
GEOMETRIC CHARACTERIZATION OF THE WORKSPACE OF

NON-ORTHOGONAL ROTATION AXES

BERTOLD BONGARDT

Abstract. In this article, a novel characterization of the workspace of 3R chains with non-
orthogonal, intersecting axes is derived by describing the set of singular orientations as two
toroids that separate two-solvable from non-solvable orientations within SO(3). Therefore, the
toroids provide the boundary of the workspace of the axes’ constellation. The derived charac-
terization generalizes a recent result obtained by Piovan and Bullo. It is based on a specific,
novel representation of rotations, called unit ball representation, which allows to interpret the
workspace characterization with ease. In an appendix, tools for dealing with angles and rotations
are introduced and the equivalence of unit quaternion representation and unit ball representation
is described.

1. Introduction

A classic problem in mechanics is to decompose an orientation into a sequence of rotations along
three intersecting axes. For example, this decomposition is applied if the representation of a
rotation as a triplet of Euler angles is computed. In this case, the rotation axes are chosen as
sequentially perpendicular coordinate axes [14]. For arbitrary axes, the problem is defined as
follows.

Problem 1 (Rotation Decomposition). Given three rotation axes ω̂1, ω̂2, ω̂3, and an orientation
R ∈ SO(3), compute angles φ1, φ2, and φ3 such that

R = R(φ1; ω̂1) ·R(φ2; ω̂2) ·R(φ3; ω̂3) . (1)

In this general version, the problem appears as the inverse kinematics problem of spherical 3R
chains, for example at special ‘wrists’ [18] of robot arms. A solution of Problem 1 is described,
for example, in [17, Sec. 3.2], where it is introduced as one of recursively defined Paden-Kahan
problems. An alternate way to deal with Problem 1 is to transform the 3R open chain into a
closed four-bar linkage such that the analytic approach by Freudenstein and Yang [7], [25], based
on a loop-closure equation, can be applied, see for example [2].
In [5], Davenport found that all orientations in SO(3) can be realized by the axes’ constellation,
if the three axes are sequentially perpendicular (ω̂1 ⊥ ω̂2 and ω̂2 ⊥ ω̂3). Therefore, angles around
such axes are called Davenport angles [23]. Extending this orthogonality condition, the solution
space of Problem 1 was recently characterized in [20] by an inequality (see Theorem 1, here). In
[16], a similar analysis was conducted using the Cayley map. In this paper, the inequality condition
of [20] is extended for the following, set-generalized variant of Problem 1.

Problem 2 (Rotation Workspace). Given three rotation axes ω̂1, ω̂2, ω̂3, determine for all ori-
entations R ∈ SO(3) if Equation 1 admits no, one, two, or an infinite number of solutions for the
rotation angles φ1, φ2, and φ3.

The solution space of Problem 2 is characterized in the Theorems 2, 3, and 4 via two orthogonally
interlaced toroids within a unit ball that corresponds to a double cover of SO(3). The toroids
represent the set of singular orientations and the workspace boundaries of the constellation of
rotation axes.
The structure of this paper is as follows: in Section 2 required concepts, i.a., the unit ball repre-
sentation of rotations, are introduced. In addition to Section 2, convenient definitions for handling
angles and rotations in three dimensions are collected in an appendix at the end of the docu-
ment. In Section 3, essential facts for Problem 1 are compiled first in Section 3.1. Subsequently in
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Figure 1. Minimal and maximal angles be-
tween axes [a ] and [b ]; directed angles be-
tween vectors a and b, and between vectors a

and −b.

Figure 2. Visualizations of the matrices
−(ω̂⊗)2 (solid) and ω̂⊗ (dashed) for axis
ω̂ = (1,2,3) T .

Section 3.2, the central theorems are presented as a solution for Problem 2 together with proofs.
In Section 3.3 and Section 3.4, the presented approach is supported by a set of examples and a
discussion about several applications is provided. Finally, a summary is provided in Section 4.

2. Prerequisites

2.1. Notation. In this document, all vectors are of R3 and denoted by a bold letter, as v. Lines
passing through the origin are denoted by [v1 : v2 : v3 ] = [v ] =

{

κ · v | κ ∈ R
}

. Unit vectors are
indicated by a hat, as v̂ = v

‖v‖ .

Vector Operations. The operator scales a vector to norm one, as v = v̂. For the concatenation
of transposition and multiplication, the symbol ∗ is used, for example as a∗b = aT ·b (according to

[6]).1 For the outer product of two identical vectors, the abbreviation al = a · aT is introduced.2

The cross operator × is generalized by the function χ in prefix notation: for two arguments, define
χ(a,b) := a×b. Additionally, for three arguments with repetitions, the abbreviations χ(a,a,b) :=
a × (a × b) and χ(a,b,b) := (a × b) × b are defined. The projection of b onto a is denoted as

πa(b) = b∗a

a∗a
·a, the projection of b onto a⊥ is denoted as τa(b) = b− b∗a

a∗a
·a. The concatenations

of the former expressions are written as χ̂(a,b) := (χ(a,b)) = 1
‖a×b‖

·(a×b), as π̂(a,b) := (πa(b)) ,

and as τ̂(a,b) := (τa(b)) . The operator a⊗ assigns the associated skew-symmetric matrix to a
vector a (see also Definition 1). The operator S⊕ with S = a⊗ extracts the axis vector a.

Angles. In this text, angles appear in different contexts. An angle is generally denoted with ϕ

and – if not indicated otherwise – drawn from the ‘principal’ interval (−π,π]. An angle which
is an argument of a rotation is denoted with φ. An angle between vectors or lines is denoted
by the symbol ϑ together with a superindex reflecting the normal axis of the plane containing
the angle measurement and a subindex reflecting the passive interpretation. The notation for
an undirected angle ϑ

[ω̂]

|a,b| = ϑ
[ω̂]

|b,a| ∈ [0,π], a minimal angle ϑ
[ω̂]

[a|b] = ϑ
[ω̂]

[b|a] ∈ [0, π
2 ), a maximal angle

ϑ
[ω̂]

]a|b[ = ϑ
[ω̂]

]b|a[ ∈ [ π
2 ,π),and a directed angle ϑ

〈ω̂〉

(b,a) = ϑ
〈ω̂〉
(a,b) ∈ (−π,π], is introduced in Definitions 6,

7, and 10 in Appendix A. In Figure 1, examples are provided.

An overview about the used notation conventions is given in Appendix D.

2.2. Orthogonal Decomposition of Rotation Matrices. By means of the two following def-
initions, product terms of the form a ∗ X · b, with X as placeholder for one of the matrices ω̂⊗,

−(ω̂⊗)2, ω̂l, R − ω̂l, R, are simplified below. The derived simplifications will be used in the
remainder of the document.

1Gibbs’ notation a ·b :=
∑

k
ak ·bk does not comply with matrix multiplication. The short notation aT b := aT ·b

(juxtaposition) might imply the impression of an unary instead of a binary operation and tends to introduce
redundant parentheses. See [13] about the history of denoting vector arithmetics.

2The symbol l reflects the quadratic shape of a matrix combined with a stylized version of the symbol ‘2’
(‘squared’).
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Definition 1 (Generators of ‘ω̂⊥’). For a unit vector ω̂, (i) the skew-symmetric matrix ω̂⊗ is
defined as

ω̂⊗ =

( 0 −ω̂3 ω̂2

ω̂3 0 −ω̂1

−ω̂2 ω̂1 0

)

,

and, (ii) the symmetric matrix −(ω̂⊗)2 is defined as

−(ω̂⊗)2 =

( ω̂2
2 + ω̂2

3 −ω̂1 ∗ ω̂2 −ω̂1 ∗ ω̂3

−ω̂1 ∗ ω̂2 ω̂2
1 + ω̂2

3 −ω̂2 ∗ ω̂3

−ω̂1 ∗ ω̂3 −ω̂2 ∗ ω̂3 ω̂2
1 + ω̂2

2

)

.

By definition, the column vectors of ω̂⊗ and the column vectors of −(ω̂⊗)2 lie in the plane ω̂⊥ or-

thogonal to ω̂. For an illustration, see the vectors
(

x(1) x(2) x(3)
)

:= −(ω̂⊗)2, and
(

y(1) y(2) y(3)
)

:=

ω̂⊗ in Figure 2. Using the three identities ω2
j + ω2

k = 1 − ω2
l , where

{

j,k, l
}

are the cyclic permu-

tations of
{

1,2,3
}

, one can show that ‖y(i)‖ = ‖x(i)‖ for 1 ≤ i ≤ 3. By definition, it holds that

y(i) ⊥ x(i) for 1 ≤ i ≤ 3, and, in particular, it holds that ω̂⊗ is a ‘front-rotated’ version of −(ω̂⊗)2

with respect to ω̂, in the sense of ω̂⊗ = R(π
2 ; ω̂) · (−(ω̂⊗)2) = (−(ω̂⊗)2) ·R(π

2 ; ω̂).

Definition 2 (Projections of ‘exp’). For a given tangential vector φ · ω̂⊗ ∈ so(3) (see Appendix B),
define (i) the normal exponential map ‘nexp’ as the map

nexp(φ · ω̂⊗) :=
(

(

(φ · ω̂⊗)⊕
)

)l

= ω̂l ,

and, (ii) the planar exponential map ‘pexp’ as

pexp(φ · ω̂⊗) := exp(φ · ω̂⊗)−nexp(φ · ω̂⊗) .

These definitions have alternate formulations reusing the projection operators π and τ (see Sec-

tion 2.1, above) and the argument R instead of φ · ω̂⊗: the normal projection of a rotation ma-

trix R reads as πω̂(R) ≡ nexp(φ · ω̂⊗) and the planar projection of a rotation reads as τω̂(R) =

R−πω̂(R) ≡ exp(φ ·ω̂⊗)−nexp(φ ·ω̂⊗). In the remainder of the document, also, the brief notation

RΩ(φ; ω̂) := τω̂(R) = pexp(φ · ω̂⊗), with Ω := ω̂⊥, will be used.

