
Towards a Multi-dimensional
and Dynamic Visualization for ESL Designs

Jannis Stoppe1 Marc Michael2 Mathias Soeken1,2 Robert Wille1,2,3 Rolf Drechsler1,2
1Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

2Group of Computer Architecture, University of Bremen, 28359 Bremen, Germany
3Faculty of Computer Science, Technical University Dresden, 01187 Dresden, Germany

Abstract—Current state-of-the-art approaches for the visual-
ization of systems at the Electronic System Level are dominated
by static and two-dimensional schemes which miss important
features for a proper design understanding. We propose a
system level visualization approach that overcomes these limits
in two different ways. First, it aims for displaying several design
properties using a multi-dimensional visualization space and,
second, makes use of dynamic techniques to emphasize behavioral
information. Overall, the visualization approach enables a better
design understanding but also allows for an easier detection of
irregularities in the considered design. We present preliminary
results based on a prototypical implementation.

I. INTRODUCTION

Visualization techniques play a central role in design un-
derstanding of complex circuits and systems. Existing state-
of-the-art visualization techniques for descriptions at the Elec-
tronic System Level (ESL, [1]), e.g. provided in SystemC,
are dominated by static and two-dimensional approaches that
mainly focus on the representation of the structure in terms
of blocks and connections between them. Annotations may
additionally been used e.g. in order to highlight asserted
connections in different colors or displaying simulation results
at the respective ports. However, important other features
which are crucial to a proper design understanding at the ESL
are hardly covered by these solutions:

1) Previous approaches rely on a two-dimensional visual-
ization focusing on the structure of the system. But ESL
designs are more diverse and require the consideration
of further properties and metrics such as code size
and timing. Hence, a multi-dimensional visualization is
needed allowing for the representation of several design
properties at the same time, and therefore enabling the
designer to understand the connection and correlation
between them.

2) Previous approaches rely on a static representation,
e.g. the representation of the structure or completed sim-
ulation runs. But ESL design heavily include behavioral
descriptions. Hence, a dynamic visualization is needed
that offers to emphasize on the behavioral aspects of the
design such as simulation traces and their effect on the
system state.

In order to implement a visualization approach that considers
these features for a design language such as SystemC two
questions need to be addressed:

1) How can that information be retrieved and
2) how can the information be visualized?
In this paper, we consider these questions. We discuss how

the required information can be extracted from an ESL design
and propose new schemes for their visualization. This leads
to a dynamic and multi-dimensional visualization approach for
SystemC designs which has been prototypically implemented
and evaluated. The results of first case studies show promising
application scenarios of the proposed solution.

II. ESL DESIGN AND THE NEED FOR VISUALIZATION

In order to keep the paper self-contained, this section
briefly reviews the design at the ESL using the programming
language SystemC as well as corresponding schemes for the
visualization of the resulting designs.

A. ESL Design using SystemC

The complexity of hardware designs is still growing expo-
nentially [2]. In order to be able to design such systems, apart
from reusing large parts, more abstract system descriptions
have been developed. One of these more abstract layers is the
ESL. The goal of the corresponding descriptions is to provide
a working simulation of a hardware system (less abstract than
e.g. a SysML specification on the Formal Specification Level
(FSL, [3])) that does not require all information concerning
how the hardware is supposed to be implemented (more
abstract than e.g. a VHDL description on the Register Transfer
Level (RTL)).

The de-facto standard for ESL development is SystemC
[4]–[6]. SystemC is a C++ library that offers structures to
prototype a system and simulate the result. While the behavior
is specified in the SystemC implementation, it is not needed to
determine whether a certain part will later be implemented in
hardware or software. This specific feature is usually referred
to as Hardware/Software Co-Design and can be regarded a
central feature of ESL design, as it relieves the designer from
deciding how certain parts should be implemented and lets her
focus on the desired behavior instead.

This feature has a wide range of implications, especially
with regard to the decision of making SystemC a C++ library.
A single hardware module is not limited in any way. The
description may contain complex loops, large memory alloca-
tions and disallocations, network communication, cloud-based

computation, calls to external programs etc., all of which might
be considered to take place instantaneously for the purpose of
simulation.

The resulting design is composed of simulated hardware
elements (such as modules and signals) and the description of
their behavior (which can be any C++ program code).

Although the overall complexity is reduced (compared to
traditional RTL designs), the diversity of elements results in
more complex structures available for building the system
itself.

