
METHODS ARTICLE
published: 24 December 2013
doi: 10.3389/fninf.2013.00040

pySPACE—a signal processing and classification
environment in Python
Mario M. Krell1*, Sirko Straube1, Anett Seeland2, Hendrik Wöhrle2, Johannes Teiwes1,

Jan H. Metzen1, Elsa A. Kirchner1,2 and Frank Kirchner1,2

1 Robotics Group, Faculty 3 - Mathematics and Computer Science, University of Bremen, Bremen, Germany
2 Robotics Innovation Center, DFKI GmbH, Bremen, Germany

Edited by:

Fernando Pérez, University of
California, Berkeley, USA

Reviewed by:

Ariel Rokem, Stanford University,
USA
Christopher Holdgraf, University of
California, Berkeley, USA

*Correspondence:

Mario M. Krell, Robotics Group
Faculty 3 - Mathematics and
Computer Science, University of
Bremen, Robert-Hooke-Str. 1,
Bremen D-28359, Germany
e-mail: krell@uni-bremen.de

In neuroscience large amounts of data are recorded to provide insights into cerebral
information processing and function. The successful extraction of the relevant signals
becomes more and more challenging due to increasing complexities in acquisition
techniques and questions addressed. Here, automated signal processing and machine
learning tools can help to process the data, e.g., to separate signal and noise. With
the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing
algorithms can be compared and applied automatically on time series data, either with
the aim of finding a suitable preprocessing, or of training supervised algorithms to classify
the data. pySPACE originally has been built to process multi-sensor windowed time series
data, like event-related potentials from the electroencephalogram (EEG). The software
provides automated data handling, distributed processing, modular build-up of signal
processing chains and tools for visualization and performance evaluation. Included in the
software are various algorithms like temporal and spatial filters, feature generation and
selection, classification algorithms, and evaluation schemes. Further, interfaces to other
signal processing tools are provided and, since pySPACE is a modular framework, it can
be extended with new algorithms according to individual needs. In the presented work,
the structural hierarchies are described. It is illustrated how users and developers can
interface the software and execute offline and online modes. Configuration of pySPACE
is realized with the YAML format, so that programming skills are not mandatory for
usage. The concept of pySPACE is to have one comprehensive tool that can be used
to perform complete signal processing and classification tasks. It further allows to define
own algorithms, or to integrate and use already existing libraries.

Keywords: Python, neuroscience, EEG, YAML, benchmarking, signal processing, machine learning, visualization

1. INTRODUCTION
Time series are recorded in various fields of neuroscience to infer
information about neural processing. Although the direct com-
munication between most parts of the nervous system is based
on spikes as unique and discrete events, graded potentials are
seen as reflections of neural population activity in both, inva-
sive and non-invasive techniques. Examples for such time series
come from recordings of local field potentials (LFPs), electroen-
cephalography (EEG) or even functional magnetic resonance
imaging (fMRI).

Common characteristics of time series data reflecting neu-
ral activity are: (i) a high noise level (caused by external sig-
nal sources, muscle activity, and overlapping uncorrelated brain
activity) and (ii) a large amount of data that is often recorded
with many sensors (electrodes) and with a high sampling rate. To
reduce noise and size the data are preprocessed, e.g., by filtering in
the frequency domain or by averaging over trials and/or sensors.
These approaches have been very successful in the past, but the
solutions were often chosen manually, guided by the literature,
visual inspection and in-house written scripts, so that possible
drawbacks remain. It is still not straightforward to compare or

reproduce analyses across laboratories and the investigator has to
face many choices (e.g., filter type, desired frequency band, and
respective parameters) that cannot be evaluated systematically
without investing large amounts of time. Another (sometimes)
critical issue is that the data might contain so far undiscovered
or unexpected signal components that might be overseen by the
choice of the applied data analysis. False or incomplete hypotheses
can be a consequence.

While there is no single solution to all of these problems,
recent tools for neuroinformatic purposes can help to compen-
sate these drawbacks, especially when made available open source,
by providing a common ground that everyone can use. As a side
effect, there is the chance to enhance the reproducibility of the
conducted research, since researchers can directly exchange how
they processed their data based on the respective specification or
script files. Based on the commercial software package Matlab,
there are open source toolboxes existing, like EEGLAB (Delorme
and Makeig, 2004) and FieldTrip (Oostenveld et al., 2011) for
MEG, EEG, and SPM (http://www.fil.ion.ucl.ac.uk/spm/) espe-
cially for fMRI data. Respective Python libraries are for exam-
ple PyMVPA (Hanke et al., 2009), OpenElectrophy (Garcia and

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 40 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00040/abstract
http://www.frontiersin.org/people/u/101870
http://www.frontiersin.org/people/u/80057
http://community.frontiersin.org/people/AnettSeeland/128057
http://community.frontiersin.org/people/HendrikWoehrle/127778
http://www.frontiersin.org/people/u/105776
http://www.frontiersin.org/people/u/77391
http://community.frontiersin.org/people/ElsaKirchner/128000
http://community.frontiersin.org/people/FrankKirchner/102557
mailto:krell@uni-bremen.de
http://www.fil.ion.ucl.ac.uk/spm/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Krell et al. pySPACE

Fourcaud-Trocmé, 2009), and the NIPY software projects (http://
nipy.org/). Additional help comes from an increasing number
and complexity of signal processing and classification algorithms
that enable more sophisticated processing of the data. However,
this is also considered as a problem, since it also demands (i)
available tools where the signal processing algorithms can be
directly compared (Sonnenburg et al., 2007; Domingos, 2012)
and (ii) to close the still existing large gap between devel-
oper and user. On the other hand, the success of applications
using automatically processed and classified neurophysiological
data has been widely demonstrated, e.g., for usage of brain-
computer interfaces (Lemm et al., 2004; Bashashati et al., 2007;
Hoffmann et al., 2008; Kirchner et al., 2013; Seeland et al.,
2013) and classification of epileptic spikes (Meier et al., 2008;
Yadav et al., 2012). These applications demonstrate that auto-
mated signal processing and classification can indeed be used
to directly extract relevant information from such time series
recordings.

