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Abstract

Assistive devices, like exoskeletons or orthoses, often make use of physiological data that
allow the detection or prediction of movement onset. Movement onset can be detected
at the executing site, the skeletal muscles, as by means of electromyography. Movement
intention can be detected by the analysis of brain activity, recorded by, e.g., electroen-
cephalography, or in the behavior of the subject by, e.g., eye movement analysis. These
different approaches can be used depending on the kind of neuromuscular disorder, state
of therapy or assistive device. In this work we conducted experiments with healthy sub-
jects while performing self-initiated and self-paced arm movements. While other studies
showed that multimodal signal analysis can improve the performance of predictions, we
show that a sensible combination of electroencephalographic and electromyographic data
can potentially improve the adaptability of assistive technical devices with respect to the
individual demands of, e.g., early and late stages in rehabilitation therapy. In earlier
stages for patients with weak muscle or motor related brain activity it is important to
achieve high positive detection rates to support self-initiated movements. To detect most
movement intentions from electroencephalographic or electromyographic data motivates
a patient and can enhance her/his progress in rehabilitation. In a later stage for patients
with stronger muscle or brain activity, reliable movement prediction is more important
to encourage patients to behave more accurately and to invest more effort in the task.
Further, the false detection rate needs to be reduced. We propose that both types of phys-
iological data can be used in an and combination, where both signals must be detected to
drive a movement. By this approach the behavior of the patient during later therapy can
be controlled better and false positive detections, which can be very annoying for patients
who are further advanced in rehabilitation, can be avoided.

Introduction

The application of robotics for neuromotor rehabilitation is a very challenging but also
promising approach [1]. Today, there are already robotic systems that are applied for
upper and lower limb therapy and positive effects on rehabilitation progress could be
shown [2–6]. Any therapy is, however, only effective if patients do accept it and have
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a positive attitude towards it. This is especially true when assistive technology devices
(definition see [7]) are applied. To improve acceptance of an assistive technology, a device
must not restrict the person who is wearing it and must be comfortable and intuitive to
use [8]. To support natural behavior, such a device should not be fixed to a special support
mechanism, if the state of the patients allows this. Further, it should have multiple contact
points to the patients body to avoid pressure points and to allow the reflection of complex
force patterns for accurate guidance [9].

Besides theses challenges in structural design, the assistive device should support self-
initiated movements for intuitive interaction. This can be achieved by adapting the control
of the device with respect to the patient’s intention. Movement intention of the patient
can be detected from her/his brain activity, e.g., the electroencephalogram (EEG), as
shown in healthy subjects [8,10–13] as well as in stroke patients [14], and by the analysis
of gaze direction and fixation [15], or by the analysis of the electromyogram (EMG) [16].
EMG activity is quite often solely used to trigger an orthosis or a prosthesis [17–19]. EEG
activity can alternatively be used to trigger the support by the device in case that muscle
activity is largely diminished as it can be observed after peripheral or spinal lesions of
nerves [20].

The integration of EEG-based predictions into the control of an assistive technical
device has one great advantage: The earliness of prediction that can be achieved based
on EEG analysis allows to close the gap between movement planning and execution for
natural behavior and may thus boost rehabilitation since the patient gets the feeling as
if she/he and not the assistive device, like an exoskeleton, is controlling the limb [21].
Further, certain event-related activities in the EEG are a reliable indicator that a patient
wants to execute a self-initiated, voluntary movement. Especially the readiness potential
(RP) is only seen before voluntary movements and not before involuntary movements and
can thus be used in clinical practice to differentiate between voluntary and involuntary
movements [22].