In order to better grasp a design, a visualization is usually
presented to the designer. However, the traditional hardware
visualization techniques do not work well with ESL designs
due to the mixture of hardware and software elements. While
the hardware parts of a hardware/software co-designed system
can of course be displayed as such, a proper visualization of
the remaining parts has, to the best of our knowledge, yet to
be developed.

B. Visualizing ESL Systems

Visualization is an important issue for several tasks during
the design process. It can e.g. be used to more rapidly
understand a system, to locate errors in running systems, or
to illustrate the project’s documentation.

Conventional visualization techniques that focus on hard-
ware design do not cover the abstract layers and usually
assume that the modeled hardware is the only part of the
system that needs to be displayed. ESL designs, however, may
have large software parts that cannot be translated to hardware
elements and, hence, are not properly visualized thus far. This
mixture of hardware and software yields two main questions
that need to be addressed for visualizing an ESL design:

1) How can the information needed for this visualization
be retrieved and

2) how should the retrieved information become visual-
ized?

The former question is a problem that is especially apparent
in SystemC: As C++ does not offer sophisticated reflection or
introspection methods, the extraction of program information
at runtime is difficult at best. While SystemC acknowledges
this problem and provides an API that allows the extraction of
sc_object instances, user defined types that are instantiated
and/or referenced by the simulated system should also be part
of a visualization of the system. Also, unlike a hardware
system that has a distinct state for each clock cycle, ESL
designs may execute certain functions without keeping trace
of intermediate states, making the location of certain errors by
means of a visualization of clock-accurate states impossible.

The latter question deals with the differences in paradigms
between hardware and software design. A hardware system
usually consists of a static architecture that changes its states
to generate a certain result. The changing states are often
timed using a clock, resulting in systems that have change
states at fixed intervals. ESL systems do not follow such
a pattern. Although they model hardware systems that do
behave similarly, that behavior is often generated by much less

homogeneous patterns. In case of SystemC, the non-restrictive
permission of any C++ construct gives the designer the option
to use all kinds of behaviors that have no resemblance in
classic hardware systems.

Hardware/software co-visualization therefore is a topic that
— although offering vast potential benefits — is highly com-
plex and has only recently been brought up [7]. While there
are visualization techniques for both, hardware and software
systems, not all methods of both domains may work well
together or show a consistent system. Both, the visualization
itself and the back-end to retrieve the needed data are non-
trivial problems to address, but a more accurate representation
of ESL designs might help to grasp the features of a given
system more easily.

III. DATA EXTRACTION

This section deals with the question how the information
needed for the visualization can properly be retrieved. For this
purpose, the existing approaches for information retrieval are
briefly reviewed first. Then, the proposed solution is sketched.

A. Previous Work

In order to extract the information to be visualized the
design needs to be inspected in some way. Several solutions
have been proposed to achieve this.

One approach is to use a custom SystemC parser [8]–[11].
Although the idea might seem straightforward, the fact that
the simulated SystemC design is created at runtime and might
depend on inputs that are not available before the execution of
the program seriously limits the applicability of this approach.
A parser that could analyze any given SystemC design would
have to inspect all possible paths through the program (at least
until the end of the elaboration phase) which is equivalent
to solving the halting problem. Also, the differences between
C++ dialects and available libraries (which would all need
to be supported by a parser) makes a full SystemC parsing
support infeasible.

A different approach to this problem is to use existing com-
pilers to inspect the structure of the SystemC program [12]–
[15]. The usage of libraries does not pose a problem in
this case. Furthermore, the resulting program can simply be
executed until the end of the elaboration phase to be able to
extract the program state at that point. That is, most of the
problems stated above are solved. Nevertheless, approaches
like this are highly compiler-dependent and need to be re-
developed once a new compiler (or just a new version of an
existing one) is released.

Recently, another approach has been proposed [16] that
uses (1) the compiler-generated debug symbols to extract
static information about class structure, source code etc., and
(2) the SystemC API to extract the instantiated SystemC
objects at runtime. Consequently, all required information can
be extracted without the need to modify either the SystemC
library or the compiler. In fact, this approach is less intrusive
than the compiler approach while still taking advantage of
the existing compilation backend. For our visualization goal,

we make use of this approach in order to retrieve the needed
information. For this purpose, several steps are carried out
independently. These steps are described next.