With the software pySPACE (Signal Processing And Classifi-
cation Environment written in Python) we introduce a modular
framework that can help (neuro)scientists to process and ana-
lyze time series data in an automated and parallel fashion. The
software supports the complete process of data analysis, includ-
ing processing, storage, and evaluation. No individual execution
scripts are needed, instead users can control pySPACE via text
files in the YAML format (Ben-Kiki et al., 2008), specifying what
data operation should be executed. The software was particu-
larly designed to process windowed (segmented) time series and
feature vector data, typically with classifiers at the end of the pro-
cessing chain. For such supervised algorithms the data can be
separated into training and test data. pySPACE is, however, not
limited to this application case: data can be preprocessed without
classification, reorganized (e.g., shuffled, merged) or manipu-
lated using own operations. The framework offers automatic
parallelization of independent (not communicating) processes by
means of different execution back-ends, from serial over mul-
ticore to distributed cluster systems. Finally, processing can be
executed in an offline or in an online fashion. While the normal
use case is concerned with recorded data saved to a hard disk (and
therefore offline), the online mode, called pySPACE live, offers
the application-directed possibility to process data directly when
it is actually recorded without storing it to hard disk. We refer
to this processing here as online due to the direct access in con-
trast to offline processing where the input data is loaded from a
hard disk.

To tackle the problem of an increasing number of sig-
nal processing algorithms, additional effort was put into
the goal of keeping pySPACE modular and easy-to-extend.
Further algorithms can be added by the advanced user;
the algorithms will be automatically included in the col-
lection of available algorithms and into the documentation.
Furthermore, the software is capable of using existing sig-
nal processing libraries, preferably implemented in Python
or using existing wrappers to other languages like C++. So
far, interfaces are implemented to external classifiers [from
Scikit-learn (Pedregosa et al., 2011) and LibSVM (Chang and
Lin, 2011)], the Modular Toolkit for Data Processing [MDP;

(Zito et al., 2008)], WEKA (Hall et al., 2009), and MMLF
(http://mmlf.sourceforge.net/). Core functionality of pySPACE
uses the Python libraries NumPy (Dubois, 1999) and SciPy (Jones
et al., 2001).

pySPACE was implemented as a comprehensive tool that cov-
ers all aspects a user needs to perform the intended operations.
The software has a central configuration where the user can
optionally specify global input and output parameters and make
settings for individual paths to external packages as well as set-
ting computational parameters. The processing is then defined
in individual specification files (using YAML) and the frame-
work can be executed with the respective operation on several
datasets at once. This functionality is not only provided for
internal algorithms, but can also be used with external frame-
works like WEKA and MMLF. For the basic signal processing
algorithms implemented in pySPACE, we adopted the node and
flow concept of the MDP software (Zito et al., 2008) 1 together
with basic principles that were introduced together with it.
Currently, more than 100 of such signal processing nodes are
integrated into pySPACE. These nodes can be combined and
result in numerous different processing flows. Different evalua-
tion schemes (e.g., cross validation and metric calculation) are
provided and different evaluation results can be combined to
one output. This output can be explored using external soft-
ware or by using a graphical user interface provided within
pySPACE.

For basic preprocessing, analysis and visualization of electro-
physiological data the existing neuroinformatics tools are prob-
ably sufficient. However, a drawback of most frameworks is that
they focus on the preprocessing and a machine learning part is
often missing (or vice versa). Furthermore, they do not enable a
simple configuration and parallel execution of processing chains.
To enable a connection to existing tools, pySPACE supports fea-
ture vector data in ARFF and CSV file format and can read and
segment time series data in CSV, BrainProducts eeg, EEGLAB
set, and EDF file format. As soon as several datasets have to be
processed automatically with a set of different processing algo-
rithms (including classification) and numerous different parame-
ter choices, pySPACE is probably the better choice in comparison
to the other tools. Additionally, the capability to operate on
feature vector data makes pySPACE useful for a lot of other appli-
cations, where the feature generation has been done with other
tools. To the best of our knowledge, pySPACE is unique in its way
of processing data with special support of neurophysiological data
and with its amount of available algorithms.

The structural concepts of pySPACE will be outlined in sec-
tion 2. In section 3 we will shortly describe how the software is
interfaced followed by the requirements for running it (section 4).
Finally, we will give some application examples (section 5) and
discuss related work (section 6).

2. STRUCTURE AND PRINCIPLES
The software package structure of pySPACE was designed in order
to be self-explanatory for the user. Core components in the main

1published at previous Frontiers special issue “Python in Neuroscience.”

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 40 | 2

http://nipy.org/
http://nipy.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Krell et al. pySPACE

directory are run containing everything that can be executed,
resources where external and internal data formats and types
are defined, missions with existing processing algorithms the
user can specify, and environments containing infrastructure
components for execution. How to run the software is described
in sections 3 and 5. The other packages and their connections are
described in the following.

2.1. DATA
As a good starting point, one can look at the way the data are
organized and handled within the software, including ways to
load data into the framework and how the outcome is stored.
Data are distinguished in pySPACE by its granularity: from sin-
gle data samples to datasets and complete summaries (defined in
the resources package), as explained in the following. They
require at the same time different types of processing which are
subsequently described in sections 2.2 and 2.3 and depicted in
Figure 1.

Four types of data samples can occur in pySPACE: the raw
data stream, the windowed time series, feature vectors and the
prediction vector. A data sample comes with some metadata for
additional description, e.g., specifying sensor names, sampling
frequency, feature names or classifier information. When load-
ing a raw data stream it is first of all segmented into windowed
time series data. Windowed time series have the form of two-
dimensional arrays with amplitudes sorted according to sensors
on the one axis and time points on the other. Feature vectors are
one-dimensional arrays of feature values. In a prediction vector
the data sample is reduced to the classification outcome and the
assigned label.

For analysis, data samples are combined to datasets. In
pySPACE, a dataset is defined as a recording of one single exper-
imental run, either as streamed data or already preprocessed as
a set of the corresponding time series windows, or as a loose
collection of feature vectors. It also has metadata specifying the
type, the storage format, and information about the original data
and preceding processing steps. For each type of dataset, various
loading and saving procedures are defined. Currently supported
data formats for loading streaming datasets are the comma sep-
arated values (.csv), the European Data Format (.edf), and the
two formats specifically used for EEG data which are the one
from Brain Products GmbH (Gilching, Germany) (.eeg) and the
EEGLAB (Delorme and Makeig, 2004) format (.set). With the
help of the EEGLAB format several other EEG data formats can
be converted to be used in pySPACE. For cutting out the win-
dows from the data stream, either certain markers can be used or
stream snippets with equal distance are created automatically. For
supervised learning, cutting rules can be specified to label these
windows. Feature vector datasets can be loaded and stored in csv
files or the ARFF (Attribute-Relation File Format) format, which
is, e.g., useful for the interface to WEKA (Hall et al., 2009).