Since the value of the map ‘nexp’ to ω̂l is independent of φ, the normal part of a rotation is
invariant with respect to all rotations along that axis. The planar projection rotation RΩ = pexp(φ ·
ω̂⊗) = exp(φ · ω̂⊗) − ω̂l can be reformulated by applying the Rodrigues’ formula (Equation B.2)

for exp(φ · ω̂⊗) and the identity3 ω̂l = I +(ω̂⊗)2 for ω̂l to reach a ‘planar’ variant of Rodrigues
formula as

RΩ(φ) = cosφ · (−(ω̂⊗)2)+sinφ · ω̂⊗ . (2)

In other words, the planar exponential function pexp(φ ·ω̂⊗) is the exponential function substracted

by the ‘aligned one’ ω̂l, passing zero.4 A rotation matrix R = exp(φ · ω̂⊗) can be transformed
by means of the two precedent definitions of its axial and its planar component to5

exp(φ · ω̂⊗) = pexp(φ · ω̂⊗)+nexp(φ · ω̂⊗)

= R(φ, ω̂) = RΩ(φ, ω̂)+ ω̂l .
(3)

3The equality ω̂l = I + (ω̂⊗)2 holds for unit vectors as a special case of the general al = ‖a‖2 · (I + (â⊗)2).
4The ‘planar’ exponential function ‘pexp’ is the proper generalization of the ‘planar’ exponential formula for

(pure) complex numbers, exp(i · ϕ) = cos(ϕ) + i · sin(ϕ), for arbitrary planes in three dimensions. This becomes

obvious, when the latter is given in matrix form as exp(i · ϕ) = cosϕ ·

( 1 0 0
0 1 0
0 0 0

)

+ sinϕ ·

( 0 −1 0
1 0 0
0 0 0

)

with

ω̂ = (0,0,1)T (see, for example [24]).
5Expanding Equation 3 by Equation 2, a variant of the exponential formula for R is derived with

R(φ, ω̂) = cosφ · (−(ω̂⊗)2) + sinφ · ω̂⊗ + ω̂l. In this formulation, a rotation matrix R is expressed as a ‘spherical-

affine combination’ of the three ‘basis matrices’ (−(ω̂⊗)2), ω̂⊗ and ω̂l.
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Figure 3. Cor-
responding areas
of principal and
secondary rotation
vectors in a planar
slice of the unit ball
representation.

(a) Chain of orientations R in unit ball representation;
views from (i) left, (1,0,0)T , (ii) slanted above, (1,1,1)T , (iii)

right, (0,1,0)T , and (iv) top, (0,0,1)T , counterclockwise.

(b) Chain of orienta-
tions R in Euler angle

representation.

Figure 4. Example of a closed sequence of orientations R in unit ball
and Euler angle representation.

Applications. Using the abbrevation vΩ := τω̂(v), the bilinear product of a symmetric matrix

−(ω̂⊗)2 (Definition 1) with two vectors a and b reads as

a∗ (−(ω̂⊗)2) ·b = aΩ ∗bΩ = cosϑ
〈ω̂〉

(a,b) · ‖aΩ‖ · ‖bΩ‖ . (4)

Similarly, the product of a skew-symmetric matrix ω̂⊗ (Definition 1) with two vectors a and b

reads as
a∗ ω̂⊗ ·b = a∗ (ω̂ ×b) = cosϑ

〈ω̂〉

(a,ω̂×b) · ‖aΩ‖ · ‖ω̂ ×b‖
= −sinϑ

〈ω̂〉

(a,b) · ‖aΩ‖ · ‖bΩ‖ .
(5)

The last equation follows using the ‘front-rotated’ argument above. Using the abbreviation vω̂ :=

πω̂(v), the bilinear product of the axial component of a rotation ω̂l (Definition 2) with two vectors
a and b reads as

a∗ ω̂l ·b = aω̂ ∗bω̂ . (6)

Similarly, the product of the planar component of a rotation RΩ with two vectors a and b reads
as

a∗ (R(φ; ω̂)− ω̂l) ·b = a∗RΩ(φ) ·b = aΩ ∗RΩ(φ) ·bΩ . (7)

Finally, the bilinear product of a rotation matrix R with two vectors a and b can be transformed,
using Equation 3, Equation 6, and Equation 7, to

a∗R(φ, ω̂) ·b = a∗RΩ(φ, ω̂) ·b+a∗ (ω̂l) ·b
= aΩ ∗RΩ(φ, ω̂) ·bΩ +aω̂ ∗bω̂ .

(8)

In Appendices A and B, further aspects of angles and rotations, i.a., their passive and their active
interpretation, are compiled.

2.3. Unit Ball Representation. The remainder of this document is based on the following
representation of rotations, where two vectors v′ and v′′ inside the unit ball B3(1) are assigned to
one rotation R ∈ SO(3) by the mapping v⋆.

Definition 3 (Dualization). Given a (primal) angle ϕ ∈ (−π,π], the dual angle ϕ′′ ∈ (−2π,2π] \
(−π,π] is defined, with sign⋆ according to Definition 9, as

ϕ′′ := ϕ+sign⋆(−ϕ) ·2π .

The dualization corresponds to a ‘shift into the outer shell’, see Figure 3 for a planar illustration.

Definition 4 (Unit Ball Representation). Given a rotation as R = R(φ; ω̂) = R(φ′′; ω̂) (with
φ ∈ (−π,π] and φ′′ according to Definition 3), the tuple v⋆ = v⋆(R) =

(

v′,v′′
)

of rotation vectors
v′ and v′′ is defined by

v′(φ, ω̂) =
1

2π
·φ · ω̂ ∈ B3(

1

2
) v′′(φ′′, ω̂) =

1

2π
·φ′′ · ω̂ ∈ B3(1)\B3(

1

2
) .
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This definition uses a ‘renormed, principal’ rotation vector (|ϕ| ≤ π, see [3]) together with ‘sec-
ondary’ rotation vector (π < |ϕ′′| ≤ 2π) resulting in a double cover of SO(3) (see Figure 3), as
for quaternions. In particular, the unit ball represention is equivalent to the representation via
quaternions, as shown in Appendix C. In contrast to those, [9], the unit ball representation al-
lows a straightforward visualization due to its reduced dimension. The relation of the unit ball
representation to Euler angles is illustrated in the following example: In Figure 4, two views on
a chain of orientions R are provided. The set R is defined via the ‘restricted’ ramp function

α∆
k (x) :=

{

0 x < k · ∆
x − k · ∆ k · ∆ ≤ x < (k + 1) · ∆
∆ (k + 1) · ∆ < x

and its complementary function α∆ as α∆
k (x) = ∆ − α∆

k (x).

With those two, the set of orientations reads R =
{

R
∣

∣ R = Rz

(

α∆
0 (ϕ)

)

· Rx(α∆
1 (ϕ)) · Rz(α

∆
2 (ϕ)) ·

Rz(α
∆
3 (ϕ)) · Rx(α∆

4 (ϕ)) · Rz(α
∆
5 (ϕ)), 0 ≤ ϕ ≤ 6 · ∆

}

. Contrary to Euler angles, the densitiy of

(not only) this vectorial representation is independent of the rotation axis and thus symmetric to
identity [1].

3. Spatial Analysis

3.1. Decomposition for One Orientation. The number of solutions for Problem 1 – the number
of angle configurations for a given constellation of non-orthogonal axes (for an example see Figure 5)
and a target orientation – was characterized in [20] by the following theorem.

Theorem 1 (Number of Solutions). The number of solution triplets (φ1,φ2,φ3) for Problem 1 is
determined by the inequality

|ω̂1 ∗ (R − ω̂l2 ) · ω̂3| ≤ ‖ω1⊥2‖ · ‖ω3⊥2‖ , (9)

with ω̂i⊥j := τ̂ ω̂i
(ω̂j). If Inequality 9 is strictly fulfilled, two solutions (φ1,φ2,φ3) exist. If Inequal-

ity 9 is fulfilled with equality, only one solution exists for φ2. If Inequality 9 is not fulfilled, no
solution exists. φ1 and φ3 are determined in dependence on φ2.

The following chain of equalities outlines the idea of the proof of the theorem (see [20]) by using
the notation introduced in Section 2.

∣

∣ω̂1 ∗ (R − ω̂l2 ) · ω̂3

∣

∣

(i)
=

∣

∣ω̂1 ∗ (R1(φ1) ·R2(φ2) ·R3(φ3)) · ω̂3 − ω̂1 ∗ ω̂l2 · ω̂3

∣

∣

(ii)
=

∣

∣ω̂1 ∗R2(φ2) · ω̂3 − ω̂1 ∗ ω̂l2 · ω̂3

∣

∣

=
∣

∣ω̂1 ∗ (R2(φ2)− ω̂l2 ) · ω̂3

∣

∣

(iii)
=

∣

∣ω1⊥2 ∗R⊥2(φ2) ·ω3⊥2

∣

∣ (10)

≤ ‖ω1⊥2‖ · ‖ω3⊥2‖
Equality (i) incorporates the claim for a feasible angle configuration for R. For Equality (ii), the
invariance of rotations along their axes is used. Equality (iii) follows with Equation 7 for the planar
rotation R⊥2(φ2) := τω̂2

(R2) (Definition 2).

Computation of Angle Configurations. For sake of completeness, and since similar steps are con-
ducted in the proof of Theorem 2 in Section 3.2, the computation of angle configurations is re-
capitulated in the following by means of the compact notation from Section 2 and Appendix A.
To determine the angles φ1, φ2, and φ3, the ansatz in [20] and [16] is given by the observation
ω̂1 ∗R1 ·R2 ·R3 · ω̂3 = ω̂1 ∗R2 · ω̂3. Applying the exponential map (Equation B.2) to R2 results in

ω̂1 ∗R · ω̂3 = ω̂1 ∗
(

I +sinφ2 · ω̂⊗
2 +(1−cosφ2) · (ω̂⊗

2 )2
)

· ω̂3. This equation is resorted and redefined
by means of

a := ω̂1 ∗ (−(ω̂⊗
2 )2) · ω̂3 b := ω̂1 ∗ ω̂⊗

2 · ω̂3 c := ω̂1 ∗
(

R − ω̂l2
)

· ω̂3

to reach the equation

a · cosφ2 + b · sinφ2 = c . (11)
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This equation is of the form a · cosϕ+ b · sinϕ = c and has the two solutions

ϕ1,2 = atan
b

a
±atan

d

c
with d =

√

a2 + b2 − c2,

which coincide for d = 0. For convenience, the definitions

φ20 := atan⋆
2

b

a
φ

2∆ := atan⋆
2

d

c
,

are introduced and simplified. First, for a and b, by means of using Equation 4 and Equation 5, it
can be shown that

a = +cosϑ
〈2〉

(1,3) · ‖ω1⊥2‖ · ‖ω3⊥2‖
b = −sinϑ

〈2〉

(1,3) · ‖ω1⊥2‖ · ‖ω3⊥2‖ .

