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Abstract

As part of ongoing research towards integrating an articulatory
synthesizer into a text-to-speech (TTS) framework, a corpus of
German utterances recorded with electromagnetic articulogra-
phy (EMA) is resynthesized to provide training data for statis-
tical models. The resynthesis is based on a measure of simi-
larity between the original and resynthesized EMA trajectories,
weighted by articulatory relevance. Preliminary results are dis-
cussed and future work outlined.

Index Terms: articulatory speech synthesis, copy synthesis,
electromagnetic articulography

1. Background

This study presents progress towards the integration of an artic-
ulatory synthesizer [1, 2] into a modular text-to-speech (TTS)
framework. The synthesizer, VocalTractLab' (VTL), uses a
three-dimensional, geometric model of the vocal tract that has
been configured to approximate the anatomy of a specific male
speaker of German [3], and provides a set of target configura-
tions of the vocal tract model corresponding to a German phone-
set.

VTL’s synthesis is controlled by means of a gestural score
(a concept borrowed from articulatory phonology [4]), arrang-
ing appropriate articulatory gestures, which are timed in a way
that produces suitable output. While the nature and sequence of
gestures in the score can be generated automatically from tex-
tual input, optimizing their timing presents a significant prob-
lem for the use of VTL as a synthesis back-end in TTS, where
manual optimization at synthesis time is out of the question.

It may be possible to predict the gestural timing automati-
cally using statistical models, but suitable data must be available
to train such models. One possible way of obtaining this train-
ing data is to generate it by resynthesizing real human utterances
with VTL in such a way that the motion of the vocal tract model
matches that of the human speaker as closely as possible, while
producing intelligible copies of the original utterances. This re-
quires a corpus of articulatory movement data such as that ob-
tained using electromagnetic articulography (EMA).

The present study aims to demonstrate a method of achiev-
ing this with as little human intervention as possible, building
on work presented in [5]. In the previous study, nonsense utter-
ances with a phonetically simple structure were resynthesized.
Expert knowledge was used to select a single, most relevant ar-
ticulatory trajectory to be matched. However, in the method we
are currently developing and describe here, the aim is to exam-
ine an optimized cost function, based on automatically derived

"http://www.vocaltractlab.de/
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weights, in order to cope with the increased phonetic complex-
ity of natural utterances.

This study is also exploratory in nature and attempts to
solve some aspects of the overall challenge while avoiding cer-
tain potential problems. In particular, the automatic generation
of gestural scores at this stage still uses the speaker definition
supplied with VTL by its author, which constrains its deploy-
ment to German; additionally, we have sought to circumnavi-
gate the issue of vocal tract normalization between the vocal
tract model and the EMA articulatory movement data by using
the same speaker for both.

2. Method

The method described here centers on the comparison of artic-
ulatory movements in the human vocal tract and the vocal tract
model. EMA requires a significant amount of effort, equipment,
and expertise, tracking the movement of fleshpoints on articula-
tors in the human vocal tract in real time during speech produc-
tion. In contrast, it is trivial to sample the coordinates of specific
vertices on the wire-frame mesh of the vocal tract model in VTL
while a gestural score is rendered. However, the resulting trajec-
tories are comparable, and by quantifying their similarity, it is
possible to select, from a finite set of generated gestural score
candidates, the one whose “virtual” EMA (VEMA) trajectories
are most similar to the real EMA trajectories of a natural target
utterance.

2.1. Gestural score generation

The control structures required by VTL take the form of a ges-
tural score containing consonant and vowel gestures (see [6] for
a detailed explanation). The identity of these gestures is known
from textual input and lexical lookup. In a resynthesis paradigm,
the total duration of the gestural score is equal to that of the pre-
viously recorded target utterance, and this duration can be split
into a number of discrete frames.

Each frame represents a state of the gestural score, in which
a gesture is assumed. The sequence of states required to gener-
ate the target score can therefore be generated by a finite state
automaton (FSA), which, given a number of frames, can be ex-
panded into a transition network. In this network, each row rep-
resents one gesture and each column represents one frame.

Every possible path through the network is equivalent to a
distinct gestural score; the total number of scores ny 4 is given
by the recursive function
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where f and g are the number of frames and gestures, respec-
tively.

Finding the best gestural score is therefore essentially a
forced alignment problem, and since the search space can
quickly become prohibitively large, a dynamic programming
technique such as a Viterbi search is invaluable to efficiently
find the optimal gestural score. One example of such a path
through the network is shown in Fig. 1.

2.2. Articulatory data

In order to avoid the need for vocal tract normalization, EMA
data of the same speaker as that used for the speaker configu-
ration in VTL was required. Of the numerous EMA recordings
available of the speaker in question, a set of utterances was se-
lected that contained 24 normal German utterances’, repeated 7
times each.