Groups of datasets, e.g., experimental repetitions with the
same subject or different subjects, can be combined to be ana-
lyzed and compared jointly. Such dataset collections are called
summary in pySPACE. Summaries are organized in folder struc-
tures. To enable simple evaluations, all single performance results
in a summary are combined to one csv file, which contains various
metrics, observed parameters and classifier information.

2.2. ALGORITHMS
Nodes and operations are the low and high-level algorithms in
pySPACE (see Figure 1). They are organized in the missions
package. New implementations have to be placed in the missions
package and can then be used like the already implemented ones.
Here, the type and granularity of input (as depicted in Figure 1)
have to be considered, the algorithms need to inherit from the
base class, and implement some basic processing function(s).

2.2.1. Nodes
The signal processing algorithms in pySPACE which operate on
data samples (e.g., single feature vectors) are called nodes. Some
nodes are trainable, i.e., they define their output based on the
training data provided. The concept of nodes was inspired by Zito
et al. (2008) as well as the concept of their concatenation, which is
presented in section 2.3.1. Nodes are grouped depending on their
functionality as depicted in Figure 2. Currently, there are more
than 100 nodes available in pySPACE plus some wrappers for
other libraries (MDP, LibSVM, Scikit-learn). A new node inher-
its from the base node and at least defines an execute function
which maps the input (time series, feature vector, or prediction
vector) to a new object of one of these types. Furthermore, it has
a unique name ending with “Node” and its code is placed into
the respective nodes folder. Templates are given to support the
implementation of new nodes. For a complete processing of data
from time series windows over feature vectors to the final predic-
tions and their evaluation, several processing steps are needed as
outlined in the following and in Figure 2.

Preprocessing comprises denoising time series data and reduc-
ing dimensionality in the temporal and frequency domain. By
contrast, the spatial filters operate in the spatial domain to reduce
noise. This can be done by combining the signals of different
sensors to new virtual sensors or by applying sensor selection
mechanisms. Classification algorithms typically operate on fea-
ture vector data, i.e, before classification the time series have to
be transformed with at least one feature generator to a feature
vector. A classifier is then transforming feature vectors to pre-
dictions. In postprocessing, feature vectors can be normalized and
score mappings can be applied to prediction scores. For every
data type a visualization is possible. Furthermore, there are meta
nodes, which internally call other nodes or node chains. Thus,
they can combine results of nodes or optimize node parameters.
If training and testing data are not predefined, the data must be
split to enable supervised learning. By default, data are processed
as testing data.

Source nodes are necessary to request data samples from the
datasets, sink nodes are required for gathering data together to
get new datasets or to evaluate classification performance. They
establish the connection from datasets to data samples which is
required for processing datasets with concatenations of nodes.

2.2.2. Operations
An operation automatically processes one data summary 2 and
creates a new one. It is also responsible for the mapping between
summaries and datasets. Several operations exist for reorganiz-
ing data (e.g., shuffling or merging), interfacing to WEKA and

2Note that a summary can also consist of just a single dataset.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 40 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Krell et al. pySPACE

FIGURE 1 | High-level and low-level processing types (upper and lower

part) and their connection to the data granularity (summary, dataset,

sample). Access levels for the user are depicted in blue and can be specified
with YAML files (section 3.2). Only low-level processing can be performed

online. For offline analysis, it is accessed by the node chain operation. For the
operations and nodes several different algorithms can be chosen. Algorithms
are depicted in orange (section 2.2) and respective infrastructure components
concatenating these in green (section 2.3).

MMLF, visualizing results or to access external code. The most
important operation is, however, the node chain operation that
enables automatic parallel processing of the modular node chain
(see section 2.3.1). An operation has to implement two main
functions. The first creates independent processes for specified
parameter ranges and combinations, as well as different datasets.
This functionality is the basis for the parallelization property of
pySPACE (see section 2.3.3). The process itself defines the map-
ping of one or more datasets from the input summary to a dataset
of the output summary and its call function is the important
part. The second function of an operation is called “consoli-
date” and implements the clean up part after all its processes
finished. This is especially useful to store some meta informa-
tion and to check and compress the results. Operations and their
concatenations are used for offline analysis (see section 3.3).
In section 5.1 an example of an operation will be given and
explained.

2.3. INFRASTRUCTURE
So far we have discussed what to process (data) and which algo-
rithms to use (nodes, operations). The infrastructure of pySPACE
now defines how the processing is done. This core part is mainly

defined in the environment package and usually not modified. It
comprises the online execution (see section 3.4), the concatena-
tion of nodes and operations (as depicted in Figure 1), and the
parallel execution of processing tasks.

2.3.1. Node Chains
Nodes can be concatenated to a node chain to get a desired sig-
nal processing flow. The only restriction here is what a particular
node needs as input format (raw stream data, time series, fea-
ture vector, or prediction vector). The input of a node chain is
a dataset (possibly in an online fashion), which is accessed by a
source node at the beginning of the node chain. For offline analy-
sis, a sink node is at the end of the node chain to gather the result
and return a dataset as output. In the online analysis, incoming
data samples are processed immediately and the result is for-
warded to the application. Between the nodes, the processed data
samples are directly forwarded, and if needed cached for speed-
up. Additional information can be transferred between nodes
where this is necessary. To automatically execute a node chain
on several datasets or to compare different node chains, a higher
level processing is used: the node chain operation as depicted in
Figure 3.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 40 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Krell et al. pySPACE

FIGURE 2 | Some examples of the more than 100 processing nodes in pySPACE, arranged according to processing categories (package names). The size
of the boxes indicates the respective number of currently available algorithms. For classification, postprocessing and preprocessing, subcategories are denoted.

2.3.2. Operation Chains
Similar to concatenating nodes to node chains, operations can
be concatenated to operation chains. Then, the first operation
takes the general input summary and the others take the result
summary of the preceding operation as input. At the end, the
operation chain produces a series of consecutive summaries.
Additionally to combining different operations, a benefit of the
operation chain in combination with node chain operations is
that a long node chain can be split into smaller parts and inter-
mediate results can be saved and reused. In an operation chain,
operations are performed sequentially so that parallelization is
only possible within each operation.

2.3.3. Parallelization
An offline analysis of data processing often requires a compari-
son of multiple different processing schemes on various datasets.
This can and should be done in parallel to get a reduction of
processing time by using all available CPUs. Otherwise, exhaus-
tive evaluations might not be possible as they require too much
time. Operations in pySPACE provide the possibility to create
independent processes, which can be launched in a so-called
“embarrassingly parallel” mode. This can be used for investiga-
tions where various different algorithms and parameters are com-
pared (e.g., spatial filters, filter frequencies, feature generators).
As another application example, data from different experimental
sessions or different subjects might be processed in parallel. The
degree of process distribution is determined in pySPACE by usage
of the appropriate back-end for multicore and cluster systems.
Figure 3 schematically shows how a data summary of two datasets
is processed automatically with different node chains in parallel.