However, it is not always useful to rely on EEG-based predictions alone. Different
kinds of physiological data, but also technical data that is recorded by the assistive tech-
nical device [9, 23], can be combined to improve the reliability of EEG-based predictions
as well as its fully automated application [24]. A prediction of movement onset that was
made based on EEG analysis can for example be confirmed by (i) a simultaneously de-
tected fixation of manipulable objects by the eyes, (ii) the detection of muscle activity
or by (iii) measuring pressure against force sensors of the device. Assistive technology
devices that are supported by integrated analysis of physiological or technical data to
enable the detection of movement intention can support a patient for self-initiated move-
ments. By analyzing the context of behavior even complex interaction, like grasping a
certain object [15], can be triggered and executed by the device (Figure 1). What sources
of physiological data should be combined depends on the requirements, e.g., the kind of
disability and neuromuscular disorder [25] as well as the state and progress of the patient
in rehabilitation. Further, the correctness of a prediction can in principle be improved by
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combining several sources of physiological data or even other information, like preferences
of the patient [15, 23, 25]. Moreover, it is important to evaluate what effect a combina-
tion has on the control of the device. The usage of certain data may prohibit an early
prediction. For example, the electrooculogram (EOG) or eye tracking can be used to
improve the detection performance of EEG-based predictions [15]. However, a controlled
eye movement that can be detected by eye tracking takes place after the subject’s decision
to move. Hence, it does not allow the detection of preconscious movement intention [22],
but conscious movement intention which is ”communicated” by eye movements. To add
this signal can still be a good choice for patients whose EEG does not allow good pre-
diction performance or who show no other movement related activity, like EMG, at all,
but it does no longer support the positive effect of a fast, almost preconscious control
where the subject gets the impression that the device ”knows” what her/his intention
is. Which signals are relevant at which state of movement planning and execution has
been systematically investigated for the prediction of movement targets. For example, in
Nowak et al. [15] it was shown that different measures should be combined for different
states, e.g., for movement planning, start of movement and movement execution. When
different objects were shown to the subject but movement did not yet start, EEG and
EOG were found to be most predictive, while eye tracking and EMG could be used best
to predict the choice of the target after the movement started.

In this paper, we do not investigate which target a subject wants to reach [15,25] but
rather whether she/he wants to start a movement at all. In Novak et al. [15] movement
onset was triggered by cues given by the experimental setup (i.e., auditory cues). In our
experiments, subjects performed self-initiated movements. No cue was given to trigger
the movement onset. Only a minimum time of rest between movements was demanded.
Hence, with the recorded data we were able to investigate, whether it is possible to predict
the onset of voluntary movements. For movement onset prediction we analyzed EEG and
EMG activity. For both kinds of physiological data it has been showed that a prediction
of movement onset is possible before the physical movement starts [8, 10, 13]. It was not
the goal of this paper to show that multimodal analysis improves absolute prediction
performance but that a different combination of multimodal data, i.e., EEG and EMG
data, can help to better adapt an assistive technical device, like an exoskeleton or orthosis,
to different states in rehabilitation. Thus, the goal was to show that the functionality of
the whole system can maximally be optimized with respect to two different types of errors
that have different relevance in different states of rehabilitation. This can be achieved by
two different approaches of combining the two kinds of physiological data. Our results
show that a different combination of EEG and EMG analysis can either enhance (i) the
reliability of movement detection, i.e., decrease the false positive rate (FP-rate) (error
type I) or (ii) improve the positive detection rate of self-initiated movement detection,
i.e., decrease the false negative rate (FN-rate) (error type II). The scope of this paper
was not yet to show a working approach to support patients nor an online application
but an offline analysis of general feasibility. To assure that our results will not be affected
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by implications of different neuromuscular disorders, we investigated the feasibility of the
above explained approach by conducting experiments with healthy subjects. In summary,
we show here that a technical device can potentially be adapted by different combinations
of EEG and EMG signals to support a patient more individually. This can be applied to
adapt the support given by a technical device with respect to the kind of neuromuscular
disorder and to her/his state in therapy.

Materials and Methods

Experimental Setup

Eight healthy male subjects (age: 29.9 ± 3.3 years; right-handed; normal or corrected-to-
normal vision) participated in the study. The subjects were seated in a comfortable chair
in front of a table. A monitor was used to give feedback to the subjects. The subjects
executed self-initiated and self-paced movements of the right arm (Figure 2). Further,
two input devices containing micro switches were used to monitor the beginning and end
of performed movements. The input devices were placed at a distance of approximately
30 cm from each other. Events that were detected by the devices (pressing/releasing) were
marked in the EEG/EMG data. Subjects were asked to move their hand from one input
device to the other and back in their own speed, to produce natural movements. During
the experiments a green circle with a black fixation cross was shown to the subjects on the
monitor. For each subject we recorded 3 runs. Executed movements were self-initiated
and the only constraint for two consecutive movements was a resting time of at least 5 s.
Movements carried out too early were reported to the subjects by changing the color of
the green circle to red for 100 ms. Such wrong movement trials were not used for later
data analysis. A run ended after 40 correctly performed movements. The experiment was
designed with Presentation [Neurobehavioral Systems, Inc., Albany, USA].