B. Extracting the Module Hierarchy using the SystemC API

The SystemC API allows to retrieve all registered objects
that inherit the sc_object type, including all modules,
signals, and ports and their hierarchy. The simulated hardware
parts of the ESL design can therefore be retrieved from the
running program without interfering with the compiler or the
library.

Although the call to extract the design could be hooked to
the end_of_elaboration listener, offering the designer
the function to call at the point at which she wants the design
to be extracted (or even extracting it at several points) was the
preferred solution for our case. This allows for a step-by-step
extraction of the elaboration phase to see the system being
instantiated.

C. Extracting Static Information from the Debug Symbols

Instead of parsing the source code or modifying the com-
piler to save the static source code information, the approach
presented in [16] relies on the debug symbols to obtain the
needed information.

The debug symbols are stored by the compiler to be able
to give the programmer information about the program state
during the debugging process. They usually contain all the
structural information of the given program, including links
to the source code files. Although the different compilers are
using different formats, they are usually either human-readable
(i.e. parseable) or accessible using an API.

This means that instead of modifying the compiler (and
thus restricting the project setup to the one modified version),
a common and pre-existing interface is used to retrieve the
static information.

D. Snapshots and VCD for Behavior Retrieval

The repeated execution of the former methods results in a
series of snapshots of the program state that can be used to
depict the behavior of the system. If the debug-based method
is available, the changing values of instances can be tracked
without any further instrumentation, apart from calling the
extraction method. This allows e.g. for the tracking of values
of field variables.

In addition to the methods presented in [16], reading VCD
files during the simulation of the system results in a (nearly)
real-time display of values that are tracked by the designer
during the simulation. Even this straightforward method can
be used to display certain metrics (e.g. how often a signal has
been switched etc.) to show which parts of the design are used
frequently.

E. Additional Information

Supplementing the extraction methods from [16], additional
metrics to support the visualization were extracted directly
from the source code. Although this might at first challenge

SystemC Source Code

Binary
Executeable

Debug Symbols Metrics

compiler compiler analysis

Static
Information

Module
Instances

VCDs

Visualization Input

Fig. 1. System architecture for extracting the data to be visualized.

the notion of using an extraction method that is independent
from parsers to be able to read the full C++ code base,
these additional measures are mere supplements and need the
sources to be extractable.

As the designer is writing source code to describe the
system, measuring the source code is a logical step to illustrate
different aspects of the program. Features such as code com-
plexity cannot be extracted without access to the source code
but might be interesting for the designer when viewing the
system. This additional information is therefore parsed from
the C++ sources if possible.

An overview of different extraction means is given in Fig. 1.
Different sources at different steps during the compilation
workflow are used to gather as much information about the
SystemC program as possible before and during the execution.

In summary, the data extraction methods are based on
the methods proposed in [16] but allow the exploitation of
additional sources in order to provide a more detailed view of
the system.

IV. VISUALIZATION

Having all desired information available, the next step is to
properly visualize them. In this section, existing approaches
are briefly reviewed before the concepts needed to visualize
ESL designs are discussed.

A. Previous Work

Current visualization approaches focus on either software
or hardware designs. For each, there are a variety of methods
or standards available.

Software visualizations have to deal with systems that are
constantly redesigned at runtime: Object instances, which
resemble the concept of a “thing” that does something like a
hardware part, are created and deleted at will. However, unlike
hardware, the program logic itself mostly follows strictly linear
patterns. Although parallel algorithms have started gaining
traction with the widespread availability of multi-core systems
and have always been a focus of super computing systems,
they are still linear patterns that interact at certain points.
UML as a standard to design and visualize software systems
proposes several vastly different views to grasp all aspects

Fig. 2. Visualization as CodeCity

(a) RT level visualization

(b) Gate level visualization

Fig. 3. Classic hardware visualization focuses on static, printable images of
a system.

of a software system, all of which statically represent either
structure or behaviour. The main notion is that UML is a
language that was designed to be printed.

With the advances in computation power that is available
on even mediocre systems, more advanced solutions have been
proposed: visualizations such as gource [17] or CodeCity [18]
use 3D engines to display a software system. In order to
visualize different properties at once, the CodeCity-metaphor
has received attention in the domain of software visualization.
Here, different design properties are displayed in different
“dimensions” of the visualization, i.e. the number of attributes,
methods, and lines of a Java class have been mapped to
three-dimensional cubes that represent buildings in a city.
Classes from the same package were placed in the same
district to emphasize structural interrelation. As an example,
Fig. 2 shows a picture of a CodeCity taken from [18].
Unproportional looking buildings immediately pinpoint the
designer to problematic classes in the software project. The
visualization reveals classes that are too complex in terms of
code and may better be split into subclasses or classes that
are not well-balanced in terms of their number of attributes to
number of methods ration.