Additionally, some nodes of the meta package can distribute
their internal evaluations by requesting own subprocesses from
the back-end. This results in a two-level parallelization.

3. USER AND DEVELOPER INTERFACES
pySPACE was designed as a complete software environment
without requiring individual hand-written scripts for interac-
tion. Users and developers have clearly defined access points to
pySPACE that are briefly described in this section. Most of these
are files in the YAML format (Ben-Kiki et al., 2008). Still, major
parts of pySPACE can also be used as a library3, e.g., the included
signal processing algorithms.

3.1. SYSTEM AND STORAGE INTERFACE
The main configuration of pySPACE on the system is done
with a small setup script that creates a folder, by default called
pySPACEcenter, containing everything in one place the user needs
to get started. This includes the global configuration file, links
to main scripts to start pySPACE (see sections 3.3 and 3.4), a
sub-folder for files containing the mission specification files (see
section 3.2), and the data storage (input and output). Examples
can be found in the respective folders. The global configuration
file is also written in YAML and has default settings that can be
changed or extended by the user.

3.2. PROCESSING INTERFACE
No matter if node chains, operations, or operation chains are
defined (Figure 1), the specifications for processing in pySPACE

3This requires adding the pySPACE folder to the PYTHONPATH variable.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 40 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Krell et al. pySPACE

FIGURE 3 | Processing scheme of a node chain operation in pySPACE.

A and B are two different datasets (section 2.1), which shall be processed
as specified in a simple spec file (section 3.2). The processing is then
performed automatically. As a result, it can produce new data but also
visualizations and performance charts. To speed up processing the different

processing tasks can be distributed over several CPUs (section 2.3.3). The
puzzle symbols illustrate different modular nodes (section 2.2.1), e.g., a
cross-validation splitter (1), a feature generator (2), a visualization node (3),
and two different classifiers (4a, 4b). They are concatenated to a node
chain (section 2.3.1).

are written in YAML. Examples are the node chain illustrated in
Figure 4 or the operation illustrated in Figure 5. In addition to
this file, the user has to make sure that the data are described
with a short metadata file where information like data type and
storage format are specified. If the data have been processed with
pySPACE before, this metadata file is already present.

The types of (most) parameters in the YAML files are detected
automatically and do not require specific syntax rules as can be
inferred from the illustrated node chain (Figure 4), i.e., entries do
not have to be tagged as being of type integer, floating point, or
string. On the highest level, parameters can consist of lists (intro-
duced with minus on separate lines like the node list) and dictio-
naries (denoted by “key: value” pairs on separate lines, or in the
Python syntax, like {key1: value1, key2: value2}).
During processing, these values are directly passed to the initial-
ization of the respective object.

Figure 4 shows an example of a node chain specification
that can be used to process EEG data. It illustrates the con-
catenation of different node categories (introduced in section
2.2.1) 4. Data samples for this node chain could, e.g., consist of
multiple EEG channels and multiple time points, so that after
loading one would obtain windowed time series. Each data sam-
ple is then processed as specified: each channel is standardized,
reduced in sampling rate and lowpass filtered. Then, the data are
equally split into training and testing data to train the supervised
learning algorithms, which are, in this example, the spatial filter
xDAWN (Rivet et al., 2009), the feature normalization and the
classifier later on [here, the LibSVM Support Vector Machine as
implemented by Chang and Lin (2011)]. Included in this node
chain is a hyper-parameter optimization (grid search) of the

4For simplicity, most default parameters were not displayed.

complexity parameter of the classifier. This is done with five-fold
cross-validation on the training data. Finally, performance met-
rics are calculated respectively for training and testing data. In a
real application, the example in Figure 4 can be used to classify
a P300 component in EEG data (Courchesne et al., 1977). More
information on the paradigm and signal type is given elsewhere
(Metzen et al., 2011b; Kirchner et al., 2013).

3.3. OFFLINE ANALYSIS
Stored data can be analysed in pySPACE using the launch.py
script. This script is used for operations and operation chains. The
user only needs the respective specification file in YAML. The file
name is a mandatory parameter of launch.py. For having non-
serial execution but a distribution of processing, the paralleliza-
tion mode parameter (e.g., “mcore” for multicore) is required.
The operation specified in a file called my_operation.yaml
can be executed from the command line, e.g., as

./launch.py -o my_operation.yaml --mcore.

Graphical user interfaces exist for construction of node chains
and for exploration of the results. With the latter (exam-
ple in Figure 6), different metrics can be displayed, param-
eters compared and the observation can be reduced to sub-
parts of the complete results output, e.g., explore only results
of one classifier type, though several different were processed.
In section 5.1 an example of an offline analysis is given and
explained.

3.4. ONLINE ANALYSIS
For processing data from a recording device in an applica-
tion, it is required to define a specific node chain, train it (if

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 40 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Krell et al. pySPACE

supp l y node cha in w i t h da ta
− node : T i m e S e r i e s S o u r c e
t h r e e p r e p r o c e s s i n g a l g o r i t h m s
− # s t a n d a r d i z e each s e n s o r : mean 0 , v a r i a n c e 1

node : S t a n d a r d i z a t i o n
− # reduce samp l ing f r e q u en c y t o 25 Hz

node : Dec ima t ion
p a r a m e t e r s :

t a r g e t f r e q u e n c y : 25
− # f i l t e r i n g w i t h f a s t F ou r r i e r t r a n s f o rm

node : F F T B a n d P a s s F i l t e r
p a r a m e t e r s :

p a s s b a n d : [0 . 0 , 4 . 0]
s p l i t da ta t o have 50% t r a i n i n g da ta
− node : T r a i n T e s t S p l i t t e r

p a r a m e t e r s :
t r a i n r a t i o : 0 . 5
random : True

l i n e a r c omb ina t i on o f s e n s o r s t o g e t
reduced number o f (pseudo) c hanne l s (he r e 8)
− node : xDAWN

p a r a m e t e r s :
r e t a i n e d c h a n n e l s : 8

t ak e a l l s i n g l e amp l i t u d e s as f e a t u r e s
− node : TimeDomainFeatures
mean 0 and va r i a n c e 1 f o r each f e a t u r e
(d e t e rm in ed on t r a i n i n g da ta)
− node : G a u s s i a n F e a t u r e N o r m a l i z a t i o n
meta node , c a l l i n g c l a s s i f i e r f o r
o p t i m i z i n g one parame te r (c o m p l e x i t y ˜ ˜C˜ ˜
− node : G r i d S e a r c h

