Introduction to pySPACE workflows (https://github.com/pyspace)

a Signal Processing and Classification Environment written in Python

M M Krell, S Straube, A Seeland, H Wöhrle, J Teiwes, J H Metzen, E A Kirchner, F Kirchner

DFKI Bremen & University of Bremen
Robotics Innovation Center
Director: Prof. Dr. Frank Kirchner
www.dfki.de/robotics
robotics@dfki.de
pySPACE: Computation of Multiple Workflows

- ... with **applications** in robotics and brain-computer interfaces
- ... with **simple configuration** and **automatic processing of empirical evaluations**
- ... on feature vector and time series datasets
- ... where configuration requires no programming (YAML used)
- ... with execution in a distributed manner (embarrassingly parallel)
- ... intuitive **structure**
- ... choosing from more than 100 signal processing and classification algorithms (additionally interfaces to other libraries)
...with **applications** in robotics and brain-computer interfaces

...with **simple configuration** and **automatic processing** of empirical evaluations

...on feature vector and time series datasets

...where configuration requires no programming (YAML used)

...with execution in a distributed manner (embarrassingly parallel)

...intuitive structure

...choosing from more than 100 signal processing and classification algorithms (additionally interfaces to other libraries)
pySPACE: Computation of Multiple Workflows

- ... with **applications** in robotics and brain-computer interfaces
- ... with **simple configuration** and **automatic processing** of empirical evaluations
- ... on feature vector and time series datasets
- ... where configuration requires no programming (YAML used)
- ... with execution in a distributed manner (embarrassingly parallel)
- ... intuitive **structure**
- ... choosing from more than 100 signal processing and classification algorithms (additionally interfaces to other libraries)
Robotic application in the Project VirGo

Predict sensor values

- e.g. gyro, temperature, battery load

⇒ detect and react to unexpected events

- Methods for predicting upcoming sensor readings are developed

pySPACE is used to:

- process different datasets,
- compare/evaluate different regression algorithms,
- and tune their parameters (e.g. nodes in the hidden layers of a Multilayer perceptron)
other Applications

- evaluation and comparison of
 - ... sensor selection algorithms (on EEG data) [2]
 - ... dimensionality reduction algorithms (ICA, PCA, xDAWN, PiSF, CSP) [3, 4, 5, 13]
 - ... classifiers (BRMM, online classifiers, ...) [6, 11, 14, 15]

- Brain-Computer Interfaces (movement prediction, interaction error detection, detection of warning perception) [1, 7, 8, 9, 10, 16, 17]
- soil detection
- parallelization of robot simulations
- classify iterative closest point (ICP) matches for good and bad localization
Applications

other Applications

- evaluation and comparison of
 - ... sensor selection algorithms (on EEG data) [2]
 - ... dimensionality reduction algorithms (ICA, PCA, xDAWN, PiSF, CSP) [3, 4, 5, 13]
 - ... classifiers (BRMM, online classifiers, ...) [6, 11, 14, 15]
- Brain-Computer Interfaces (movement prediction, interaction error detection, detection of warning perception) [1, 7, 8, 9, 10, 16, 17]
- soil detection
- parallelization of robot simulations
- classify iterative closest point (ICP) matches for good and bad localization
other Applications

- evaluation and comparison of
 - ...sensor selection algorithms (on EEG data) [2]
 - ...dimensionality reduction algorithms (ICA, PCA, xDAWN, PiSF, CSP) [3, 4, 5, 13]
 - ...classifiers (BRMM, online classifiers, ...) [6, 11, 14, 15]
- Brain-Computer Interfaces (movement prediction, interaction error detection, detection of warning perception) [1, 7, 8, 9, 10, 16, 17]
- soil detection
- parallelization of robot simulations
- classify iterative closest point (ICP) matches for good and bad localization
Short Facts

- medium sized framework (> 40000 lines of code)
- developed and tested on Mac OS X and Linux
- 5 years old (open source since August 2013)
- core developer team of 3-5 people and approx. 10 in total
- open source software (GPL, https://github.com/pyspace)
- extensive documentation: http://pyspace.github.io/pyspace/
- paper about pySPACE published yesterday:
 Mario Michael Krell, Sirko Straube, Anett Seeland, Hendrik Wöhrle, Johannes Teiwes, Jan Hendrik Metzen, Elsa Andrea Kirchner, and Frank Kirchner. pySPACE - A Signal Processing and Classification Environment in Python. Frontiers in Neuroinformatics, 7(40), 2013
Short Facts