Ethics Statement The study has been conducted in accordance with the Declaration
of Helsinki and approved with written consent by the ethics committee of the University
of Bremen. Subjects have given informed and written consent to participate.

Data Acquisition

EEGs and EMGs were acquired with 5 kHz, filtered between 0.1 to 1000 Hz using BrainAmp
DC (EEG) and BrainAmp ExG MR (EMG) amplifiers [Brain Products GmbH, Munich,
Germany] and saved to a computer. EEGs were recorded with a 128-channel actiCap
system (reference at FCz) and EMGs were measured bipolar with Ag/AgCl gel electrodes
at four muscles of the right arm: M. brachioradialis, M. bizeps brachii, M. triceps brachii,
and M. deltoideus. Events from the two input devices (see Section ”Experimental Setup”)
were labeled in the recorded data. A motion capturing system was used to detect the
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physical movement onset of the subjects right arm. The system consisted of three cam-
eras (ProReflex 1000) [Qualisys AB, Gothenburg, Sweden] and a passive infrared marker
mounted on the back of the test persons right hand. Motions of the right hand were
recorded with a sampling frequency of 500 Hz.

Data Processing

Estimation of Physical Movement Onset

In an offline analysis the EEG and EMG data as well as the data from the motion track-
ing system were synchronized and the time points of the physical movement onsets were
extracted from the tracking data. As described in Section ”Experimental Setup”, the
beginning of each movement was labeled in the EEG/EMG data by a microswitch. It
is obvious that the subject was already in the movement phase when the switch had
been released, since a little lift of the hand is required for this. Therefore, the data from
the motion tracking system was analyzed in order to find the correct physical movement
onset. First, the movement speed of the subject’s hand was calculated from the move-
ment tracking data by computing the euclidean distance of consecutive samples. The
unit of this speed is in mm/sample; the sampling period is 2 ms. Then, starting from
each microswitch label, the movement speed for each movement trial was analyzed back-
wards. The physical movement onset was set as soon as the movement speed was below
a threshold of 0.15 mm/sample, since this is the given accuracy of the tracking system.
The determined time points were labeled in the EEG/EMG data, and used as the ground
truth for the beginning of a movement in the data analysis.

EEG Analysis

For EEG data analysis, 64 of the 128 recorded channels (extended 10-20 system) were
used. The analysis of the EEG data was optimized to detect event-related potentials
(ERPs) in single trial. Movement planning evokes several movement-related cortical po-
tentials [26]. The earliest that can be detected is the Readiness Potential (RP). For
unilateral movements, the RP is a slow negative shift bilaterally widespread over the
parietal and precentral cortex. The RP begins symmetrically, the late RP for unilat-
eral movements then has a contralateral preponderance [27]. Both, early and late RP,
also called Lateralized RP (LRP) [28, 29], are associated with the planning phase of a
movement. An early detection of these components allows the prediction of movement
onset [10, 14].

For preprocessing, the data was standardized channel-wise (subtraction of mean and
division by standard deviation (SD)) and decimated to 20 Hz. Next, a FFT band-pass
filter with a pass band of 0.1 to 4 Hz and xDAWN, a spatial filter [30], were applied.
The xDAWN spatial filter is especially designed for enhancing the synchronous response
of ERPs. It is assumed that the data can be described as the true ERP occurring at
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predefined events plus some noise. In the algorithm [30], this true ERP matrix is estimated
using a least squares approach. The filter matrix that contains a linear combination of
the original channels (pseudo-channels) in each column is then calculated by maximizing
the signal-to-signal-plus-noise-ratio (given by the generalized Rayleigh coefficient). Since
signal and noise are separated in this way, dimensionality reduction is possible, i.e., only
a few pseudo-channels are sufficient to explain most of the variance in the data. Here,
four pseudo-channels were used. The data was processed window wise on windows with
a length of 1000 ms. The last four samples of the windows were used as time domain
features and a Gaussian-Feature-Normalization (features have zero mean and variance
one) was performed. For later classification, a support vector machine (SVM) [31] was
trained.

Training windows were defined for both classes: ”movement intention” and ”resting
state”. For ”movement intention” the windows [−1100,−100] ms and [−1000, 0] ms before
each physical movement onset were used. For ”resting state” windows were cut every
1000 ms, as long as no movement occurred 1000 ms before and 2000 ms after a window.