p a r a m e t e r s :
o p t i m i z a t i o n : # d e f i n e t h e g r i d

r a n g e s : : [0 . 1 , 0 . 0 1 , 0 . 0 0 1 , 0 . 0 0 0 1] }
e v a l u a t i o n : # which me t r i c t o o p t i m i z e

m e t r i c : B a l a n c e d a c c u r a c y
v a l i d a t i o n s e t : # how t o s p l i t t r a i n i n g da ta

s p l i t s : 5 # 5− f o l d c r o s s v a l i d a t i o n
nodes :

c l a s s i f i e r wrapper around e x t e r n a l SVM
− node : L i b S V M C l a s s i f i e r

p a r a m e t e r s :
c o m p l e x i t y :
k e r n e l : LINEAR

c a l c u l a t e v a r i o u s pe r fo rmance m e t r i c s
− node : P e r f o r m a n c e S i n k

)

˜ ˜C˜ ˜

{ C˜ ˜˜ ˜

FIGURE 4 | Node chain example file. Comments are denoted by a “#”. For
further explanation see section 3.2.

necessary) and then use it directly on incoming data. This is
possible using the pySPACE live mode. It allows to define a
certain application setup (such as involved components, com-
munication parameters, acquisition hardware, number and type
of node chains) by using additional parameter files that ref-
erence other pySPACE specification files (like in the offline
analysis).

Several node chains can be used concurrently to enable simul-
taneous and parallel processing of different chains. For this, data
are distributed to all node chains and the results are collected
and stored or sent to the configured recipient (e.g., a remote
computer). The data can be acquired from a custom IP-based net-
work protocol or directly from a local file for testing purposes

and simulation. Data from supported acquisition-hardware5 can
be converted to the custom network protocol using a dedicated
software tool, that comes bundled with pySPACE.

3.5. DEVELOPER INTERFACE
The documentation of pySPACE is designed for both, users and
developers. It is automatically created with the documentation
generator Sphinx6 combined with a customized generator of the
documentation structure creating overviews of existing packages,
modules and classes. For developers the source code of each
described element is linked in the documentation.

Integration of new nodes, operations and dataset definitions
is straightforward due to the modular nature of pySPACE. Once
written and included in the software structure, they automat-
ically appear in the documentation and can be used with the
general YAML specification described above. If necessary, single
nodes can be defined externally of pySPACE and they will still be
included likewise, if they are specified via the global configuration
file (section 3.1).

All operations and nodes come with a parameter description
and a usage example. Additionally, test scripts and unit tests are
available in the test component of pySPACE. The documen-
tation is generated and unit tests are automatically executed on
an everyday basis. For bug fixing, bug reports are possible via
email to the pySPACE developer list or via issue reports on https://
github.com/pyspace/pyspace.

4. AVAILABILITY AND REQUIREMENTS
pySPACE can be downloaded from https://github.com/pyspace
and is distributed under GNU General Public License. The
documentation can be found there, too. Currently supported
operating systems are Linux and MacOSX. For parallelization,
off-the-shelf multi-core PCs as well as cluster architectures using
MPI or the IBM LoadLeveler system can be interfaced. The soft-
ware requires Python2.6 or 2.7, NumPy, SciPy and YAML. Further
optional dependencies exist, e.g., Matplotlib (Hunter, 2007) is
required for plotting. Computational efficiency is achieved by
using C/C++-Code libraries where necessary, e.g., SVM classi-
fication can be performed using the LIBSVM package.

5. APPLICATIONS
pySPACE is applicable in various situations, from simple data
processing over comprehensive algorithm comparisons to online
execution. In this section an example for an offline analysis
is given that comprises most of the key features of pySPACE.
Thereby it is shown how the intended analysis can be easily
realized without the need for programming skills. Furthermore,
published work is named where pySPACE has been used, most
often with such an offline analysis.

5.1. EXAMPLE: ALGORITHM COMPARISON
In the following, an exemplary and yet realistic research question
for processing neurophysiological data serves to explain how a

5e.g., the BrainAmp USB Adapter by Brain Products GmbH (Gilching,
Germany).
6http://sphinx-doc.org/

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 40 | 7

https://github.com/pyspace/pyspace
https://github.com/pyspace/pyspace
https://github.com/pyspace
http://sphinx-doc.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Krell et al. pySPACE

type : n o d e c h a i n # o p e r a t i o n t y p e
i n p u t p a t h : ” P 3 0 0 d a t a ” # l o c a t i o n o f da ta i n s t o r a g e f o l d e r
t e m p l a t e s : [” P300 . yaml ”] # s p e c i f i c a t i o n o f node cha in (s)
p a r a m e t e r r a n g e s : # Ca r t e s i a n p r odu c t o f pa rame t e r s t o be t e s t e d

a l g : [’CSP ’ , ’xDAWN’ , ’ ICA ’ , ’PCA ’ , ’Noop ’] # nodes t e s t e d
c h a n n e l s : [2 , 4 , 6 , 8 , 10 , 20 , 30 , 40 , 50 , 62] # number o f pseudo − c hanne l s

r u n s : 10 # number o f r e p e t i t i o n s

FIGURE 5 | Operation specification example file for spatial filter comparison. For more details see discussion in section 5.1.

node chain can be parameterized and thus different algorithms
and parameters can be tested. To show that for such a compari-
son of algorithms and/or algorithm parameters pySPACE can be
a perfect choice, the whole procedure from data preparation to
final evaluation of the results is described.

5.1.1. Data and research question
Let us suppose the following scenario: EEG data of 62 elec-
trodes in an oddball paradigm were recorded [e.g., as described
in Metzen et al. (2011b)] containing epochs of brain activ-
ity elicited by rare important stimuli (targets) and epochs of
brain activity elicited by more frequent unimportant stim-
uli (standards). Our aim, besides the distinction of the two
classes Standard and Target, is to investigate the effect of differ-
ent spatial filters, i.e., ICA (Hyvärinen, 1999), PCA (Abdi and
Williams, 2010), xDAWN (Rivet et al., 2009), and CSP (Blankertz
et al., 2008), on the classification performance, or whether
one should not use any spatial filter at all. Spatial filters aim
to increase the signal-to-noise ratio by combining the data
of the original electrodes to pseudo-channels. Thereby, not
only performance can be increased, but also information is
condensed into few channels, enabling reduction of dimen-
sionality and thereby reducing the processing effort. Thus,
a second research question here is to evaluate the influ-
ence of the number of pseudo-channels on the classification
performance.