This EMA corpus was recorded at the Centre for General
Linguistics (ZAS), Berlin, in 2002. The data was sampled at
200 Hz on a Carstens AG100 articulograph, with measurement
coils in the midsagittal plane, on the lower incisors (L.I), lower
lip (LL), and tongue tip (TT), blade (TB), and dorsum (TD), with
simultaneous audio. Further details of the recording procedure
can be found in [7].

2.3. Error metric

The suitability of a gestural score candidate is determined by
a cost function, which calculates the difference between the
VEMA trajectories synthesized by VTL using this gestural
score, and the corresponding EMA trajectories in the original
data. Our cost function is similar to that of [8], in that a cor-
relation coefficient 7 is combined with the squared error s. to
quantify the similarity in shape of, as well as the distance be-
tween, two trajectories.

c=fset+(1—=f)1—1) (2)

These metrics are balanced by a scaling factor f and weighted
according to a matrix of weights, which stores the relevance of
each articulatory trajectory for the production of each element
in the phoneset. This allows deviation in the shape or scale of
the VEMA trajectories from the corresponding original EMA
trajectories to be penalized much more strongly where the tra-
jectories represent an articulator critical for the current gesture.

2.4. Relevance of articulators

Not every articulatory movement is equally critical to the ges-
tures required for a given phone to be produced; e.g. for the
production of a [z], the TT trajectories are far more relevant
than the LL. To quantify this relevance, a weight is applied to
each articulatory trajectory, in each frame. While it is possible
to define these weights using phonetic expert knowledge, the
task of doing so is tedious and potentially error-prone, and gen-
eral phonetic knowledge cannot always predict which specific
strategies of speech production are actually employed by the
individual speaker whose utterances are to be resynthesized.

A promising possibility is to statistically analyze the EMA
data, given a phonetic transcription, and automatically identify
the articulators relevant to the realization of each phone type.
Such an approach, using Kullback-Leibler divergence, is de-
tailed in [9], and was applied to the EMA data used in this study.

2The utterances were “normal” in the sense that they were well-
formed, grammatical German sentences and did not contain nonsense
syllables.
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| Phone | Identified articulatory trajectories

[9] TTy

[e] TDy

[a] TTy TTx TDy LIx LLy
[ex] LIy TBy LLy

[g] TBx LIy TTy

[h] TTx TDy TTy LIy

[i1] TBx TTy LLy TTx TDy
1 TBx

[m] LIy TDy TTy LLy TDx
[o] TDy TBx TTy LLx LIy
[®] TDx TTy LIy LLx TTx TDy
[v] TTy TDy TDx LIx LLy
[x] LIy

[y:] LIy

[z] TBy

Table 1: Sample results of applying the algorithm presented in
[9] to the German EMA data. For each phone (in IPA notation)
the articulatory trajectories identified as relevant are listed. In
numerous cases, the identified trajectories defy phonetic knowl-
edge, which is almost certainly due to the low suitability of this
particular EMA data set for this type of analysis. Phones for
which no relevant trajectories were found have been omitted
here.

In order to apply this algorithm to the EMA corpus, the
acoustic data was first automatically segmented using forced
alignment with HTK [10] via MAUS? [11].

The results of the automatic identification, listed in Table 1,
are somewhat unsatisfactory. However, it is more than likely
that this can be attributed to any or all of a number of possi-
ble error sources, all of which implicate the data as less than
suitable, not the algorithm itself. In particular,

e the number and placement of measurement coils exclude
the velum and upper lip, so a number of phones cannot
be correctly described with this particular EMA data set;

e only 24 distinct utterances were used, and they are not
phonetically balanced, so there is additional data spar-
sity;

e the phonetic segments were automatically aligned and
not hand-corrected (see below);

e the articulatory trajectories were treated as independent;
it is possible that the “2D” variant of the algorithm,
which combines the x and y trajectories of each mea-
surement coil, would produce clearer results.

The biggest problem seems to be the fact that the segment
boundaries are not optimal. While they were visually checked
for obvious alignment errors, the precision of automatic bound-
ary placement was low. It is observed in [9] that labeling errors
can affect the performance of the algorithm, and our preliminary
results confirm this sensitivity.

Despite the limited applicability of the results obtained
here, the automatic identification of relevant articulators re-
mains an attractive possibility, and will be tested more thor-
oughly on a more suitable EMA corpus. In the mean time, as
a fallback for the present study, we have used a manually as-
signed baseline weighting instead to work around the problems
we have described.

3http://www.phonetik.uni-muenchen.de/
forschung/Verbmobil/VM14.7eng.html
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Figure 1: Transition network for the nonsense utterance [zazazaza], illustrating the search space. The columns represent the frames
of the 2 second utterance (at 10 frames per second; columns labels are frame start times), while the rows represent the sequence of
gestures. The path through the shaded states is equivalent to the least costly gestural score (from [5]).