In the test case, overlapping windows were cut every 50 ms in a range from −4000 ms
to 0 ms before a movement ([−5000,−4000] ms, [−4950,−3950] ms, ..., [−1000, 0] ms). A
prediction of a movement was allowed in a range of −1000 ms to 0 ms before movement
onset. As border between classes −1000 ms with respect to the physical movement onset
was chosen, although it is known that the RP [28, 29] that is detected by the performed
analysis can be expressed way before −1000 ms or later [26]. We considered a) the signal
properties and b) a possible application for our choice of the class border. In the appli-
cation we aim at enabling the assistive device to start the movement simultaneously with
the patient’s conscious will to move. Hence, detection of unconscious movement intention
is only useful if the device needs time for reaction. Very early detections of movement
intention might lead to a triggering of movement onset by the assistive device before the
patient is ready. The obtained SVM scores were transformed to a movement probability
with a sigmoid function [32]. A probability greater than 0.5 corresponded to movement
preparation. For each subject individually a 3-fold cross validation analysis of the data
was performed, in which each fold corresponded to one experimental run. During the
training phase the complexity parameter of the SVM was optimized using a grid search.
The grid contained 7 values: 10−6, 10−5, . . . , 100.

EMG Analysis

For EMG analysis all four recorded channels and additionally the mean of all channels
were used as different possible input sources. The data was preprocessed with a variance
filter, defined as

v(t) =
1

N − 1

N∑
i=0

[x(t− i)]2 −

(
1

N − 1

N∑
i=0

x(t− i)

)2

, (1)
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with, N being the length of the window used for filtering and x the raw EMG signal. The
variance was chosen for preprocessing, since it incorporates filtering and feature generation
abilities. Classification was done using an adaptive threshold, defined as

T (t) = µ(t)N + pσ(t)N , (2)

with µ being the mean value, σ the standard deviation, N the length of the window for the
mean and standard deviation and p the sensitivity factor of the threshold. The adaptive
threshold is used due to its capability of compensating slow drifts in the EMG signals or
possible higher noise levels in the signal caused, for example, by resistance changes at the
electrode side. Similar to the EEG analysis a cross validation was used for training and
testing. During the training phase the parameters for the filter and the threshold were
optimized and the best channel was chosen. For the optimization a grid search was used.
Further details are given in [16].

For the EMG-based prediction of movement onset a detection of EMG activity was
allowed in the range of −500 ms to 0 ms before the physical movement onset. Although
for EMG data analysis this lower bound (−500 ms) is not supported by the signal char-
acteristic, we found that EMG can be detected quite early in case of a pre-load of muscle
activity in preparation of the movement onset. Considering this and after inspection of
the data sets with respect to pre-load in muscle activity, −500 ms was found to be an
appropriate border for all subjects to cover most of the relevant EMG onsets. Such early
EMG activity must be detected in a potential online case to control a device. An early
detection of EMG activity would further support an early prediction of movement onset
in the AND condition, which was intended to give the subjects the feeling of fast response
of the device in case that the approach would be applied online.

Definition of Conditions

We investigated four different conditions:

A: EEG-based prediction. In this condition prediction of movement onset is based only
on EEG analysis.

B: EMG-based prediction. In this condition prediction of movement onset is based only
on EMG analysis.

C: ”OR” combination of A and B. Here A and B are combined in a way that a movement
onset counts as predicted, if either EEG or EMG-based analysis or both predicted
a movement.

D: ”AND” combination of A and B. Here A and B are combined in a way that a movement
onset counts as predicted, if both EEG and EMG-based analysis predicted the
movement.

For all conditions the TP- and FP-rates as well as the balanced accuracy (BA) and
the mean prediction times were calculated.
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Performance Metrics

As performance metrics we used the true positive and false positive rate, defined as

TP-rate
def
=

TP

TP + FN
(3)

and

FP-rate
def
=

FP

FP + TN
, (4)

where TP is the number of correctly classified ”movement intention” windows, FN is
the number of wrongly classified ”movement intention” windows, TN is the number of
correctly classified ”resting state” windows and FP is the number of wrongly classified
”resting state” windows, respectively. Note that for calculating the TP-rate one correctly
classified window based on EEG analysis in the range of −1000 ms to 0 ms and for EMG
in the range of −500 ms to 0 ms was sufficient. For the FP-rate each window from the
”resting state” that wrongly predicted a movement was counted as FP.