5.1.2. Data preparation
In our example, each recording consists of five datasets. Since we
want to randomly use half of the data for training and the remain-
der for estimating performance, the datasets of one recording
have to be concatenated. This is an available operation in pySPACE
after the data were transferred from stream (raw EEG format) to
the pySPACE time series format. Therefore, after data prepara-
tion, all merged recordings that should be processed are present
in the input path (see below), each in a separate sub-directory
with its own meta file.

5.1.3. Processing configuration
The algorithm comparison has to be specified in a file as depicted
in Figure 5. The type keyword declares the intended operation, i.e.,
node chains will be executed. The data, which can be found in the
directory P300_data (input_path) will be processed according
to the specifications in the file P300.yaml. This file is identical
to the one presented in Figure 4, except that it is parameterized
to serve as a template for all node chains that should be executed.

The parameterization is done by inserting unique words for all
variables that need to be analyzed. This means, in the example
that the specification of the xDAWN node is replaced by

- node : __alg__
parameters :
retained_channels : __channels__

introducing __alg__ and __channels__ as parameters. All
values that should be tested for these two parameters are spec-
ified in the operation file (Figure 5) below the keyword param-
eter_ranges. pySPACE will create all possible node chains of this
operation using the Cartesian product of the value sets (grid).
The value of the parameter __alg__ is the corresponding node
name, with Noop (meaning No Operation) telling pySPACE that
in this condition nothing should be done with the data. So Noop
could serve as a baseline showing what happens when no spatial
filter is used.

In the example, varying the number of retained channels will,
in the case ofNoop, lead to equal results for each value. Therefore,
an additional constraint could ensure that Noop is only com-
bined with one value of __channels__ and so reduce com-
putational effort. Furthermore, instead of a grid of parameters, a
list of parameter settings could be specified or Python commands
could simplify the writing of spec files for users with basic Python
knowledge. For example, the command range(2, 63, 2)
could be used to define a list of even numbers from 2 to 62 instead
of defining the number of retained pseudo-channels individually.

Finally, the runs keyword declares the number of repeated
executions of each node chain. Repetitions can be used to com-
pensate for random effects in the results due to components in
the node chain that use randomness, like the TrainTestSplitter. To
ensure reproducibility of the results, randomness in pySPACE is
realized by using the random package of Python with a fixed seed
that is set to the index of the repeated execution. In other words,
the same value of runs returns the same results for a given data and
operation. If one wants to obtain different results, this number
has to be changed.

5.1.4. Execution and evaluation
The execution works as described in section 3.3. The result is
stored in a folder in the data storage, named by the time-stamp
of execution. For replicability, it contains a zipped version of the
software stack and the processing specification files. For each sin-
gle processing result there is a subfolder named after the processed
data, the specified parameters and their corresponding values.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 40 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Krell et al. pySPACE

FIGURE 6 | Visualization from the evaluation GUI for the result of the spatial filter comparison, explained in section 5.1.

For evaluation, performance results are not stored separately in
these single folders, but the respective metrics are summarized
in a csv tabular. Furthermore, by default the result folders are
also compressed and only one is kept as an example. The result
visualization with the evaluation GUI of pySPACE can be seen
in Figure 6. Here, the varied parameters (compare test parame-
ters in Figure 5 with selection in upper left of Figure 6) as well as
the data can be selected and individually compared with respect
to the desired metric.

5.2. PUBLISHED WORK
Since pySPACE became open source software in August 2013,
there is not yet a public user community. Nevertheless, pySPACE
has been developed and tested since 2008. The resulting publi-
cations show a small subset of possible applications of the soft-
ware, documenting its applicability on EEG and EMG data (e.g.,
Kirchner and Tabie, 2013). In Kirchner et al. (2010), Wöhrle et al.
(2013), Seeland et al. (2013), and Kirchner et al. (2013) pySPACE
was used for evaluations on EEG data in the context of real appli-
cations. Some machine learning evaluations on EEG data were
performed (Metzen and Kirchner, 2011; Metzen et al., 2011b;
Kassahun et al., 2012). In Metzen et al. (2011a) and Ghaderi and
Kirchner (2013) the framework is used for evaluation of spatial
filters as also done in section 5.1. An example for a large-scale

comparison of sensor selection algorithms can be found in Feess
et al. (2013). Here, the parallelization in pySPACE for a high per-
formance cluster was required, due to high computational load
coming from the compared algorithms and the amount of data
used for this evaluation. Recently, pySPACE was used for an evalu-
ation of a new classifier on synthetic and benchmarking data Krell
et al. (2013).

6. RELATED WORK
The Python machine learning stack is organized roughly start-
ing from core libraries for numerical and scientific computation
such as NumPy (Dubois, 1999) and SciPy (Jones et al., 2001),
over libraries containing implementations of core machine learn-
ing algorithms such as Scikit-learn (Pedregosa et al., 2011) to
higher level frameworks such as MDP (Zito et al., 2008), which
allow to combine several methods and evaluate their perfor-
mance empirically. Besides that, there are non-standardized ways
of interfacing with machine learning tools that are not imple-
mented in Python such as LibSVM (Chang and Lin, 2011) and
WEKA (Hall et al., 2009). The distinction between libraries and
frameworks is typically not strict; frameworks often contain some
implementations of basic processing algorithms as libraries do
and libraries typically include some basic framework-like tools
for configuration and evaluation. pySPACE can be considered

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 40 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Krell et al. pySPACE

as a high-level framework which contains a large set of built-
in machine learning algorithms as well as wrappers for external
software such as Scikit-learn, MDP, WEKA, and LibSVM.

In contrast to libraries like Scikit-learn, the focus of pySPACE
is much more on configuration, automation, and evaluation
of large-scale empirical evaluations of signal processing and
machine learning algorithms. Thus, we do not see pySPACE as
an alternative to libraries but rather as a high-level framework
which can easily wrap libraries (and does so already for several
ones) and makes using and comparing the algorithms contained
in these libraries easier.

In contrast to frameworks like MDP, pySPACE requires less
programming skills since a multitude of different data pro-
cessing and evaluation procedures can be completely speci-
fied using configuration files in YAML-syntax without requiring
the user to write scripts, which would be a “show-stopper”
for users without programming experience. Similarly, frame-
works based on graphical user interfaces are not easily used
in distributed computing contexts on remote machines without
graphical interface. Thus, we consider pySPACE’s YAML-based
configuration files a good compromise between simplicity and
flexibility.