Despite the fact that the CodeCity-metaphor is easily com-
prehensible for designers, the metrics that have been applied
for Java source code cannot applied directly to system level
programs written in SystemC. Besides structural information

such as lines of codes, number of signals, number of attributes,
number of methods, and connectivity also quality metrics such
as complexity, maintainability, as well as test and verification
coverage are of high interest to the designer. In particular we
are interested in integrating quality metrics into the visualiza-
tion. In software, e.g. condition complexity [19] measures the
number of linear independent paths in a program. For hardware
an entropy-based concept has been presented in [20].

Overall, while the CodyCity-metaphor is a proper visualiza-
tion technique allowing for a multi-dimensional visualization,
its concepts need to be redeveloped in order to explicitly
support the requirements of ESL designs.

Classic hardware visualization on the other hand usually
evolves around established descriptions for the various levels
of design. This starts on the transistor level, encompasses the
gate level and ends on the register transfer level (Fig. 3 pro-
vides some examples). All these visualizations evolve around
the core concept of hardware: That the system by itself is
fixed and only the information being encoded in it is changing.
These values are often visualized using waveforms that, while
accurate, are not necessarily the best to see connections
between and patterns of the signals. While these concepts do
represent the hardware appropriately, they are not well suited
to illustrate the dynamics of ESL designs.

However, to the best of our knowledge, the combined
hardware/software co-designed systems at the ESL have not
been visualized at all until now. Only recently, a single work
envisioned such systems but did not offer a prototypical
implementation [7].

B. Paradigms

The goal of our solution is to present a working system
visualization that displays different visualization schemes in a
coherent environment. Even if different concepts require dif-
ferent visualization techniques, they should be an integral part
of each other. If viewing both in the same environment is for
some reason not feasible, at least going from one to the next
should be seamless in both directions. A single visualization
for hardware, software, and behavior is anticipated to avoid
repeated swapping of views and to illustrate that the system
in question is indeed a single whole and not a collection of
separated parts.

The proposed system uses CodeCity [18] as a baseline.
The representation of elements using simple geometric shapes
(mostly boxes) does not only keeps the system requirements
low but also all shapes on a common ground level. This
simplifies the orientation in the three-dimensional space. Gen-
erally, this semi-3D view (three-dimensional objects on a two-
dimensional plane) also allows for a simplification of the
navigation: the camera requires less degrees of movement
freedom to view all objects (in our case only a two-axes
pan motion, a one-axis rotation and a zoom), simplifying the
controls to a degree where it is possible to use it on a touch
screen without losing any navigation abilities.

Modules themselves are merely instantiated objects, albeit
of a particular type. However, other objects that are referenced

from the described system should be displayed as well. Apart
from the different semantics, there is no real difference be-
tween these two, so displaying the objects in a similar manner
seems reasonable.

However, presenting all this information at once is usually
too much to be displayed on a single screen. Hence, we apply
a hierarchical view that uses several levels level of details.
By “zooming in”, more details of the respective components
will blend in. The application of this technique results in
an intuitive way to get more information about something in
particular: just get closer to it to see more about it.

To visualize important correlations of system metrics, such
as lines of code and complexity of each SystemC module, the
designer should be able to choose which metrics are important
to him and how they have to be visualized, for example as
height or ground size of a box. Maintainability could be a
suitable metric for this purpose. It reflects the adaptability and
modifiability of a SystemC module which is required to correct
errors or to improve the performance. The maintainability
index as proposed in [21] already provides a proper definition
for this. The goal of such an individually customizable system
representation is to help the designer to obtain information she
needs about certain parts of the system quickly.

Another important part is the behavior of the system.
Using time as a dimension to display itself seems a more
straightforward solution than the classic idea of timelines or
flowcharts, especially when it comes to monitoring running
ESL simulations. While displaying all of a simulation’s states
is out of the questions due to the discrepancy between monitor
refresh rates and simulation speeds, several metrics can be
used to analyze and quantize the system changes over a certain
timeframe. Such metrics could visualize system changes e.g.
by different colors over time. As an example, one can show
how often signals are used in a simulation or the individual
activity of each module. Furthermore, non-functional proper-
ties can be considered if they are available such as power
consumption.