Taking into account Equations A.1, A.2, and A.5, the expression φ20 = atan⋆
2

b
a

is transformed to

φ20 = atan⋆
2

b

a
= atan⋆

2

−sinϑ
〈2〉

(1,3)

cosϑ
〈2〉

(1,3)

= acos⋆
3

(

ω̂1, ω̂3;−ω̂2

)

= ϑ
〈2〉

(1,3) . (12)

Second, to simplify the expression atan⋆
2

d
c

, an auxiliary variable c′ is defined as c′ := c
‖ω1⊥2‖·‖ω1⊥2‖

for which the equation

c′ = ω̂1⊥2 ∗R(φ2; ω̂2) · ω̂3⊥2 ,

holds. By means of c′, the argument of atan⋆
2, the fraction d

c
, is rewritten as

d

c
=

√

‖ω1⊥2‖2 · ‖ω3⊥2‖2 − c2

c
=

√

1− (c′)2

c′
.

Then, with Equation A.4, the expression for φ
2∆ = atan⋆

2
d
c

is transformed to

φ
2∆= atan⋆

2
d

c
= atan⋆

2

√

1− (c′)2

c′
= acosc′ =: |γ′| .

Together, φ2+ and φ2− are computed as

φ2+ ,φ2− = φ20 ±φ
2∆ = ϑ

〈2〉

(1,3) ±|γ′| .

For generic constellations of rotation axes, with ϑ[1|2] , ϑ[2|3], the angles φ1 and φ3 are computed
for each of the φ2 ∈

{

φ2+ ,φ2−

}

as

φ1 = acos⋆
3

(

R · ω̂3,R2 · ω̂3; −ω̂1

)

φ3 = acos⋆
3

(

RT · ω̂1,R
T
2 · ω̂1; +ω̂3

)

,

by letting R2 := R(φ2, ω̂2). In case of singular orientations, the two solutions triplets coincide since
it is φ2+ = φ2− (see next section).
For symmetric constellations of rotation axes, with ϑ[1|2] = ϑ[2|3], and singular orientations with
ω̂1 ∗R · ω̂3 = ±1, the angles φ1 and φ3 are determined partially via the equations

φ3 ±φ1 = acos⋆
3

(

RT · ω̂2,R
T
2 · ω̂2; +ω̂3

)

.

3.2. Decomposition for All Orientations. In this section, the solution of Problem 2 is pre-
sented as a generalization of Theorem 1 for Problem 1. This means, that all singular orientations
R are determined that fulfill Inequality 9 with equality, or equivalently, by setting ω̂i‖j := π̂ω̂i

(ω̂j),
∣

∣(ω̂1 ∗R · ω̂3)−‖ω1‖2‖ · ‖ω3‖2‖
∣

∣ = ‖ω1⊥2‖ · ‖ω3⊥2‖ .

For the subsequent analysis, generic axes with angles 0 , ϑ[1|2] , ϑ[2|3] , 0 are assumed (ϑ[i|j] denotes
the minimal angle between the lines [ ω̂i ] and [ ω̂j ], see Definition 7). Special cases are mentioned
later in Section 3.3. With Theorem 2, the singular solution space is characterized as toroids and
the poses (positions and orientations) of these are specified with respect to the rotation axes ω̂1,
ω̂2, and ω̂3. The proof is based on the solution of two specific inverse problems of Problem 1.
In Theorem 3, it is shown that the two singular toroids are mutually orthogonal. Finally, the
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Figure 5. Example constellation
of non-orthogonal axes ω̂1 = (1,0,0)T ,
ω̂2 = (1,2,3) T , and ω̂3 = (1,2,0) T , together
with ω̂×13 = (0,0,1)T .

Figure 6. Planar sketch of two toroids
viewed from ω̂×13 = (0,0,1)T . The toroids’
shapes are modified to visualize the order of
the mutual interlacing.

cross sectional radii along ω̂×13 and the distances to identity are determined for the two toroids in
Theorem 4.

Theorem 2 (Toroids and Axes). Given an instance of Problem 2 with singular angle φ20 (Equa-

tion 12) and its inverse angle φ
[−1]

20 (Definition 11), define φ
[+]
2 := φ20 and φ

[–]
2 := φ

[−1]

20 , and corre-

sponding rotations R
[+]
2 := R(φ[+]

2 , ω̂2) and R
[–]
2 := R(φ[–]

2 , ω̂2). With v⋆(R) according to Definition 4,
define the following set of rotation vectors:

T [+] :=
{

v⋆(R) ∈ B3
∣

∣ R = R1(φ1) ·R[+]
2 ·R3(φ3)

}

T [–] :=
{

v⋆(R) ∈ B3
∣

∣ R = R1(φ1) ·R[–]
2 ·R3(φ3)

}

,

where in both cases, φ1 and φ3 are from (−π,π]. The sets T [+] and T [–] feature the following
properties:

1. The sets T [+] and T [–] are toroids and represent all singular orientations.
2. The line [ ω̂2 ] is a tangent to both toroids and touches T [+] in the boundary points v⋆(R[+]

2 ) and

T [–] in the boundary points v⋆(R[–]
2 ).

3. The lines [ ω̂1 ] and [ ω̂3 ] are passant (non-intersecting) lines (for short, ‘passants’) of T [+] and
T [–].

4. The line [ ω̂×13 ] intersects (i) with the interior of T [+] in m [+] := φ
[+]0

×13 = ϑ
〈1×3〉

(1,3) (Equation 13,

below) and in its dual angle (m [+])
′′
, (ii) with the interior of T [–] in m [–] := φ

[–]0
×13 = (φ

[+]0
×13 )

[−1]
and

in its dual angle (m [–])
′′
.

5. The line [ ω̂×13 ] intersects with each toroid T [+] and T [–] in four points. The toroid T [+] is

intersected at angles named as φ
[+]−

×13 and φ
[+]+

×13 (Equation 15, below), and their dual angles. The

toroid T [–] is intersected at angles named as φ
[–]−

×13 and φ
[–]+

×13 (Equation 16, below), and their dual
angles.

Proof. 1. Singular Toroids: For non-coincident axes ω̂1 and ω̂3, the sets T [+] and T [–] have dimen-
sion two. Since they are cyclic in both arguments, φ1 and φ3, they are toroids. Observing, (i) that
the singularity condition ω̂1 ∗ R · ω̂3 = ±1 only depends on the angle φ2 (Equation 10), and (ii)

that the singular angle φ20 = ϑ
〈2〉

(1,3) (Equation 12) only depends on the rotation axes’ constellation
and not on the target orientation R, it follows that all singular configurations are determined by
the two toroids T [+] and T [–].
2. Tangent – Rotation Axis ω̂2. By definition, the line [ ω̂2 ] shares two points with toroid T [+] and
two points with toroid T [–] (φ1 = φ3 = 0 and φ1 = φ3 = π). Each point on the axis ω̂2 represents an
admissible orientation R = I · R(φ2, ω̂2) · I of the axes’ constellation. Thus, the axis ω̂2 does not
pass the interior of T [+] and T [–] and is a tangent to both.
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3. Passants – Rotation Axes ω̂1 and ω̂3. Each point of the line [ ω̂1 ] (of the line [ ω̂3 ]) represents
an admissible, non-singular orientation with R = R(φ1, ω̂1) ·I ·I (with R = I · I · R(φ3, ω̂3)) since
c′
, 0 for φ2 = 0. Therefore, the axes ω̂1 and ω̂3 do not intersect with T [+] or T [–] and are passants.

4. & 5. Secant – Orthogonal Axis ω̂×13. For the angle m [+] = ϑ
〈1×3〉

(1,3) = ∡ω̂×13
(ω̂3, ω̂1) (Definition 10)

define the corresponding orientation R [+]
m := R(m [+], ω̂×13). For a generic axes’ constellation with

0 , ϑ[1|2] , ϑ[2|3] , 0 the R [+]
m is not realizable: it holds R [+]

m ,R1(φ1) ·R2(φ2) ·R3(φ3) and according
to Theorem 1 it holds

∣

∣ω̂1 ∗ (R [+]
m − ω̂l2 ) · ω̂3

∣

∣ > ‖ω1⊥2‖ · ‖ω3⊥2‖ .

For ϑ
〈1×3〉

(1,3) it holds that ω̂1 ∗ R(ϑ〈1×3〉

(1,3) , ω̂×13) · ω̂3 = 1, by definition. Assume (wlog) that ω̂1 and
ω̂3 lie in the same half space with respect to ω̂2, so that ω̂1 ∗ ω̂2 > 0 and ω̂3 ∗ ω̂2 > 0 and thus

ω̂1 ∗ ω̂l2 · ω̂3 = ‖ω1‖2‖ · ‖ω3‖2‖. Then, the inequality

1−‖ω1‖2‖ · ‖ω3‖2‖ > ‖ω1⊥2‖ · ‖ω1⊥2‖ .

follows from the strict Cauchy-Schwarz inequality x∗y < ‖x‖ ·‖y‖ for x := (‖ω1‖2‖,‖ω1⊥2‖)T and

y := (‖ω3‖2‖,‖ω3⊥2‖)T with |x ∗ y| < 1 (because of genericity ϑ[1|2] , ϑ[2|3]). Therefore, the point

ϑ
〈1×3〉

(1,3) · ω̂×13 lies in the interior of T [+]. With a similar argumentation, one shows that the point

ϑ
〈1×3〉[−1]

(1,3) · ω̂×13 lies in the interior of T [–]. Therefore, ω̂×13 is a secant line of T [+] and T [–]. The

intersection of the secant line [ ω̂×13 ] with the toroids T [+] and T [–] are computed by solving the
following two inverted problems.

Problem 3 (Inverse Decompositions). Given the axes of the primal Problem 1, and singular

rotations R
[+]
2 and R

[–]
2 (as introduced in Theorem 2), (i) find angles φ1,φ×13,φ3 such that

R
[+]
2

!
= R(φ1;−ω̂1) ·R(φ×13; ω̂×13) ·R(φ3,−ω̂3) ,

and (ii) find angles φ1,φ×13,φ3 such that

R
[–]
2

!
= R(φ1;−ω̂1) ·R(φ×13; ω̂×13) ·R(φ3,−ω̂3) .

Each of the two inverse problems are variants of Problem 1 with perpendicular axes. Thus, simple
variants of the computations of Section 3.1 are conducted in the following. As before (Equation 11),
the solutions of each of the inverse problems have the form ϕ1,2 = atan2(b,a)±atan2(d,c) for which
convenient definitions are introduced with

φ
[+]0

×13 := atan⋆
2

b

a
φ

[–]0
×13 :=

(

φ
[+]0

×13

)[−1]

φ
[+]∆

×13 := atan⋆
2

d
[+]

c [+]
φ

[–]∆
×13 := atan⋆

2
d

[–]

c [–]
.

