

box (l,H) = 〈V ∪ {∗}, L ∪ {∗ 7→ (l, γ) | L(vr) = (l′, γ)},
≤i ∪ {(v, ∗) | v ∈ V,L(v) = (l, γ) ∧ l 6= •},→s,. ∪{(∗, ∗)}〉

The unboxing removes such a box (if it exists): let H = 〈V,L,≤i,→s,.〉, then
we define

V ′ =

{
V − {r} isroot→s∪>i

(r), L(v) = (l, γ) ∧ l 6= •
V otherwise

Then:
unbox (H) = 〈V ′, L|V ′ ,≤i|V ′ ,→s,. |V ′〉

By careful inspection of the operation definitions we can show that the re-
sulting hiforests indeed satisfy the conditions of Def. 1 and preserve semantic
validity as stated earlier.

Proposition 2 (Operations and validity). The semantic operations preserve
the hiforest conditions and moreover, preserve semantic validity of hiproofs with
the expected input-output goals.

The final part of justifying our definitions is to show that the interpretation
of updates is well-defined, when query results are given and refinement has the

18 David Aspinall, Ewen Denney, and Christoph Lüth

γ1···γn
γ

a is an atomic inference

a ` γ −→ [γ1, . . . , γn] id ` γ −→ γ

s ` γ −→ g

[l] s ` γ −→ g

s1 ` g1 −→ g s2 ` g −→ g2
s1 ; s2 ` g1 −→ g2

s1 ` g1 −→ g′1 s2 ` g2 −→ g′2
s1 ⊗ s2 ` g1 ∧ g2 −→ g′1

∧ g′2

Fig. 2. Validation of hiproof terms (the symbol ∧ stands for list append).

right shape. Specifically, refine X with s requires that when σ(X) = v and the
subtree at v has validity chop(H, v) |= g1 −→ g2, then the term given denotes
a hiforest with the same input-output shape.

For this we need to show that syntactic hiproof terms denote valid tree struc-
tures. This is shown together with the definition of [[s]]. Validity for syntactic
hiproof terms is written as s ` g1 −→ g2, meaning that the hiproof s takes a
list of input (proven) goals g1 to produce a list of output (unproved) goals g2,
and is defined by the rules in Fig. 2.

Definition 11 (Interpretation of hiproof terms). The definition of [[s]] is by
induction on the syntactic validity s ` g1 −→ g2, defining [[s]] and establishing
at the same time that [[s]] |= g1 −→ g2. The cases are:

– a ` γ −→ [γ1, . . . , γn]. Then [[a]] is the n + 1 point hiforest with nodes

a, x1, . . . , xn. We set a→sxi, L(a) = (a, γ) and each xi is a “dangler”, so
L(xi) = (•, [γi]).

– id ` γ −→ γ. Then [[id]] is the hiforest with one “dangler” node ∗, where

L(∗) = (•, [γ]).

– [l] s ` γ −→ g2. Then [[[l] s]] = box (l, [[s]]) since [[s]] has a unique top-level

root.
– s1 ; s2 ` g1 −→ g2. Then [[s1 ; s2]] = graft([[s1]], [[s2]]). The premises of the

validity rule and the induction hypothesis ensure that the grafting operation
is well-defined.

– s1 ⊗ s2 ` g1
∧ g2 −→ g′1

∧ g′2. Then [[s1 ⊗ s2]] is the hiforest formed by dis-

joint union of [[s1]] and [[s2]], with the ordering relation . extended on the
roots and dangling nodes.

– 〈〉 ` [] −→ [] . [[〈〉]] is the empty hiforest.

Note that denotational hiproofs are unique only up to the choice of node set V ;
two hiproofs which have the same structure and labelling but differ only on V
are isomorphic [14]. The definitions above work with particular hiproofs, but it
can be verified that the choice of node names (but not labels!) is unimportant.