Note that from a statistical point of view it is more intuitive to compare two error types,
rather than an error type (FP-rate) with a success type (TP-rate). However, due to the
relation between the TP- and FN-rate (error type II is defined as FN-rate = 1−TP-rate)
the statistical results obtained by using the TP- and FP-rate is equivalent to that provided
by using the FN- and FP-rate. Thus, to compare the two different signal types and their
combinations, the error rates obtained were analyzed by repeated measures ANOVA with
error type (FP-rate: error type I / FN-rate: error type II) and signal type and their
combinations (EEG/EMG/”AND”/ ”OR”) as within-subjects factors. Where necessary,
the Greenhouse–Geisser correction was applied and the corrected p-value is reported. For
multiple comparisons, the Bonferroni correction was applied.

As a common metric to evaluate the performances obtained from the two types of sig-
nals (EEG/EMG) and their combinations (AND/OR) together, we used the BA, defined
as:

BA
def
=

1

2
(TP -rate+ TN -rate), (5)

where TN -rate is the true negative rate equal to 1 − FP -rate. The BA is calculated as
balanced classification rate (i.e., the BA considers the accuracy of the positive class and
accuracy of the negative class independently) and thus the BA is insensitive to unbalanced
class ratios. Such unbalanced ratios between the positive and negative class have to be
considered, since in this study 40 ”movement intention” and 2400 ”resting state”examples
occurred per run. It is important to show that the approach of combining both EEG and
EMG signals for adapting an assistive technical device with respect to the requirements
of therapy does not influence absolute prediction performance too negatively. However,
it should be noted that the two methods (EEG- and EMG-based movement prediction)
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behave differently concerning the ratio between FP-rate and FN-rate. More specific,
we observed similar levels of both error rates for the EEG, while these levels were very
different for the EMG signal (see Table 1). Hence, it is not straightforward to compare
the two different signal types (EEG/EMG) and their combinations (AND/OR) with a
single metric that does not take into account these observed differences. To still enable a
direct comparison we provide the BA values. Other metrics can be calculated based on
the given performance rates.

Prediction Time

The prediction time is defined as the earliest point in time (under the above defined con-
ditions, i.e., interval boundaries) where a physical movement start could be predicted.
Since the distributions of prediction times differ a lot for EEG and EMG-based classifica-
tion and especially the combination (condition C, see above) is not Gaussian distributed,
we report median and quartiles here. For EMG-based predictions of movement onset
(condition B, see above) the point in time was marked at which the adaptive threshold is
exceeded. For EEG-based detection of movement intention (condition A, see above) the
earliest time window (furthest away from movement onset) that was classified to belong
to the class of movement intention was marked.

Results

Prediction Time

In Figure 3 the distribution of prediction times for EEG and EMG-based predictions
of movement onset is shown (see also Table 1). For visualization purposes we provide
a video as supporting information that is visualizing the performance of the different
movement prediction conditions (see Video S1 as supporting information). For EEG-
based detection of movement intention the median of the prediction time was 450 ms
(with lower 25%-quartile Q1: 200 ms and upper 25%-quartile Q3: 900 ms), for EMG-
based predictions of movement onset the median of the prediction time was 61 ms (Q1:
36 ms, Q3: 90 ms). Note that for EEG-based predictions the prediction times are clustered
in lines with a spacing of 50 ms due to the windowing procedure explained in Section ”Data
Processing”. In Figure 4 all windows classified as ”movement intention” are plotted to
better visualize the distribution of false and true positive classification. The plot shows
that for EEG - predictions, instances (windows) recorded before −1000 ms were sometimes
also classified as movement intention. In the plot, all individual movements (independent
of subject and run) are ordered in the way that the ones with the highest FP-rate are
displayed at the top of the figure. It is obvious that for single movements for which EEG-
based movement prediction was too early, the general performance in separating classes
(”movement intention” and ”resting state”) was weak. In the lower part of Figure 4,



10

27.2 % of the whole 960 movements that were analyzed in this study contain no FPs (no
positive predictions before −1000 ms with respect to the physical movement onset). For
the combination of both signals in an ”OR” fashion (condition C) the median of the
prediction time was 110 ms (Q1: 50 ms, Q3: 500 ms) and for the ”AND” combination
(condition D) the median of the prediction time was 57 ms (Q1: 33 ms, Q3: 88 ms).