These are simplified by means of the equations in Section 2.2. First, a is determined by Equation 5
as

a = ω̂1 ∗ (−(ω̂⊗
×13)

2) · ω̂3 = cosϑ
〈1×3〉

(1,3) .

Second, b is determined by Equation 4 as

b = ω̂1 ∗ ω̂⊗
×13 · ω̂3 = −sinϑ

〈1×3〉

(1,3) .

Combining these two results, atan2(b,a) is simplified with Equation A.1 and Equation A.2 to

φ
[+]0

×13 = atan⋆
2

b

a
= atan⋆

2

−sinϑ
〈1×3〉

(1,3)

cosϑ
〈1×3〉

(1,3)

= ϑ
〈1×3〉

(1,3) = acos⋆
3

(

ω̂1, ω̂3; ω̂3 × ω̂1

)

(13)

Via the sequential orthogonality ω̂1 ⊥ ω̂×13 ⊥ ω̂3, thus ω̂1 ∗ ω̂l×13 · ω̂3 = 0, the parameter c [+] is
simplified to

c [+] = ω̂1 ∗ (R[+]
2 − ω̂l×13) · ω̂3 = ω̂1 ∗R

[+]
2 · ω̂3 .
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Figure 7. Toroids T [+] and T [–] for a generic constellation
of rotation axes (b), ω̂1 = (1,0,0)T (red), ω̂2 = (1,2,3) T (green),
ω̂3 = (1,2,0) T (blue), with symmetry axis ω̂×13 = (0,0,1)T (pur-
ple), and circles C [+], C [–]. The toroids are sampled with density
10◦.

Figure 8. A close up view
of Figure 7, with tangent ω̂2

(green), secant ω̂×13 (purple),
and intersection points.

Analogously, the parameter c [–] is simplified to

c [–] = ω̂1 ∗ (R[–]
2 − ω̂l×13) · ω̂3 = ω̂1 ∗R

[–]
2 · ω̂3 .

Using the quadratic identity a2 +b2 = 1, one derives for d
[+]

and d
[–]

(with d
[ . ]

=
√

a2 + b2 − (c [ . ])2

) that

d
[+]

=
√

1− (c [+])2 d
[–]

=
√

1− (c [–])2 .

Combining these two results the expression atan2(d
[+]

, c [+]) for toroid T [+] is reduced, with |γ[+]| :=

acos(c [+]) = acos(ω̂1 ∗R
[+]
2 · ω̂3), similarly to Equation 13, with Equation A.4 to

φ
[+]∆

×13 = atan⋆
2

d
[+]

c [+]
= atan⋆

2

∣

∣sinγ[+]
∣

∣

cosγ[+]
=

∣

∣γ[+]
∣

∣ = acos(ω̂1 ∗R
[+]
2 · ω̂3) . (14)

Combining Equation 13 and Equation 14, one yields

φ
[+]+

×13 ,φ
[+]−

×13 = φ
[+]0

×13 ±φ
[+]∆

×13 = ϑ
〈1×3〉

(1,3) ±
∣

∣γ[+]
∣

∣ (15)

for toroid T [+]. Analogously, with |γ[–]| := acos(c [–]) = acos(ω̂1 ∗R
[–]
2 · ω̂3), the equations

φ
[–]+

×13 ,φ
[–]−

×13 = φ
[–]0

×13 ±φ
[–]∆

×13 = ϑ
〈1×3〉

(1,3) ±
∣

∣γ[–]
∣

∣ (16)

are derived for toroid T [–]. �

With the next theorem, the mutual orthogonality of the central axes and central circles of the
toroids is shown.

Theorem 3 (Orthogonal Interlacing). Given an instance of Problem 2, the toroids T [+] and T [–]

as defined in Theorem 2 are orthogonally interlaced. In particular, the following holds:

1. Both toroids contain central circles C [+] and C [–] defined for φ1 ∈ (−π,π], φ3 ∈ (−π,π] as

C [+] :=
{

v⋆(R) ∈ B3
∣

∣ R = R(φ1; ω̂1) ·R [+]
m

}

C [–] :=
{

v⋆(R) ∈ B3
∣

∣ R = R [–]
m ·R(φ3, ω̂3)

}

.
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Figure 9. Scheme of the toroids T [+] (gray) and T [–] (blue) with tangent line ω̂2 (green), symmtry
axis ω̂×13 (purple) and further geometric features: points in the inner shelf of the unit ball named
as v′(.), in the outer shelf as v′′(.), boundary points of T [+] and T [–] with ω̂2 at values related

to ϑ
〈2〉

(1,3), intersections of the central circles C [+] and C [–] with ω̂×13 at values related to ϑ
〈1×3〉

(1,3) ,

intersections of T [+] and T [–] with ω̂×13 given via γ[+] and γ[–], or via r [+] and r [–], with respect to
the circles.

2. With ω̂×̂(113) := (ω̂1 × (ω̂1 × ω̂3)) and ω̂×̂(133) := ((ω̂1 × ω̂3)× ω̂3) (Section 2.1), the central axes

of T [+] and T [–] have the directions

ω̂ [+] := (ω̂×̂(113) − ω̂×̂(133))

ω̂ [–] := (ω̂×̂(113) + ω̂×̂(133)) ,

which are mutually orthogonal, ω̂ [+] ⊥ ω̂ [–].

For proving Theorem 3, the formula by Baker-Campbell-Hausdorff (BCH) formula is used.

Definition 5 (BCH Formula). Given two rotation vectors, φA · ω̂A, of a rotation RA, and φB · ω̂B,
of a rotation RB, the rotation vector φA,B · ω̂A,B of the concatenated rotation RA,B = RA · RB is
computed with ω×AB := ω̂A × ω̂B as

φA,B · ω̂A,B = BCH

(

φA· ω̂A, φB· ω̂B

)

= φA,B·
(

a · ω̂A+ b · ω̂B+ c ·ω×AB

)

,

where the rotation angle φA,B is determined via

cos
φA,B

2
= cos

φA

2
· cos

φB

2
− sin

φA

2
· sin φB

2
· (ω̂A ∗ ω̂B) ,

and the coefficients a, b, and c are determined via the three equations

a · sin φA,B

2
= sin

φA

2
· cos

φB

2
b · sin φA,B

2
= cos

φA

2
· sin φB

2

c · sin φA,B

2
= sin

φA

2
· sin φB

2
.

The BCH formula is derived, for example, in [21], a proof can be found in [24].

Proof. 1. Central Circles: The definition of the cirlces C [+] and C [–] via φ
[+]0

×13 and φ
[–]0

×13 lying in the
middle of the intersections of axis ω̂×13 with T [+] and T [–] (see proof of Theorem 3) implies their
centrality.
2. Orthogonality. The two axes ω̂ [+] = (ω̂×̂(113) − ω̂×̂(133)) and ω̂ [–] = (ω̂×̂(113) + ω̂×̂(133)) are mutual

perpendicular, ω̂ [+] ⊥ ω̂ [–], since it holds that ω̂ [+] ∗ω̂ [–] = (ω̂×̂(113))
2 −(ω̂×̂(133))

2 = 0 with ‖ω̂×̂(113)‖ =

‖ω̂×̂(133)‖ = 1. To derive the mutual orthogonality of the toroids T [+] and T [–], it is therefore
sufficient to account for

C [+] ⊥ ω̂ [+] C [–] ⊥ ω̂ [–] , (17)

of the central circles C [+] and C [–]. Eq. 17 is shown by applying the BCH formula to arbitrary
rotations

R
[+]
133(φ1) = R1(φ1) ·R [+]

m R
[–]
133(φ3) = R [–]

m ·R3(φ3). (18)
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Features Related Term Toroid T [+] Toroid T [–] Convolution

Tangentials φ
[.]

2 atan2(b,a) φ
[+]
2 = ϑ

〈2〉

(1,3)
φ

[–]
2 = (ϑ

〈2〉

(1,3)
)[−1] |φ

[+]
2 | + |φ

[–]
2 | = π

Circle points m [ . ] atan2(b,a) m [+] = ϑ
〈×13〉

(1,3)
m [–] = (ϑ

〈×13〉

(1,3)
)[−1] |m [+]| + |m [–]| = π

Intersections φ
[ . ]±
×13 atan⋆

2
b

a
± atan⋆

2
d[.]

c[.] φ
[–]+

×13 φ
[+]−
×13 φ

[–]+

×13 φ
[–]−
×13

∣

∣φ
[ . ]+

×13 − φ
[ . ]−
×13

∣

∣ = 2 · r[.]

Radii r[.] atan2(d[.], c[.]) r [+] = |ϑ[1|2] − ϑ[2|3]| r [–] =
∣

∣π − |ϑ[1|2] + ϑ[2|3]|
∣

∣ r [+] + r [–] = ∆(0)

Distances d[.] m [ . ] − r[.] d [+] = |m [+]| − r [+] d [–] = |m [–]| − r [–] d [+] + d [–] = ∆(2)

∆(0) + ∆(2) = π

Table 1. Overview of characteristic geometric features of the toroids T [+] and T [–]: boundary
points with the tangential ω̂2 at angles φ

[.]

2 and essential points and sizes along the symmetry axis
ω̂×13.

of the circles C [+] and C [–]. Since the relation between a rotation vector and the angle-axis represen-
tation of a rotation is ‘bi-ambiguous’, because of φ · ω̂ = φ · (−ω̂), the signs of angles and axes have
to treated cautiously, compare Appendix B. In particular, since the signs of the rotation angles
of R [+]

m and R [–]
m in Equation 18 differ, sgn(ϑ〈1×3〉

(1,3) ) , sgn
(

(ϑ〈1×3〉

(1,3) )[−1]
)

, a case distinction has to be
applied to ensure that the orientations of ω̂×13 are not swapped when the BCH formula is applied

for elements of C [+] and C [–]. For the case ϑ
〈1×3〉

(1,3) < 0, it holds that ϑ|1,3| = −ϑ
〈1×3〉

(1,3) and, in particular,

that the two angles −ϑ|1,3| and π − ϑ|1,3| are elements of the interval [0,π]. With respect to these

angles, R [+]
m and R [–]

m are expressed as

R [+]
m = R(−ϑ|1,3|; ω̂×13) = R(ϑ〈1×3〉

(1,3) ; ω̂×13)

R [–]
m = R(π −ϑ|1,3|; ω̂×13) = R((ϑ〈1×3〉

(1,3) )
[−1]

; ω̂×13) .