Additionally, pySPACE allows to execute the specified experi-
ments on different computational modalities in a fully automated
manner using different back-ends: starting from a serial compu-
tation on a single machine, over symmetric multiprocessing on
shared-memory multi-core machines, to distributed execution on
high-performance clusters based on MPI or IBM’s job scheduler
LoadLeveler. Further back-ends like one integrating IPython par-
allel (Pérez and Granger, 2007) could easily be integrated in the
future. Other tools for parallel execution are either restricted to
the symmetric multiprocessing scenario like joblib (Varoquaux,
2013) or by themselves not directly usable in machine learning
without some “glue” scripts such as IPython parallel.

A further advantage of pySPACE is that it easily allows trans-
ferring methods from the offline benchmarking mode to the
processing in real application scenarios. The user can use the
YAML-based data processing specifications in both modes.

There are several further open source signal processing tool-
boxes which could be interesting to be interfaced with pySPACE
like OpenVibe (Renard et al., 2010), BCI2000 (Schalk et al.,
2004), EEGLAB (Delorme and Makeig, 2004), Oger (Verstraeten
et al., 2012), pyMVPA (Hanke et al., 2009), Shogun (Sonnenburg
et al., 2010), and many more, including frameworks which
would only use the automatic processing and parallelization
capabilities of pySPACE. These interfaces might help to over-
come some limitations of the software like the focus on feature
vector and segmented time series data or the missing interac-
tive data visualization. In the future, pySPACE would benefit
from additional algorithms, input/storage formats, job distri-
bution back-ends, and use cases. For example, the integration
of video and picture processing could be a promising new use
case. A broad scientific user community of pySPACE would
provide a basis for easy exchange and discussion of signal pro-
cessing and classification approaches, as well as an increased
availability of new signal processing algorithms from various
disciplines.

ACKNOWLEDGMENTS
We would like to thank David Feess, Elmar Berghöfer, Constantin
Bergatt, Marc Tabie, Yohannes Kassahun for contributing to
pySPACE. In particular, we would like to thank Timo Duchrow
for the development and implementation of a predecessor of
pySPACE.

FUNDING
This work was funded by the Federal Ministry for Education and
Science (BMBF, grant no. 01IW07003) in the project VI-Bot and
the Federal Ministry of Economics and Technology (BMWi, grant
no. 50 RA 1012 and 50 RA 1011) in the project IMMI.

REFERENCES
Abdi, H., and Williams, L. J. (2010). Principal component analysis. Wiley

Interdiscip. Rev. Comput. Stat. 2, 433–459. doi: 10.1002/wics.101
Bashashati, A., Fatourechi, M., Ward, R. K., and Birch, G. E. (2007). A survey of

signal processing algorithms in brain-computer interfaces based on electrical
brain signals. J. Neural Eng. 4, R32–R57. doi: 10.1088/1741-2560/4/2/R03

Ben-Kiki, O., Evans, C., and döt Net, I. (2008). YAML1.1. Available online at:
http://yaml.org/spec/1.1/.

Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.-R. (2008).
Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal
Process. Mag. 25, 41–56. doi: 10.1109/MSP.2008.4408441

Chang, C.-C., and Lin, C.-J. (2011). LIBSVM. ACM Trans. Intell. Syst. Technol. 2,
1–27. doi: 10.1145/1961189.1961199

Courchesne, E., Hillyard, S. A., and Courchesne, R. Y. (1977). P3 waves to the dis-
crimination of targets in homogeneous and heterogeneous stimulus sequences.
Psychophysiology 14, 590–597. doi: 10.1111/j.1469-8986.1977.tb01206.x

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analy-
sis of single-trial EEG dynamics including independent component analysis. J.
Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Domingos, P. (2012). A few useful things to know about machine learning.
Commun. ACM 55, 78–87. doi: 10.1145/2347736.2347755

Dubois, P. F. (1999). Extending python with fortran. Comput. Sci. Eng. 1, 66–73.
doi: 10.1109/5992.790589

Feess, D., Krell, M. M., and Metzen, J. H. (2013). Comparison of sensor selection
mechanisms for an ERP-based brain-computer interface. PLoS ONE 8:e67543.
doi: 10.1371/journal.pone.0067543

Garcia, S., and Fourcaud-Trocmé, N. (2009). OpenElectrophy: an electrophysio-
logical data- and analysis-sharing framework. Front. Neuroinform. 3:14. doi:
10.3389/neuro.11.014.2009

Ghaderi, F., and Kirchner, E. A. (2013). “Periodic spatial filter for single trial clas-
sification of event related brain activity,” in Proceedings of the 10th IASTED
International Conference on Biomedical Engineering (BioMed-2013) (Innsbruck:
ACTA Press).

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.
(2009). The WEKA data mining software: an update. ACM SIGKDD Explor.
Newsl. 11, 10–18. doi: 10.1145/1656274.1656278

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W., et
al. (2009). PyMVPA: a unifying approach to the analysis of neuroscientific data.
Front. Neuroinform. 3:3. doi: 10.3389/neuro.11.003.2009

Hoffmann, U., Vesin, J.-M., Ebrahimi, T., and Diserens, K. (2008). An efficient
P300-based brain-computer interface for disabled subjects. J. Neurosci. Methods
167, 115–125. doi: 10.1016/j.jneumeth.2007.03.005

Hunter, J. D. (2007). Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9,
90–95. doi: 10.1109/MCSE.2007.55

Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent com-
ponent analysis. IEEE Trans. Neural Netw. 10, 626–634. doi: 10.1109/72.761722

Jones, E., Oliphant, T., Peterson, P., and Others. (2001). SciPy: Open Source Scientific
Tools for Python. Available online at: http://www.scipy.org/scipylib/citing.html

Kassahun, Y., Wöhrle, H., Fabisch, A., and Tabie, M. (2012). “Learning parameters
of linear models in compressed parameter space,” in Artificial Neural Networks
and Machine Learning ICANN 2012, vol. 7553 of Lecture Notes in Computer
Science, eds A. E. Villa, W. Duch, P. Érdi, F. Masulli, and G. Palm (Lausanne:
Springer), 108–115.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 40 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Krell et al. pySPACE

Kirchner, E. A., Kim, S. K., Straube, S., Seeland, A., Wöhrle, H., Krell, M. M., et
al. (2013). On the applicability of brain reading for predictive human-machine
interfaces in robotics. PLoS ONE. 8:e81732. doi: 10.1371/journal.pone.0081732

Kirchner, E. A., and Tabie, M. (2013). “Closing the gap: combined EEG and EMG
analysis for early movement prediction in exoskeleton based rehabilitation,” in
Proceedings of the 4th European Conference on Technically Assisted Rehabilitation-
TAR 2013. (Berlin).