Prediction Performance

The classification results are summarized in Table 1 and visualized in Figure 5 (TP- / TN-
and FP- / FN-rates) and Figure 6 (balanced accuracy). Statistical analysis revealed that
the signal types and their combinations (EEG/EMG/ ”AND”/ ”OR”) affect the error rate
for both types of error (FP-rate: error type I / FN-rate: error type II) [interaction between
error type and type of signal combinations: F (3, 21) = 28.46, p < 0.001]. For the error
type I, the ”AND” combination is the best combination of signals, i.e., reduces error of
type I most, with significant differences to all other types of signal and their combinations
[AND vs. EMG: p < 0.003, AND vs. EEG: p < 0.008, AND vs. OR: p < 0.007]. The
type of signal ”EMG” is better than the type of signal ”EEG” [p < 0.008] and the ”OR”
combination [p < 0.008]. The type of signal ”EEG” is better than the ”OR” combination
[p < 0.003]. For the error type II the ”OR” combination is the best combination of signals,
i.e., reduces error of type II most, with significant differences to all other types of signal
and their combinations [OR vs. EMG: p < 0.022, OR vs. EEG: p < 0.037, OR vs. AND:
p < 0.007]. The type of signal ”EMG” is better than the ”AND” combination [p < 0.037],
but not better than the type of signal ”EEG” [p = n.s.]. The type of signal ”EEG” is
better than the ”AND” combination [p < 0.022].

Discussion and Conclusion

Results show that both, EEG and EMG, signals can be used to reliably predict movements
before a physical movement onset. Thus we are able to show in healthy subjects that both
signals can potentially be used to control a device with high performance. In case that
a fast control algorithm for the assistive device is used [9] the evaluated prediction time
would for both conditions A and B allow to support movements in a way that subjects
would possibly not notice a delay between their intention and the execution by the device.
Since EEG-based predictions can be made much earlier than EMG-based predictions, EEG
might be more suitable to give the user the feeling that a device is delivering support on
time and without delay. However, whether there is indeed a subjective difference between
both methods has to be investigated further.

On the other hand, we showed that EEG analysis can lead to more false positives
than EMG analysis does (Figure 5). There are different explanations for this. First, a
most important reason for higher FP -rates in EEG-based predictions is that movement
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planning (movement intention) might be detected, which may not result in movement
execution [28, 29]. Second, for some subjects EEG-based predictions did not work that
well (as supporting information individual results for the prediction time based on EEG
analysis are given in Fig. S1) and thus some subjects might have worsened the overall
error rates. In this study we did not evaluate this subject-specific effect since we focused
on a general evaluation of the potential of combining different methods for adapting an
assistive technical device with respect to the state of therapy.

Our results show the capability of multimodal control of assistive devices using a
combination of different physiological data on the example of EEG and EMG. It was
already shown by other studies that the combination of different measures can improve
the performance of detections about subjects intentions, e.g., in the case of movement
target prediction [15,25]. To detect the intention of patients is highly relevant to support
them appropriately. A device can best support a movement if, for example, the target of
the movement is known. Here we investigated which methods and combination of methods
can best be used to predict when a patient wants to execute such a movement with respect
to different therapy states. To detect movement intention is highly relevant to support self-
initiated, voluntary movements by assistive technology devices like active exoskeletons.
Our results show, that all classification modalities have a high performance in a range of
0.88 to 0.94 BA. The best result could be achieved using the ”OR” combination and EMG
as a single modality. Slightly worse results were obtained from EEG-based classification
and the ”AND” combination. Regarding the absolute performance measures it is hard to
decide which signal shall be used to detect movement intention. The most intuitive idea
would be to use the ”OR” combination because of the highest performance. However,
the EEG-based classification has only a slightly worse accuracy, but movements can be
predicted 4 times earlier. Our results show that the signals or combination of signals
always need to be chosen according to the application and goals in rehabilitation, as
investigated in this work, and are not always solely based on the absolute prediction
performance.