For the second case with ϑ
〈1×3〉

(1,3) > 0 one defines R(ϑ|1,3|; ω̂×13) = R [+]
m and R(π − ϑ|1,3|; ω̂×13) = R [–]

m

and the proof works analogously. Applying the BCH formula to a rotation in C [+] (Equation 18)
results in

φ113 · ω̂ [+]
113 = BCH

(

φ1 · ω̂1, −ϑ|1,3| · ω̂×13

)

=
φ113

sin φ113
2

·
(

a [+] · ω̂1 + b [+] · ω̂×13 + c [+] · ω̂×̂(113)

)

.

Applying the formula to an element of C [–] results in

φ133 · ω̂ [–]
133 = BCH

(

ϑ|1,3| · ω̂×13, φ3 · ω̂3

)

=
φ133

sin φ133
2

·
(

a [–] · ω̂×13 + b [–] · ω̂3 + c [–] · ω̂×̂(133)

)

.

The direction of a rotation vector in C [+] is determined by the coefficients a [+], b [+], and c [+]. By
omitting constant factors and using the abbrevations s1 := sin φ1

2 and c1 := cos φ1
2 , their ratio is

denoted by

[

a [+] : b [+] : c [+]
]

=
[

s1 · cos
−ϑ|1,3|

2
: c1 · sin −ϑ|1,3|

2
: s1 · sin −ϑ|1,3|

2

]

=
[

s1 · cos
ϑ|1,3|

2
: −c1 · sin ϑ|1,3|

2
: −s1 · sin ϑ|1,3|

2

]

.

Similarly, the ratio of the coefficients a [–], b [–], and c [–] determining a rotation vector in C [–] is
written, with s3 := sin φ3

2 and c3 := cos φ3
2 , as

[

a [–] : b [–] : c [–]
]

=
[

s3 · cos
φ3

2
: c3 · sin φ3

2
: s3 · sin φ3

2

]

=
[

c3 · cos
φ3

2
: s3 · sin φ3

2
: c3 · sin φ3

2

]

.

Using the identities

ω̂1 ∗ (ω̂×̂(113) − ω̂×̂(133)) = +sin
ϑ|1,3|

2

ω̂×̂(113) ∗ (ω̂×̂(113) − ω̂×̂(133)) = +cos
ϑ|1,3|

2
,
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the scalar product of a rotation vector ω̂
[+]
113 and the axis ω̂ [+] is evaluated to

ω̂
[+]
113 ∗ ω̂ [+] = a [+] · ω̂1 ∗ ω̂ [+] + c [+] · ω̂×̂(113) ∗ ω̂ [+]

= s1 ·
(

cos
ϑ|1,3|

2
· sin ϑ|1,3|

2
− sin

ϑ|1,3|

2
· cos

ϑ|1,3|

2

)

= 0 ,

thus ω̂
[+]
113 ⊥ ω̂ [+]. Similarly, using the identities

ω̂3 ∗ (ω̂×̂(113) + ω̂×̂(133)) = −cos
ϑ|1,3|

2

ω̂×̂(133) ∗ (ω̂×̂(113) + ω̂×̂(133)) = +sin
ϑ|1,3|

2
,

the scalar product of a ω̂
[–]
133 and ω̂ [–] is evaluated to

ω̂
[–]
133 ∗ ω̂ [–] = (b [–] · ω̂3)∗ ω̂ [–] +(c [–] · ω̂×̂(133))∗ ω̂ [–]

= s3 ·
(

sin
ϑ|1,3|

2
· (−cos

ϑ|1,3|

2
)+cos

ϑ|1,3|

2
· sin ϑ|1,3|

2

)

= 0,

such that the orthogonality ω̂
[–]
133 ⊥ ω̂ [–] is derived. Therefore, for all R

[+]
133(φ1) and R

[–]
133(φ3) it holds

that

φ113 · ω̂ [+]
113 ⊥ ω̂ [+] φ133 · ω̂ [–]

133 ⊥ ω̂ [–]

such that the feasibility of Equation 17 follows. �

With help of the mutual orthogonality of C [+] and C [–], and therefore of T [+] and T [–], one can
further argue that (i) the toroids are disjoint (with an argument about maximum size of the cross
sectional radii), (ii) they are interlaced (with an argument about the size of 2π of the central radii).
The last of the three theorems defines the ‘sizes’ of the toroids by their cross sectional radii and
their distances to identity.

Theorem 4 (Radii and Distances). Given an instance of Problem 2 and toroids T [+] and T [–] as
defined in Theorem 2, following can be said about the radii and the distances of T [+] and T [–].

1. The cross-sectional radii r [–] and r [+] of the toroids, measured along ω̂×13, are determined by

r [+] =
∣

∣ϑ[1|2] −ϑ[2|3]

∣

∣ r [–] =
∣

∣

∣
π −

∣

∣ϑ[1|2] +ϑ[2|3]

∣

∣

∣

∣

∣
.

2. The distances of T [+] and T [–] to identity, d [+], d [–], are determined by

d [+] = |m [+]|− r [+] d [–] = |m [–]|− r [–] .

Proof. 1. Cross-Sectional Radii: With |γ[+]| and |γ[–]|, previously defined as |γ[+]| = |acos(ω̂1 ∗R
[+]
2 ·

ω̂3)| (Equation 14) and |γ[–]| = |acos(ω̂1 ∗ R
[–]
2 · ω̂3)|, the radii are computed as r [+] = |γ[+]| and

r [–] = |π −|γ[–]|| (see Figure 9). Therefore, it remains to show
∣

∣γ[+]
∣

∣=
∣

∣ϑ[1|2] −ϑ[2|3]

∣

∣

∣

∣

∣
π −

∣

∣γ[–]
∣

∣

∣

∣

∣
=

∣

∣

∣
π −

∣

∣ϑ[1|2] +ϑ[2|3]

∣

∣

∣

∣

∣

(19)

Therefore, the ‘left’ expressions
∣

∣γ[+]
∣

∣ =
∣

∣acos(ω̂1 ∗ R
[+]
2 · ω̂3)

∣

∣ and
∣

∣γ[–]
∣

∣ =
∣

∣acos(ω̂1 ∗ R
[–]
2 · ω̂3)

∣

∣ are
analyzed. As special versions of the Equation 8 in Section 2.2, for a rotation with the ‘singular’
angle ϑ

〈ω̂〉

(a,b) one yields the equation

a∗R
(

ϑ
〈ω̂〉

(a,b), ω̂
)

·b = +‖aΩ‖ · ‖bΩ‖+‖aω̂‖ · ‖bω̂‖
= +sinϑ[a|ω̂] · sinϑ[b|ω̂] +cosϑ[a|ω̂] · cosϑ[b|ω̂] ,

and for the ‘singular’ angle ϑ
〈ω̂〉

(a,−b) the equation

a∗R
(

ϑ
〈ω̂〉

(a,−b), ω̂
)

·b = −‖aΩ‖ · ‖bΩ‖+‖aω̂‖ · ‖bω̂‖
= −sinϑ[a|ω̂] · sinϑ[b|ω̂] +cosϑ[a|ω̂] · cosϑ[b|ω̂] .
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Figure 10. Toroids for a nearly sym-
metric constellation of rotation axes (c),
with ω̂1 = (1,0,0)T , ω̂2 = R

(

−30◦

360◦ ·2π,ez

)

·(1,2,3) T ,
ω̂3 = (1,2,0) T .

Figure 11. Toroids for a nearly coinci-
dent constellations of rotation axes (d),
with ω̂1 = (1,0,0)T , ω̂2 = (1,2, 1

100 ) T , and
ω̂3 = (1,2,0) T .

Minimal Line Angles Non-Solvable Set Two-Solvable Set

Example ω̂2 ϑ[1|2] ϑ[2|3] ϑ[1|3] r [+] r [–] ∆(0) d [+] d [–] ∆(2)

(a) (0,0,1)T 90◦ 90◦ 63.435◦ 0◦ 0◦ 0◦ 90◦ 90◦ 180◦

(b) (1,2,3) T 74.499◦ 53.300◦ 63.435◦ 21.198◦ 52.201◦ 73.399◦ 32.103◦ 74.498◦ 106.601◦

(c) Rz( −2π
9

) · (1,2,3) T 60.085◦ 58.832◦ 63.435◦ 1.253◦ 61.083◦ 62.336◦ 62.182◦ 55.482◦ 117.664◦

(d) (1,2, 1
100 ) T 63.435◦ 0.256◦ 63.435◦ 63.691◦ 116.309◦ 179.488◦ 0.256◦ 0.256◦ 0.512◦

Table 2. Numerical comparison for examples (a), (b), (c), and (d); angle values are rounded to
three digits.

Using these equations, auxilary variables x
[+]
123 and x

[–]
123 are defined as

x
[+]
123 := ω̂T

1 ·R[+]
2 · ω̂3 = +sinϑ[1|2] · sinϑ[2|3] +cosϑ[1|2] · cosϑ[2|3] , (20)

x
[–]
123 := ω̂T

1 ·R[–]
2 · ω̂3 = −sinϑ[1|2] · sinϑ[2|3] +cosϑ[1|2] · cosϑ[2|3] . (21)

With x
[+]
123 and x

[–]
123, the left expressions read as

∣

∣γ[+]
∣

∣ =
∣

∣

∣
acos

(

x
[+]
123

)

∣

∣

∣

∣

∣γ[–]
∣

∣ =
∣

∣

∣
acos

(

x
[–]
123

)

∣

∣

∣
.

For the expressions on the right, one examines for ϑ|1,2| and for ϑ|2,3|, that by definition 0 ≤ ϑ[i|j] ≤ π
2

hold, so that cosϑ[i|j] ≥ 0 and sinϑ[i|j] ≥ 0. Further, for x = cosϑ[1|2] and y = cosϑ[2|3], the inequalities
0 ≤ acosx±acosy ≤ π are fulfilled. Thus, the trigonometric identity

acosx±acosy = acos
(

x ·y ∓
√

1−x2 ·
√

1−y2
)

can be applied for the sum and the difference of the angles ϑ|1,2| and ϑ|2,3| which yields

ϑ|1,2| ∓ϑ|2,3| = acos
(

cosϑ[1|2]

)

∓acos
(

cosϑ[2|3]

)

= acos
(

cosϑ[1|2] · cosϑ[2|3] ± sinϑ[1|2] · sinϑ[2|3]

)

.