0.5 10 15 2.5 3.0
Figure 2: Original (top) and resynthesized (bottom) TTy trajec-
tories for the 3 second utterance “Ich habe Daten analysiert”
(“I've analyzed data”) at 20 frames per second. The verti-
cal lines indicate gesture boundaries. The underlying gestural
score was generated in such a way that the global shape of the

trajectories takes precedence over the actual values.

3. Results

Using the method described above, and presuming an appro-
priate cost function, an underspecified gestural score containing
consonant and vowel gestures can be generated for a given ut-
terance in the EMA corpus. As an example, one utterance illus-
trating the VEMA trajectories resynthesized by VTL using such
a score is shown in Fig. 2. It should be noted that priority in de-
termining the gesture boundaries was given to the overall shape
of the trajectories, not the absolute values (see also Section 4.1
below).

Prior to waveform synthesis, the gestural score is enriched
with Fy gestures generated automatically by extracting the pitch
contour from the original utterance (using Praat*), and aligned
with the consonant gestures. The result of the waveform synthe-
sis is shown in Fig. 3.

4. Discussion

We have described a method to automatically generate a gestu-
ral score from a spoken utterance for which EMA data is avail-
able and whose phone sequence is known. The method aims
to find the score which most closely approximates the timing
of the articulatory gestures assumed to underlie the original ut-
terance. By performing this analysis-by-synthesis process for a
suitably large number of utterances, we can build a training set

*http://www.praat.org/
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Figure 3: Original (top) and resynthesized (bottom) utterance
“Ich habe Daten analysiert” (“I’ve analyzed data”); the auto-
matically aligned acoustic segmentation (in IPA) is shown in the
middle.

of gestural scores. These may be used directly to train models
(for example a CART model) to predict gestural score timings
directly from text. Alternatively, by synthesizing the training
set of gestural scores with VIL, a set of parameter trajecto-
ries may be generated, which encode the changing shape of the
vocal tract model over time. These may be used to train statis-
tical models to predict similar parameter trajectories for unseen
utterances, for example using models similar to those used in
statistical parametric speech synthesis [12].

4.1. Vocal tract geometry

By using EMA data from the same speaker as the one whose
magnetic resonance imaging (MRI) data forms the basis for the
vocal tract model’s geometry and target configurations [3], we
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Figure 4: Vocal tract geometry comparison between EMA data
for [s] and [z] and VTL [s]. The EMA data is restricted to one
midpoint sample per segment. Coils are (from left to right) LL,
LI, TT, TB, and TD. Additionally, for the EMA data, all mid-
points are shown in a light color to illustrate the fact that the
distribution of samples for [s] and [z] is much more compact for
some articulators (specifically TT, LI, and LL), which corre-
sponds to their relevance in the production of these phones. The
line represents the vocal tract model tongue contour.

had expected to avoid the need for vocal tract normalization.
However, it was found that several factors disrupt the antici-
pated close relationship.

The arrangement of vertices selected for tracking in the vo-
cal tract model is not exactly the same as the placement of EMA
coils on the speaker’s articulators. While the flexibility of defin-
ing the virtual EMA coils could be improved, even a perfect
match in a given static configuration would not automatically
lead to the same trajectories during resynthesis, since the de-
formations of the vocal tract model surfaces and the speaker’s
articulators are inherently different. Even statically, the vocal
tract model is a parametric representation of the speaker’s real
vocal tract and not intended to reproduce its shape as faithfully
as a static vocal tract reconstruction from volumetric data could.

Finally, the fact that the vocal tract target configurations are
based on MRI data of a supine speaker while the EMA data was
recorded in an upright position leads to an additional, noticeable
effect on the data for the tongue, and (to a lesser extent) the jaw.
A recent study of this phenomenon is described in [13].

The consequences of these issues can be observed in Fig. 4.
Despite these considerations, it may be possible to translate the
geometries in a straightforward manner, an avenue yet to be ex-
plored in the context of this study.

4.2. Open issues

A number of issues await solution before the overall goal of al-
lowing VTL to be used as an articulatory synthesis back-end in
a TTS framework becomes possible. These issues are the focus
of ongoing research and while they lie outside the scope of this
paper, they are briefly addressed here.

EMA Data. A large EMA corpus of over 2,000 phonetically
balanced English utterances has subsequently been recorded
with a single male speaker using a Carstens AG500 3D artic-
ulograph.

2058

Automatic weighting. For a large portion of this corpus, the
arrangement of measurement coils includes the velum, and this
data, along with the corpus design, is expected to yield im-
proved results when analyzed using the method described by [9]
for automatic identification of relevant articulators. While seg-
mentation was also done automatically, the alignment process
was performed with greater care than that mentioned above.

Vocal tract adaptation. The same speaker was also recently
scanned using vocal tract MRI. The resulting volumetric data
can be used to adapt the anatomy of the vocal tract model to this
speaker, and midsagittal scans of dynamic speech production
are intended to define the vocal tract configurations required for
an English phoneset.
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