During the rehabilitation process the importance of avoiding false movement onset
predictions (FP-rate; error type I) and thus inappropriate triggering of movements can
differ. If the goal of the therapy is to start rehabilitation of patients, who likely produce no
strong signals, it is more relevant to detect most movement intentions, hence to reduce the
occurrence of type II errors (FN-rate). Thus, a combination of signals in an ”OR” fashion
could be the best choice, since it results in a high TP -rate (close to 1 in healthy subjects)
and reduces the FN-rate, i.e., type II error. By an ”AND” combination of both signals on
the other hand the FP -rate, i.e., error type I, can be strongly reduced resulting in a very
reliable detection performance. This is desirable as soon as rehabilitation progresses and
more precise behavior together with better performance can be expected from the patient.
Since the TP -rate is also reduced (error type II is enhanced), i.e., the patients effort will
less likely result in true positive behavior, she/he must try harder to trigger the movement
and as a result the engagement of the patient is enforced. Note that it has been shown
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that the expression of the RP is highly dependent on the motivation of a subject and on
how much effort she/he invests [22]. Furthermore, an ”AND” combination can help to
distinguish voluntary from involuntary movements since only in case of the detection of a
RP the assistive device is triggered. Thus involuntary movements will not be supported
by the device or could even be diminished by appropriate control mechanisms. Moreover,
the ”AND” combination reduces the variance in prediction times observed for EEG-based
movement prediction, since the variance in EMG-based prediction times was very small.

Results presented here were achieved in an offline combination and comparison of
both physiological signals. In future work, we will combine the detection of both kinds
of data automatically, to make use of the described advantages in online experiments.
Moreover, we want to investigate other ways of combining the two prediction methods,
e.g., by applying a classifier that makes use of both (or more) input signals. This can
be highly relevant for applying movement prediction from patient’s data to obtain more
stable predictions and to cope with the possibly different quality of the measurable signals.
Besides this, different methods of analyzing and combing different measures and adding
technical measures from the assistive device itself should improve the overall performance
as, for example, shown for the prediction of movement trajectories in Corbett et al. [25].
Furthermore, depending on the type of neuromuscular disorder and state of therapy, both,
EEG or EMG-based movement prediction, might no longer result in good performance.
For example, for patients who suffer from spasm, EMG might no longer be a reliable
source for movement onset detection. Here the combination of multimodal data should
be even more relevant. This and the level of onset detection performance which would be
acceptable for rehabilitation remains to be proven or investigated.

For application in rehabilitation, assistive technical devices must be very easy to use.
Most important is the handling, which has to be comfortable for the personnel as well as
the patient. It is, for example, very helpful to reduce the amount of electrodes used for
recording the physiological signals. For example, in [33] we systematically investigated
how many EEG electrodes are sufficient to detect the P300 [34] ERP in single trial.
We found that the reduction to even 8 electrodes would not dramatically reduce the
prediction performance. For the detection of movement related ERP potentials, an even
lower amount of electrodes might be sufficient since the RP and LRP are very local
activities that can be recorded at electrodes positions C1/C3 and C2/C4 for hand and
arm movements. Further, dry electrodes, which can easily be applied for EMG data
acquisition [35], can also be used for EEG data acquisition. Although with dry electrodes
it is quite challenging to conduct high quality EEG recordings, some approaches are
very promising to reduce the effort of EEG acquisition. For example, a low number
of as much as 6 dry electrodes could be shown to be sufficient for the prediction of
movement intention [36]. Note that the referenced study was based on signals in the
frequency domain and not in the time domain as it was the case here. Hence, results
cannot simply be transferred to our study. Furthermore, for patients it might not be
straightforward to decide on best electrodes to choose, due to bigger differences between
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patients, e.g., resulting from brain injury that leads to massive changes in the brain
activity. Hence, sophisticated methods that can be applied to automatically find best
electrode combinations must be developed which are currently investigated by our group
(see for example [37]). We further believe that, if a system, that is supported by EMG
data, is applied successfully to most patients, the step is smaller to add EEG in case
EMG-based predictions are not sufficient for some patients. By a stepwise integration of
different kinds of data, the barrier can be reduced to also integrate measures like EEG
for multimodal signal analysis and support. However, some work still remains to be done
to increase the general acceptance of assistive technology devices like active exoskeletons
for rehabilitation although there are already some positive examples of their application
as discussed above. To take the next logical step, we started cooperations with clinical
partners to evaluate our approach on patients.