Using the definitions from Equation 20 and Equation 21 one has derived that
∣

∣ϑ|1,2| −ϑ|2,3|

∣

∣ =
∣

∣

∣
acosx

[+]
123

∣

∣

∣

∣

∣ϑ|1,2| +ϑ|2,3|

∣

∣ =
∣

∣

∣
acosx

[–]
123

∣

∣

∣
.

Thereby, the expression for r [+] and for r [–] in Equation 19 are derived.
2. Distances to Identity. The distances to identity follow immediately. �

By the terms for r [+] and r [–] in Equation 19 the sizes for the unreachable fractions of the workspace
are measured by the lack of sequential orthgonality of the three axes, see also Section 3.3.

As a summary, the toroids’ geometric features analyzed within the three theorems are displayed
together in a schematic sketch in Figure 9. Their analytical relations are compiled in Table 1.
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Set Rotation Axes

1 2 3 sym. 3 gen. 3 ort.

Two-solvable 0 0 3 3 3

Non-solvable 3 3 0–3 3–3 0–0

Singular
1 2 1◦◦2 2◦◦2 1◦◦1

Line Line × Line Circle ◦◦ Toroid Toroid ◦◦ Toroid Circle ◦◦ Circle

Related Example (d) (c) (b) (a)

Table 3. Dimensions of solution sets with regard to the constellation of the axes; abbrevations
‘sym.’, ‘gen.’, and ‘ort.’ short for ‘sequential symmetric’, ‘generic’, and ‘sequential orthogonal’.

3.3. Examples. Different types of constellations of the three axes ω̂1, ω̂2, and ω̂3 can be dis-
tinguished. They are named here as (a) ‘sequential orthogonal’, (b) ‘generic’, (c) ‘sequential
symmetric’, and (d) ‘coincident’. To compare these different cases, four examples are given which
all feature ω̂1 = (1,0,0)T and ω̂3 = (1,2,0) T and only differ in ω̂2. The influence of the pose of
the second axis ω̂2 to the radii and the distances (Theorem 4) of the toroids is exemplified.
(a) A sequential-orthogonal case corresponds to a Davenport constellation. For the given ω̂1 and
ω̂3, the second axis is ω̂2 = ω̂1 × ω̂3 = (0,0,1)T . The radii r [+] and r [–] both equal zero, the toroids
are ‘shrinked’ to circles. (b) The generic case is assumed in the analysis before. An example is given
with ω̂2 = (1,2,3) T . The toroids T [+] and T [–] are depicted in Figure 7 and Figure 8. The radii r [+]

and r [–] are both greater zero. (c) An example for a case close to ‘sequential symmetry’ is given by
ω̂2 = R

(

−30◦

360◦ ·2π, ez

)

· (1,2,3) T . The toroids T [+] and T [–] are depicted in Figure 10. The radius

r [+] is very small. (d) An example for a nearly coincident constellation is given by ω̂2 = (1,2, 1
100 ) T

for which the second axis nearly equals the third axis ω̂3. The toroids are illustrated in Figure 11.
The radii r [+] and r [–] are so large that the toroids nearly fill the entire space of rotations.
In Table 2, the four examples are compared numerically with regard to the minimal line angles
(Definition 7) between the rotation axes and to the sizes of the constraint spaces (non-solvable set)
and the sizes of the workspace interior (two-solvable set) along ω̂×13 (see Theorem 4 and Table 1).
Generalizing from the four examples, the dimensions of the workspace interior, the constraint
space, and the singular set (one-solvable) are compared for different classes of axes’ constellations
in Table 3.

3.4. Discussion. The Theorems 2, 3, and 4 provide an explicit description of the boundary of
the workspace of a spherical 3R chain with respect to the axes’ constellation in ‘global space’, or,
with respect to the zero reference position [8] of the rotation axes. Three cases occur: if a target
orientation is located (i) outside both toroids, it is reachable with two configurations (two-solvable),
(ii) on the surface of one toroid, it is on the boundary of the workspace and reachable with one
configuration (one-solvable), (iii) in the interior of one toroid, it is not reachable (non-solvable).
Kinematic Synthesis. Such workspace description can be applied as a tool for solving the design
problem of spherical mechanisms: If all reference target orientations are ‘placed’ inside the unit ball,
the task is to orient rotation axes (according to external constraints) so that none of those is covered
by the toroids. Due to the simple graphic representation, this can be done heuristically, or the
description can be used to develop algorithmic approaches (comparable to [15], [10]) to determine
an optimal axes’ constellation. While one IK problem of a spherical 3R chain (Problem 1) can also
be solved by computing the FK of one equivalent spherical four bar linkage (Section 1) [7], [25],
[2], this does not hold for the generalized Problem 2. For the workspace problem, the features of
the presented approach (parametric description of the workspace boundary with straight-forward
visualization) complement existing techniques.
Control Problems. The derived workspace characterization can be used for following control prob-
lem: Given a spherical 3R chain and an infeasible target orientation R, a feasible orientation close
to R can be derived by the following method: (i) project the infeasible R onto the central circle,
call the projection Rm, (ii) build the ray from Rm through R, (iii) the intersection of the ray with
the toroid provides a feasible orientation nearby R.
Modular Kinematics. Based on the algebra of dual unit quaternions, an algorithm to solve the IK
of general 6R chains was developed [19], [12]. The ‘kinematic image’ of the workspace of a spherical
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3R chain is a certain 3-manifold in the representation of (dual) unit quaternions. For spherical axes,
the 3-manifold is contained in a fixed 3-space which can be specified via a system of four equations
[19, Sec. 5.2.4]. With Theorems 2, 3, and 4, a description of the fixed 3-manifold is achieved in
unit ball representation via the parametric specification of its toroidal boundary. Since the unit
ball representation is equivalent to the unit quaternion representation (Appendix C), it allows to
visualize basic, partial results of this algebraic approach. In the future, it will be interesting to
analyze if and how the unit ball representation permits extensions to cope with boundaries on joint
values, more than three rotation axes, and non-intersecting rotation axes (similar to the works
based on level sets, see, for example [11]).

4. Conclusion

In this article, it was shown how the boundary of the workspace of three non-orthogonal rotation
axes – the set of singular orientations – can be specified as two interlaced toroids. In three
proven theorems, the toroids are specified with respect to the rotation axes and to the mutual
angles between them. The results extend a recent theorem by Piovan and Bullo. The toroids’
specification is based on a novel, primal-dual vectorial representation of rotations where the unit
ball B3(1) corresponds to a double cover of SO(3). As explained, this rotation representation can
be regarded equivalent to the quaternion representation and allows to visualize the structure of
the workspace of three arbitrary, intersecting rotation axes due to its reduced dimension three. In
addition to this representation, further ‘geometric’ tools (notation of directed angles, decomposition
of rotation matrices) were developed to simplify and compactify the necessary notations. All tools
are general and can find applications in context of other geometric computations.
In a discussion, potential applications and extensions of the novel workspace characterization were
pointed out: For designing 3R mechanisms, the derived specification of the singular toroids provides
the tools to reason about infeasible orientations. For control applications, the presented method
can be used to determine realizable configurations close to infeasible target orientations. Extensions
of the presented approach may provide insight into more general kinematic problems in future.
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The appendix contains information about angles between vectors and lines in Appendix A. Issues
about the orientation of angles and axes are discussed in Appendix B. The relation between unit
ball representation and quaternions is outlined in Appendix C. An overview about the used notation
is provided in Appendix D.

Appendix A. Undirected and Directed Angles

Undirected Angles for Vectors. Given two vectors a and b, the undirected angle |∡
(

a,b
)

| = |∡
(

b,a
)

| ∈
[0,π] between these is computed via the inverse tangent function as |∡

(

a,b
)

| = atan2
‖a×b‖

a∗b
∈ [0,π].6

In the next definition, a compact, symbolically equivalent7 formulation is given via the inverse
cosine function. The result is generalized for measuring the angle along an arbitrary line [ ω̂ ].

Definition 6 (Undirected Angles). Given two vectors a and b, the (absolute) undirected angle
∣

∣∡(a,b)
∣

∣ ∈ [0,π] between a and b is defined as
∣

∣∡(a,b)
∣

∣ := acos
(

â∗ b̂
)

Given three vectors a, b, and ω̂, the relative undirected angle
∣

∣∡[ ω̂ ](a,b)
∣

∣ ∈ [0,π] between a and b

with respect to (undirected) line [ ω̂ ] is defined as
∣

∣∡[ ω̂ ](a,b)
∣

∣ := acos
(

τ̂ ω̂(a)∗ τ̂ ω̂(b)
)

As abbrevations, the notations ϑ|a,b| =
∣

∣∡(a,b)
∣

∣ and ϑ
[ω̂]

|a,b| = ϑ
[ω̂]

|b,a| =
∣

∣∡ω̂(a,b)
∣

∣ are introduced.

For arbitrary [ ω̂ ], the inequality ϑ
[ω̂]

|a,b| ≥ ϑ|a,b| holds. In case of a ∈ ω̂⊥ and b ∈ ω̂⊥, this is fulfilled

with equality, and the two definitions correspond. For a reflected vector b, the angle ϑ
[ω̂]

|a,−b| is the

supplementary angle of ϑ
[ω̂]

|a,b| as ϑ
[ω̂]

|a,−b| = π −ϑ
[ω̂]

|a,b|.

Undirected Angles for Lines. Given two lines [a ] and [b ] instead of vectors a and b, a direction of
the angle between these is not meaningful. However, two different angles can be distinguished as
defined next. See also Figure 1.

Definition 7 (Minimal and Maximal Angles). Given two lines [a ] and [b ] the minimal (undi-
rected) angle ∡([a ], [b ]) ∈ [0, π

2 ] and the the maximal (undirected) angle ∡[−1]([a ], [b ]) ∈ [ π
2 ,π]

between the lines [a ] and [b ] are defined as

∡

(

[a ], [b ]
)

:= min
{

ϑ|a,b|,ϑ|a,−b|

}

∡
[−1]

(

[a ], [b ]
)

:= max
{

ϑ|a,b|,ϑ|a,−b|

}

.