Kirchner, E. A., Wöhrle, H., Bergatt, C., Kim, S. K., Metzen, J. H., Feess,
D., et al. (2010). “Towards operator monitoring via brain reading – an
EEG-based approach for space applications,” in Proceedings of the 10th
International Symposium on Artificial Intelligence, Robotics and Automation in
Space, (Sapporo), 448–455.

Krell, M. M., Feess, D., and Straube, S. (2013). Balanced relative mar-
gin machine–the missing piece between FDA and SVM classification.
Pattern Recognit. Lett. doi: 10.1016/j.patrec.2013.09.018. Available online at:
http://www.sciencedirect.com/science/article/pii/S0167865513003541#

Lemm, S., Schäfer, C., and Curio, G. (2004). BCI Competition 2003–Data set
III: probabilistic modeling of sensorimotor mu rhythms for classification of
imaginary hand movements. IEEE Trans. Biomed. Eng. 51, 1077–1080. doi:
10.1109/TBME.2004.827076

Meier, R., Dittrich, H., Schulze-Bonhage, A., and Aertsen, A. (2008). Detecting
epileptic seizures in long-term human EEG: a new approach to automatic online
and real-time detection and classification of polymorphic seizure patterns. J.
Clin. Neurophysiol. 25, 119–131. doi: 10.1097/WNP.0b013e3181775993

Metzen, J. H., Kim, S. K., Duchrow, T., Kirchner, E. A., and Kirchner, F. (2011a).
“On transferring spatial filters in a brain reading scenario,” in Proceedings of
the 2011 IEEE Workshop on Statistical Signal Processing, (Nice), 797–800. doi:
10.1109/SSP.2011.5967825

Metzen, J. H., Kim, S. K., and Kirchner, E. A. (2011b). “Minimizing calibra-
tion time for brain reading,” in Pattern Recognition, Vol. 6835 of Lecture Notes
in Computer Science, eds R. Mester and M. Felsberg (Frankfurt: Springer),
366–375.

Metzen, J. H., and Kirchner, E. A. (2011). “Rapid adaptation of brain reading inter-
faces based on threshold adjustment,” in Proceedings of the 2011 Conference of
the German Classification Society, (GfKl-2011), (Frankfurt), 138.

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). FieldTrip: open
source software for advanced analysis of MEG, EEG, and invasive electro-
physiological data. Comput. Intell. Neurosci. 2011, 156869. doi: 10.1155/2011/
156869

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et
al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830.

Pérez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific
computing. Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.2007.53

Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., et al. (2010).
OpenViBE: an open-source software platform to design, test, and use brain-
computer interfaces in real and virtual environments. Presence Teleoper. Virtual
Environ. 19, 35–53. doi: 10.1162/pres.19.1.35

Rivet, B., Souloumiac, A., Attina, V., and Gibert, G. (2009). xDAWN algorithm to
enhance evoked potentials: application to brain-computer interface. IEEE Trans.
Biomed. Eng. 56, 2035–2043. doi: 10.1109/TBME.2009.2012869

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., and Wolpaw,
J. R. (2004). BCI2000: a general-purpose brain-computer interface (BCI)
system. IEEE Trans. Biomed. Eng. 51, 1034–1043. doi: 10.1109/TBME.2004.
827072

Seeland, A., Wöhrle, H., Straube, S., and Kirchner, E. A. (2013). “Online movement
prediction in a robotic application scenario,” in 6th International IEEE EMBS
Conference on Neural Engineering (NER) (San Diego, CA), 41–44.

Sonnenburg, S., Braun, M. L., Ong, C. S., Bengio, S., Bottou, L., Holmes, G., et al.
(2007). The need for open source software in machine learning. J. Mach. Learn.
Res. 8, 2443–2466.

Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., et al. (2010).
The SHOGUN machine learning toolbox. J. Mach. Learn. Res. 11, 1799–1802.

Varoquaux, G. (2013). joblib 0.7.0d. Available online at: http://pythonhosted.org/
joblib/.

Verstraeten, D., Schrauwen, B., Dieleman, S., Brakel, P., Buteneers, P., and Pecevski,
D. (2012). Oger: modular learning architectures for large-scale sequential pro-
cessing. J. Mach. Learn. Res. 13, 2995–2998.

Wöhrle, H., Teiwes, J., Kirchner, E. A., and Kirchner, F. (2013). “A framework for
high performance embedded signal processing and classification of psychophys-
iological data,” in APCBEE Procedia. 4th International Conference on Biomedical
Engineering and Technology (ICBET-2013). (Kopenhagen: Elsevier).

Yadav, R., Swamy, M. N. S., and Agarwal, R. (2012). Model-based seizure detection
for intracranial EEG recordings. IEEE Trans. Biomed. Eng. 59, 1419–1428. doi:
10.1109/TBME.2012.2188399

Zito, T., Wilbert, N., Wiskott, L., and Berkes, P. (2008). Modular toolkit
for Data Processing (MDP): a Python data processing framework. Front.
Neuroinform. 2:8. doi: 10.3389/neuro.11.008.2008.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 08 August 2013; accepted: 09 December 2013; published online: 24 December
2013.
Citation: Krell MM, Straube S, Seeland A, Wöhrle H, Teiwes J, Metzen JH, Kirchner EA
and Kirchner F (2013) pySPACE—a signal processing and classification environment
in Python. Front. Neuroinform. 7:40. doi: 10.3389/fninf.2013.00040
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2013 Krell, Straube, Seeland, Wöhrle, Teiwes, Metzen, Kirchner and
Kirchner. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) or licensor are credited and that
the original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 40 | 11

http://pythonhosted.org/joblib/
http://pythonhosted.org/joblib/
http://dx.doi.org/10.3389/fninf.2013.00040
http://dx.doi.org/10.3389/fninf.2013.00040
http://dx.doi.org/10.3389/fninf.2013.00040
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	pySPACE—a signal processing and classification environment in Python
	Introduction
	Structure and Principles
	Data
	Algorithms
	Nodes
	Operations

	Infrastructure
	Node Chains
	Operation Chains
	Parallelization

	User and Developer Interfaces
	System and Storage Interface
	Processing Interface
	Offline Analysis
	Online Analysis
	Developer Interface

	Availability and Requirements
	Applications
	Example: Algorithm Comparison
	Data and research question
	Data preparation
	Processing configuration
	Execution and evaluation

	Published Work

	Related Work
	Acknowledgments
	Funding
	References