In summary, results presented here support the hypothesis that multimodal analysis
of physiological data has the potential to support patients by assistive technology devices
more individually to their kind of disease and state of rehabilitation with respect to
movement onset detection. We expect that for patients this effect will be even more
dominant but this has to be evaluated further, especially with respect to acceptable
prediction performances and applicability.
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Figure Legends

Figure 1. Schemata of a subject assisted by an exoskeleton within a possible
rehabilitation scenario. The exoskeleton is controlled online via signals directly
recorded from the user and an eye-tracking system. The support is context driven and
can be realized in the real world or a virtual scenario.

Figure 2. Schemata of the conducted experiments. Subjects were asked to move
their right hand from a flat micro switch board to a buzzer, while looking at a green
fixation cross presented on a PC-monitor. Between two consecutive movements a
minimum resting time of 5 s had to be maintained. Too early movements were reported
to the subjects by changing the color of the fixation cross to red for 100 ms. After 40
valid movements one complete run was finished.

Figure 3. Distribution of prediction times for EEG-based (blue) and
EMG-based (red) movement prediction. Time point zero corresponds to the
physical movement onset, the red line at time −500 ms indicates the range up to where
predictions based on EMG were allowed, for EEG predictions up to −1000 ms before
physical movement onset were allowed, again marked with a red line.

Figure 4. Distribution of prediction times for EEG-based movement
prediction including the non movement range. Time point zero corresponds to
the physical movement onset, the red line at time −1000 ms indicates the range up to
where predictions based on EEG were allowed, the range from −4000 ms to −1050 ms
corresponds to the no movement class, hence all predicted windows in that range count
as FPs.
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Figure 5. Prediction results in TP- and FP-rate for Condition A (EEG)
(blue), Condition B (EMG) (green), Condition C (EEG ”OR” EMG) (black)
and Condition D (EEG ”AND” EMG) (red). The mean TP-rate and FP-rate for
all subjects is shown; the bars indicate the standard deviation. Note for the x-axis two
scales are used, since the FP-rates for Condition B (EMG) and Condition D (EEG
”AND” EMG) are very small compared to the other two conditions. The two vertical
dashes within the x-axis label highlight the scale change.

Figure 6. Prediction results in balanced accuracy for Condition A (EEG),
Condition B (EMG), Condition C (EEG ”OR” EMG) and Condition D
(EEG ”AND” EMG). The mean balanced accuracy for all subjects is shown; the
bars indicate the standard deviation.
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Tables

Table 1. Classification results for all 4 conditions.

Condition A (EEG) B (EMG) C (”OR”) D (”AND”)
TP-rate 0.88 ± 0.1 0.86 ± 0.1 0.98 ± 0.03 0.76 ± 0.16
FP-rate 0.1 ± 0.06 0.001 ± 0.001 0.1 ± 0.06 0.0002 ± 0.0004
TN-rate 0.9 ± 0.06 0.999 ± 0.001 0.9 ± 0.06 0.9998 ± 0.0004
FN-rate 0.12 ± 0.1 0.14 ± 0.1 0.02 ± 0.03 0.24 ± 0.16

balanced accuracy 0.89 ± 0.07 0.93 ± 0.07 0.94 ± 0.04 0.88 ± 0.08
prediction time (ms) 200, 450, 900 36, 61, 90 50, 110, 500 33, 57, 88

Results for different classification conditions (from left to right: only EEG, only EMG,
combination of both with ”OR” and with ”AND”): The mean classification results with
standard deviation are shown in TP-, FP-, TN-, FN-rate and balanced accuracy. The
prediction time is given in 25 %-, 50 %- and 75 %-quantiles, respectively.
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Supporting Information Legends

Video S 1. Simulation of the triggering of movements based on the analysis
of different types of signals (EMG and EEG) and their combinations: The
video shows both arms of the subject filmed from the top of the room. Three frames
around the video with colors green (condition A), red (condition B) and yellow
(condition D) indicate the detection of a movement intention of one particular
condition. In addition, three animations are placed below the video, showing a puppet
doing a movement similar to the ones performed by the subject. These animations are
again coupled to the three above mentioned prediction conditions and thus triggered by
corresponding movement predictions. Condition C is implicitly contained in the video,
due to the fact that any prediction made either by EEG or EMG is displayed.

Figure S 1. Individual prediction performance: Prediction of movement onset
based on EEG (denoted with blue squares) signals performed differently well for
individual subjects. A: Good performance for subject 4 in run 2. B: Bad performance,
i.e., many false positive detections, for subject 6 in run 3.