Given three lines [a ], [b ], and [ ω̂ ], the minimal (undirected) angle ∡[ ω̂ ]([a ], [b ]) ∈ [0, π
2 ] and the

the maximal (undirected) angle ∡[−1]

[ ω̂ ] ([a ], [b ]) ∈ [ π
2 ,π] between the lines [a ] and [b ] measured with

respect to [ ω̂ ] are defined as

∡[ ω̂ ]

(

[a ], [b ]
)

:= min
{

ϑ
[ω̂]

|a,b|,ϑ
[ω̂]

|a,−b|

}

∡
[−1]

[ ω̂ ]

(

[a ], [b ]
)

:= max
{

ϑ
[ω̂]

|a,b|,ϑ
[ω̂]

|a,−b|

}

.

As abbrevations, the notations ϑ[a|b] = ∡
(

[a ], [b ]
)

and ϑ]a|b[ = ∡[−1]
(

[a ], [b ]
)

as well as ϑ
[ω̂]

[a|b] =

∡[ ω̂ ]

(

[a ], [b ]
)

and ϑ
[ω̂]

]a|b[ = ∡[−1]

[ ω̂ ]

(

[a ], [b ]
)

are introduced.

As before, the two definitions correspond in the case that a ∈ ω̂⊥ and b ∈ ω̂⊥ and the superindex
can be omitted. Minimal and maximal angles are supplements of π to each other; for example,
ϑ

[ω̂]

]a|b[ is the supplementary angle of ϑ
[ω̂]

[a|b] with ϑ
[ω̂]

]a|b[ = π −ϑ
[ω̂]

[a|b].

6Obtained from the identities a ∗ b = cos |∡(a,b)| · ‖a‖ · ‖b‖ and ‖a × b‖ = sin|∡(a,b)| · ‖a‖ · ‖b‖.
7Numerically, the defintion via atan2 is preferable, see [22].
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Figure 12. Example of a directed angle ϕ = + 25◦

360◦ ·2π ∈ (−π,π] from a to b, together with the
related inverted and the conjugated angle, and their dual values.

Directed Angles for Vectors. The directed angle ∡(a,b) ∈ (−π,π] ‘from a to b’ is only defined if the
plane span(a,b) is equipped with an orientation, given by a third, fixed vector n, perpendicular
to span(a,b). Vector n directs towards the ‘point of view’ onto the plane span(a,b). For example,
if the vectors a and b lie in the xy-plane n is typically set to ez. As for the definitions above, a
generalization is defined for the case that n is substituted by a non-orthogonal vector ω̂. Before
the formal Definition 10, two tools are introduced.

Definition 8 (Atan⋆
2 Function). For x,y ∈ R, the bivariate function atan⋆

2 : R×R→ (−π,π] is
defined as

atan⋆
2(y,x) =

{ atan y

x
x > 0

atan y

x
+ sign⋆(y) · π x < 0

sgn(y) · π
2

x = 0
.

The notation atan⋆
2

y
x

= atan⋆
2(y,x) is introduced to maintain the fractional relation of the argu-

ments y and x.

Definition 9 (Sign⋆ and Acos⋆
2 Function). For x,y ∈R, the generalized sign function sign⋆ : R→

{−1,+1} and the bivariate function acos⋆
2 : R×R→ (−π,π] are defined as

sign⋆(x) :=
{ +1 x ≥ 0

−1 x < 0

acos⋆
2(x,y) := sign⋆(x) ·acos(y) .

The inverse cosine function ‘acos⋆
2’ corresponds to the inverse tangent function ‘atan⋆

2’, see Fig-
ure 13 and Figure 14 for visualizations.

The function ‘atan⋆
2’ allows an inversion for a directed angle ϕ ∈ (−π,π] since

atan⋆
2

sin(ϕ)
cos(ϕ) = ϕ holds. In more detail, for ϕ ∈ (−π,π] it holds

atan⋆
2

sin(ϕ)

cos(ϕ)
= atan⋆

2

sgn(ϕ) · sin|ϕ|
cos|ϕ|

= sgn(ϕ) ·atan⋆
2

sin|ϕ|
cos|ϕ| = sgn(ϕ) · |ϕ| = ϕ .

(A.1)

In the same manner, the bivariate, inverse cosine function ‘acos⋆
2’ allows an inversion for a directed

angle ϕ ∈ (−π,π] since the equations

acos2

(

sin(ϕ), cos(ϕ)
)

= sgn(ϕ) ·acos
(

cos(ϕ)
)

= sgn(ϕ) · |ϕ| = ϕ (A.2)

hold. In case of undirected angles, |ϕ| ∈ [0,π], Equations A.1 and A.2 simplify to

atan⋆
2

sin(|ϕ|)
cos(|ϕ|) = acos2

(

|sin(ϕ)|, cos(ϕ)
)

= acos
(

cos(ϕ)
)

= |ϕ| . (A.3)

In particular, for c = cos(ϕ), with 0 ≤ c ≤ 1, it is
√

1− c2 = |sin(ϕ)| = sin(|ϕ|) such that the previous
equations simplify to

atan⋆
2

√
1− c2

c
= atan⋆

2

|sin(ϕ)|
cos(ϕ)

= acos(c) = |ϕ| . (A.4)
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Absolute Relative

Axis Term Symbol Example Symbol Example Interval

Vectors
Directed ∡n(a,b) ϑ

〈n〉

(b,a)
= ϑ

〈n〉

(a,b) ∡ω̂(a,b) ϑ
〈ω̂〉

(b,a)
= ϑ

〈ω̂〉

(a,b) (−π,π]

Inverse ∡
[−1]
n (a,b) ϑ

〈n〉

(−b,a)
= ϑ

〈n〉

(a,−b) ∡
[−1]

ω̂
(a,b) ϑ

〈ω̂〉

(−b,a)
= ϑ

〈ω̂〉

(a,−b) (−π,π]

Undirected
∣

∣∡(a,b)
∣

∣ ϑ|a,b| = ϑ|b,a|

∣

∣∡[ ω̂ ](a,b)
∣

∣ ϑ
[ω̂]

|a,b|
= ϑ

[ω̂]

|b,a|
[0,π]

Lines
Minimal ∡

(

[a ], [b ]
)

ϑ[a|b] = ϑ[b|a] ∡[ ω̂ ]

(

[a ], [b ]
)

ϑ
[ω̂]

[a|b]
= ϑ

[ω̂]

[b|a]
[0,π/2]

Maximal ∡
[−1]

(

[a ], [b ]
)

ϑ]a|b[ = ϑ]b|a[ ∡
[−1]

[ ω̂ ]

(

[a ], [b ]
)

ϑ
[ω̂]

]a|b[
= ϑ

[ω̂]

]b|a[
[π/2,π]

Table 4. Overview of notations for absolute and relative angles for (directed) vectors and (undi-
rected) lines.

Before defining directed angles between vectors, it is needed that the orientation of three vectors
can be computed as

ornt⋆
3(a,b,c) = sign⋆

(

det(a b c)
)

.

Alternately, ‘ornt⋆
3’ can be expressed via a scalar triple product as ornt⋆

3(a,b, ω̂) = sign⋆((a×b)∗ω̂);
for a planar illustration, see Figure 15. (Using ‘sign⋆’ instead of ‘sgn’ is useful in cases when
ϑ[a|b] = π.)

Definition 10 (Directed Angles and Acos⋆
3 Function). Given a vector n and two vectors a and b

in n⊥, the (absolute) directed angle ∡n(a,b) ∈ (−π,π] between a and b is defined as

∡n(a,b) = acos⋆
2

(

det(a b n), â∗ b̂
)

= ornt⋆
3(a,b,n) ·acos(â∗ b̂) .

The relative directed angle between a and b measured with respect to a (directed) axis ω̂ is denoted

as ∡ω̂(a,b) ∈ (−π,π] and defined via the trivariate function acos⋆
3 : R3 ×R3 ×S2 → (−π,π] as

∡ω̂(a,b) = acos⋆
3(a,b; ω̂)

= acos2

(

det(a b ω̂), τ̂ω̂(a)∗ τ̂ω̂(b)
)

= ornt⋆
3(a,b, ω̂) ·acos

(

τ̂ω̂(a)∗ τ̂ω̂(b)
)

.

(A.5)

As abbrevations, the terms ϑ
〈ω̂〉

(b,a) = ϑ
〈−ω̂〉

(a,b) = ∡ω̂(a,b) and ϑ
〈ω̂〉

(a,b) = ϑ
〈−ω̂〉

(a,b) = ∡ω̂(a,b) are introduced.

As before, in the case that a ∈ ω̂⊥ and b ∈ ω̂⊥, the two definitions coincide. For dealing with
directed angles along a mirrored perpendicular, (−1) ·n, or between mirrored vectors (−a or −b),
two related concepts are introduced.

Definition 11 (Conjugation and Inversion). Let ϕ be a directed angle in (−π,π] define (i) the
conjugate angle ϕ ∈ (−π,π], and (ii) the inverse angle ϕ[−1] ∈ (−π,π] as

ϕ := −ϕ+ δπ(ϕ) ·2π ϕ[−1] := ϕ+sign⋆(−ϕ) ·π ,

where the delta function δ = δy(x) = δ(x;y) is defined as δ(x;y) = { 1 x = y

0 x , y .

The conjugation corresponds to a ‘reflection at 0’, the conjugate angle ϕ is the ‘signed variant’ of
the explementary angle ϕ2π := 2π −ϕ � 0−ϕ. The inversion corresponds to a ‘reflection at π’, the
inverse angle φ[−1] is the ‘signed variant’ of the complementary angle ϕπ := π −ϕ. An overview of
the concepts of the Definitions 6, 7, 10 and 11 is given within Table 4; in Figure 12 an example is
illustrated.

Active and Passive. The introduced abbrevations for (directed) angles allow the active and the
passive interpretation of angles as

∡ω̂(a,b) = acos⋆
3(a,b; ω̂) = ϑ

(b,a)

〈ω̂〉

= ϑ
(a,b)

〈−ω̂〉 = ϑ
(a,b)

〈ω̂〉 = ϑ
〈ω̂〉

(a,b) = ϑ
〈−ω̂〉

(a,b) = ϑ
〈ω̂〉

(b,a) .
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Figure 13. Plot of the function
atan⋆

2(y,x) with emphasized image of
the circle (x,y) = (cos(ϕ),sin(ϕ)) for
ϕ ∈ (−π,π].

Figure 14. Two
branches of
acos⋆

2(y,x) with
inverted x axes.

Figure 15. Sketches of
ornt2(a,b)=sign⋆(det(a b)) and of
sgn(a∗b) with a = (0,1)T .