- medium sized framework (> 40000 lines of code)
- developed and tested on Mac OS X and Linux
- 5 years old (open source since August 2013)
- core developer team of 3-5 people and approx. 10 in total
- open source software (GPL, https://github.com/pyspace)
- extensive documentation: http://pyspace.github.io/pyspace/
- paper about pySPACE published yesterday:
 Mario Michael Krell, Sirko Straube, Anett Seeland, Hendrik Wöhrle, Johannes Teiwes, Jan Hendrik Metzen, Elsa Andrea Kirchner, and Frank Kirchner. pySPACE - A Signal Processing and Classification Environment in Python. Frontiers in Neuroinformatics, 7(40), 2013
How to install and use pySPACE

1. installation (very simple, see tutorial)
2. prepare your data for pySPACE
3. decide and define the processing file
4. potentially modify your config file
5. start software
prepare your data: Input Formats

feature vector: csv, arff

time series segments: csv

time series stream: csv, EDF2
.set (EEGLAB), .eeg (BrainProducts GmbH)
1. installation

2. **prepare your data**
 dataset description of banana dataset (metadata.yaml)
   ```yaml
   storage_format: [csvUnnamed, real]
   type: FEATURE_VECTOR
   file_name: banana_data.csv
   label_column: 1
   ...
   ```

3. decide and define the processing file

4. potentially modify your config file

5. start software
1. How to install and use
2. prepare your data
3. **decide and define the processing file** (examples/bench.yaml)
   ```yaml
   type: node_chain
   input_path: "example_summary"
   runs: 3
   node_chain:
     - node: FeatureVectorSourceNode
     - node: TrainTestSplitter
       parameters:
         train_ratio: 0.4
     - node: __Normalization__
     - node: 2SVM
       parameters:
         complexity: __C__
     - node: PerformanceSinkNode
   parameter_ranges:
     __C__: [0.01,0.1,1]
     __Normalization__: [GaussianFeatureNormalization, EuclideanFeatureNormalization]
   ```
4. potentially modify your config file
1. installation
2. prepare your data for pySPACE
3. decide and define the processing file (bench.yaml)
4. **potentially modify your config file** (config.yaml)
   ```yaml
   storage: ~/pySPACEcenter/storage
   spec_dir: ~/pySPACEcenter/specs
   console_log_level : logging.WARNING
   file_log_level : logging.INFO
   python_path:
     - /home/user/pySPACE/external/libsvm/python/
   ...
   ```
5. start software
1. installation
2. prepare your data for pySPACE
3. decide and define the processing file (bench.yaml)
4. potentially modify your config file (config.yaml)
5. **start software**
 go to pySPACEcenter on the command line and type:
   ```
   ./launch.py -o examples/bench.yaml --mcore
   ```
Parallelization

- single-core: \textit{serial}
- multi-core: \textit{mcore}
- cluster (common storage system needed): \textit{loadl}
- possibility to add new modes: \textit{cloud}

- online and offline mode
- no interprocess communication (restricted to embarrassingly parallel)
- shared file system required
Parallelization

- single-core: \(-\) \textit{serial}
- multi-core: \(-\) \textit{mcore}
- cluster (common storage system needed): \(-\) \textit{loadl}
- possibility to add new modes: \(-\) \textit{cloud}

Design decisions to enable parallelization:
- online and offline mode
- no interprocess communication (restricted to embarrassingly parallel)
- shared file system required
General Structure Concept [12]
More than 100 algorithms [12]
More than 100 algorithms [12]

Modularity concept of node chain based on Modular toolkit for Data Processing (MDP)!
Here new algorithms/libraries can be integrated/interfaced!
Conclusion

- pySPACE automatizes the signal processing and classification workflow.
- Automatic parallel execution of other evaluations (WEKA, Reinf. Learning with MMLF http://mmlf.sourceforge.net/)
- Intuitive configuration without scripting (YAML based) ⇒ useable by non-programmers
- Possibility to integrate other algorithms/libraries

Future steps
- More algorithms and interfaces to other libraries
- More data types (e.g. pictures, videos)
- More applications (e.g. clustering, regression)
- Installation suite...
Conclusion

- pySPACE automatizes the signal processing and classification workflow.
- automatic parallel execution of other evaluations (WEKA, Reinf. Learning with MMLF http://mmlf.sourceforge.net/)
- intuitive configuration without scripting (YAML based)
 ⇒ useable by non-programmers
- possibility to integrate other algorithms/libraries

Future steps
- more algorithms and interfaces to other libraries
- more data types (e.g. pictures, videos)
- more applications (e.g. clustering, regression)
- installation suite
- ...
Thank you for your attention!

Do you have questions?

Figure: Node chain processing scheme from [12]

funding statement: Supported by the national aeronautics and space research centre of the Federal Republic of Germany (DLR) by grants of the Federal Ministry of Economics and Technology on the basis of a decision by the German Bundestag under the grant numbers 50RA1113 and 50RA1114 in the project VirGo4.

M M Krell

pySPACE (https://github.com/pyspace)