Verbally, the directed angle ∡(a,b; ω̂) around ω̂ which ‘actively’ maps a to b is denoted with right-

to-left arguments in the superscript of ϑ
(b,a)

〈ω̂〉 . It equals the directed angle around ω̂ which ‘passively’

maps b to a, this is denoted with left-to-right arguments in the subscript of ϑ
〈ω̂〉

(b,a).

Appendix B. Vectorial and Angle Axis Representation

Here, the Lie algebra so(3) of skew-symmetric (3 × 3) matrices is briefly called tangential space.
An element φ · ω̂⊗ of so(3) is briefly called tangential vector. Given a rotation matrix R ∈ SO(3),
the corresponding tangential vector φ · ω̂⊗ ∈ so(3) is computed via the logarithmic map as

φ · ω̂⊗ = ln(R) =
φ

2 · sinφ
· (R −RT ) . (B.1)

In the other direction, given a tangential vector φ · ω̂⊗ ∈ so(3), the corresponding rotation matrix
R = exp(φ · ω̂⊗) ∈ SO(3) is determined via the exponential map (Rodrigues formula) as

R = I +sinφ · ω̂⊗ +(1− cosφ) · (ω̂⊗)2 . (B.2)

Fixated Rotation Axis. For deriving a tuple of angle and axis (φ, ω̂) from a tangential vector φ · ω̂,
two options are described: The first option is to constrain the rotation angle, such that φ ∈ [0,π]
holds: in this case, the sign information is contained in the ‘changing’ orientation of the axis ω̂.
The second option is to allow φ ∈ (−π,π] and to fixate the orientation of the rotation axis (to
a given physical setup), such that for all rotations about a line [ ω̂ ], it is ensured that the same
representative ω̂ is used. For example, these two options were crucial in the proof of the mutual
orthogonality of toroids T [+] and T [–] in Section 3.2. For a given rotation matrix R, the first option
with φ ∈ [0,π] is computed using the direct formulas given in the next definition.

Definition 12 (Hashed Angle and Axis). Given rotation matrix R ∈ SO(3), (i) the hashed (undi-
rected) angle φ#

R
∈ [0,π], and (ii) the hashed (directed) rotation axis ω

#
R

∈ S2 are defined as

φ#
R

= ang#(R) := acos
( tr(R)−1

2

)

ω
#
R

= ax#(R) := (R −RT )⊕ .

Given a rotation matrix R and a fixed axis ω̂ the sign of the hashed angle φ#
R

and the hashed axis
ω

#
R

can be ‘corrected’ to the second option via the next definition.

Definition 13 (Argument of a Rotation). Given a rotation matrix R ∈ SO(3) and a fixed, oriented
axis ω̂ ∈ S2, the rotation argument ‘directed angle’ φ = arg(R, ω̂) ∈ (−π,π] is computed as

φ = arg(R, ω̂) := acos2

(

ω̂ ∗ (R −RT )⊕,
tr(R) − 1

2

)

= sgn(ω̂ ∗ω
#
R

) ·φ#
R

. (B.3)

The issue of computing the sign of an angle φ (resp. the orientation of an axis ω̂) appears several
times in this text. In particular, Equation A.1 and Equation A.2 are of the form φ = sgn(φ) · |φ|.
This form also appears in Equation A.5 and Equation B.3 and is important in the final Section C.
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Figure 16. Functions sin(φ
2 ) and cos(φ

2 ) (in red and blue) with angles, 1
4π �−7

4π and 5
3π �−1

3π,
with positive (φ+) and negative (φ−) values, or with principal (φ′) and secondary (φ′′) values.

Active and Passive. For rotation matrices, the active and the passive interpretations are the follow-
ing: An active rotation RA : b a with RA ≡ R(ϑ(b,a), ω̂) is equivalent to b = R(ϑ(b,a)

〈ω̂〉 , ω̂) ·a . This

term is transposed to bT = a∗RT (ϑ(b,a)

〈ω̂〉 , ω̂) = a∗R(ϑ(a,b)

〈ω̂〉 , ω̂) which is rewritten to a∗R(ϑ〈ω̂〉

(a,b), ω̂) =

bT . This is equivalent to the passive rotation RP : a b with RP ≡ R(ϑ〈ω̂〉

(a,b), ω̂), see also [4] for
further details.

Appendix C. Unit Ball and Quaternion Representation

In this section, the relation between the unit ball representation (Definition 4) and the unit quater-
nion representation is described. The definition of a unit quaternion q̂ ∈ S3 in terms of angle and
axis of a rotation reads as

q̂ = q0 + i∗q = cos
φ

2
+sin

φ

2
· i∗ ω̂ ,

see for example, [4]. Generally, there are two quaternions that are identified with one rotation
matrix R, namely, q̂ and −q̂. As before (Section B), two ways are described which constrain the
rotation angle so that one unique quaternion is obtained.

The first option is to require φ′ ∈ (−π,π]. This is equivalent to cos(φ′

2 ) ≥ 0 (see Figure 16) and

the unit quaternion q̂ is element of the ‘upper’ (with respect to ez) hemisphere of S3. The second

option is to require φ+ ∈ [0,2π). This is equivalent to sin(φ+

2 ) ≥ 0 (see Figure 16) and the unit

quaternion q̂ is element of the ‘upper’ (with respect to ω̂) hemisphere of S3.

If the first angle convention is chosen, the orientation of rotation axis ω̂ can not be determined
from q̂ (as in the formulas of Definition 12). If the second angle convention is chosen, it is possible
to maintain the orientation of a fixed rotation axis ω̂ within the quaternion q̂ since a multiplication

by sin(φ+

2 ) ≥ 0 for φ+ ∈ [0,2π) does not change the orientation.

In the case that the second option is chosen, such that φ+ ∈ [0,2π), the quaternion is emphasized
by using a ‘plus’ as

q̂+ =
(

q+
0 , q+

)

=
(

cos
(φ+

2

)

, sin
(φ+

2

)

· ω̂
)

in vector notation. Then, the positive angle φ+ and the fixed direction ω̂ are computed as

φ+ = 2 ·acos(q+
0 ) ω̂ = (q+) .

With this information, the primal and the dual rotation vectors of the unit ball representation,

v′ and v′′, are determined by φ′ =
{ φ+ φ+ ≤ π

φ+ − 2π φ+ > π
and the equations in Defintions 3 and 4.

As mentioned before, the quaternion reflected at the origin q̂− := (−1) · q̂+ represents the same
rotation R as the ‘original’ q̂+. In vector notation, q̂− reads as

q̂− =
(

q−
0 , q−

)

=
(

cos
(φ−

2

)

, sin
(φ−

2

)

· ω̂
)

.

Comparing q̂+ and q̂−, one observes that the reflection by ‘·(−1)’ sends the scalar part q+
0 = cos( φ+

2 )
to q−

0 = −cos( φ+

2 ) and the factor sin( φ+

2 ) of the vector part q+ to the factor −sin( φ+

2 ) of q−. These

two operations correspond to the dualization of the primal angle φ+ to the dual angle (φ+)′′. For
an illustration, see Figure 16.
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In the case that the first convention φ′ ∈ (−π,π] is chosen, this insight follows immediately. In
both cases, the representation via a unit quaternion – following one of the two angle conventions –
and the primal-dual unit ball represention of rotations are related by a bijection: the reflection at
the origin of unit quaternions corresponds one-to-one to the ‘shell-swaps’ (dualization) inside the
unit ball. Due to this correspondance, the unit ball representation may serve as an appropriate
visualization method not only for rotations but also for unit quaternions.

Appendix D. Notation Overview

A notation overview about the symbols used in this document is given the within Table 5.

Symbol Example Interpretation

Operators

‘π’ πa(b) orthogonal projection of b onto a

‘τ ’ τa(b) orthogonal projection of b into the orthogonal complement of a

‘. ’ â = a normalized version of a (scaled to length one)

‘.⊗’ a⊗ skew-symmetric matrix to a

‘.⊕’ S⊕ axis vector to skew-symmetric matrix S

‘∗’ a ∗ b inner product of a and b

‘.l’ al ‘matrix-square’ of a / outer product of a and a, al = a · aT

Angles

‘ϕ’ unspecified angle (assumed to be a primary angle)

ϕ′ primary value of angle ϕ, in (−π,π]

ϕ′′ secondary value of angle ϕ, in (−2π,2π] \ (−π,π]

ϕ conjugated angle of ϕ (signed reflection at 0 / reflected axis)

ϕ[−1] inverted angle of ϕ (signed reflection at π / one reflected vector)

Line Angles

‘ϑ’ angle between (directed) vectors or (undirected) lines

ϑ
〈ω̂〉

(b,a)
(passive-)directed angle from vector a to vector b along ω̂

ϑ
[ω̂]

|a,b|
undirected angle between vectors a and b measured along line [ ω̂ ]

ϑ
[ω̂]

[a|b]
minimal angle between line [a ] and line [b ] along line [ ω̂ ]

ϑ
[ω̂]

]a|b[
maximal angle between line [a ] and line [b ] along line [ ω̂ ]

Rotations

‘φ’ argument of a rotation

φ · ω̂ rotation vector of angle φ and axis ω̂

φ · ω̂⊗ tangential vector of angle φ and axis ω̂

R(φ; ω̂) rotation matrix of angle φ and axis ω̂, R(φ; ω̂) = exp(φ · ω̂⊗)

ω̂l=πω̂(R) orthogonal projection of R onto ω̂, ‘normal component’ of R

RΩ =τω̂(R) orthogonal projection of R onto Ω = ω̂⊥, ‘planar component’ of R

Functions

‘atan⋆
2’ atan⋆

2(sinϕ,cosϕ) sign-consistent inversion of ‘tan’, as atan⋆
2

sin ϕ
cos ϕ

= ϕ

‘acos⋆
2’ acos⋆

2(sinϕ,cosϕ) sign-consistent inversion of ‘cos’, as acos⋆
2(sinϕ,cosϕ) = ϕ

‘sign⋆’ sign⋆(x) generalized signum func., as sign⋆(x) = {+1 for x ≥ 0 | − 1 for x < 0}

‘ornt⋆
2’ ornt⋆

2(a,b) orientation of the sorted set (a,b) of two-dimensional vectors

‘ornt⋆
3’ ornt⋆

3(a,b, ω̂) orientation of the sorted set (a,b, ω̂) of three-dimensional vectors

‘acos’ acos(a ∗ b) computation of the absolute angle between a and b

‘acos⋆
3’ acos⋆

3(a,b; ω̂) comp. of the (active) directed angle from a to b measured along ω̂

Table 5. Notation overview of operators, angles, rotations and functions.
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