Showing the design’s behavior in a dynamic visualization
for a longer period of time allows the designer to detect
correlations and irregulations among components and signals
which helps for a better design understanding and to find bugs,
respectively.

In conclusion, while there are visualization approaches
for software and hardware systems, especially the hardware
visualizations do not go far beyond classic paper drawings
of circuits and therefore do not really make much use of
the opportunities a computer-based visualization provides. The
visualization of hardware/software co-designed systems which
contain a mixture of both has not been done before beyond
printable layouts (e.g. in SysML). This chapter presented the
issues a visualization for such systems needs to deal with and
presented possible solutions to be implemented.

V. PROTOTYPE

A prototype that shows several of the aspects outlined above
was implemented using LibGDX [22]. LibGDX is a cross

Fig. 4. SystemC modules and connections visualized: modules are represented
by boxes, signals by connecting lines.

Fig. 5. SystemC Design metrics: Modules in this image are dispalyed as
high as its class has lines of code and have a base area that resembles their
respective code complexity

Fig. 6. Visualization of the SystemC RISC CPU example. Module height
represents the size of a module in memory, module width illustrates its amount
of ports.

platform framework which allows to run the prototype on
various systems.

The data representation, as seen in Fig. 4, is fixed concern-
ing its basic structure (e.g. a module is always a gray box),
but different attributes can be mapped to the parameters of
the given object (e.g. a module can be as high as its memory
consumption or as shown in Fig. 5, as large as its class has
lines of code and has a base area that resembles its code
complexity). The connectors are smaller boxes attached to
their belogging modules. The color of each connector indicates
its connector type: Green represents input connectors and blue
output connectors.

For the prototype, a simple layout solution that groups sub-
modules in squares was used. While this is just a quick and
simple solution, it still allows the concept to be illustrated.
Also, there is currently no routing solution used: Connections
between ports are illustrated using Bézier paths that evade
other modules by describing a three-dimensional arc above
the ground plane.

The behavior of the system can be displayed by using the
standard log/dump-files created during a running simulation.
The activity of the system can be displayed in real-time while
the simulation is running or offline. While this limits the data
to be displayed to that which can be extracted using standard
dump-file extraction methods (and therefore e.g. excludes
custom types), it is universally applicable for any SystemC
design and already widely used. Immediate compatibility to
existing project setups is in this case an important factor. Using
other means to retrieve changes that are usually not part of the
manually selected fields and signals would be an obvious next
step for the visualization.

While the current state of the implementation does not cover
all the aspects outlined in Section IV, it illustrates the first
steps towards them. This working proof of concept offers an
interactive view that enables the user to navigate through her
SystemC design in an innovative and intuitive way. As a result,
a new approach is provided which gives the designer a quick
overview of a system and aids the design understanding on a
different level than source code.

VI. CONCLUSION

An approach has been presented to system visualization
that does not rely on printable outputs but instead focuses on
a comprehensive, interactive representation. For this purpose,
new visualization paradigms are exploited that have not been
considered in previous ESL visualization techniques. These
paradigms incorporate multidimensional and dynamic features
in order to represent correlation between several metrics and
to illustrate behavioral information, respectively. The approach
has preliminarily been evaluated based on a prototype. While
this prototype is not yet feature-complete, it shows how a
different approach to hardware/software co-visualization can
result in an intuitive interface to a given design that embraces
all concepts that are part of it instead of separating them.

REFERENCES

[1] B. Bailey and G. Martin, ESL Models and their Application: Electronic
System Level Design and Verification in Practice. Dordrecht, Heidel-
berg, London, New York: Springer, 2009.

[2] P. A. Salvadeo, A. C. Veca, and R. C. Lopez, “Historic behavior of the
electronic technology: The wave of makimoto and moore’s law in the
transistor’s age,” in VIII Southern Conference on Programmable Logic
(SPL), 2012, pp. 177–181.

[3] R. Drechsler, M. Soeken, and R. Wille, “Formal Specification Level: To-
wards verification-driven design based on natural language processing,”
in Forum on Specification and Design Languages, 2012, pp. 53–58.

[4] Accellera Systems Initiative, “SystemC,” 2012, available at
http://www.systemc.org.

[5] D. Große and R. Drechsler, Quality-Driven SystemC Design. Springer,
2010.

[6] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666,
2005.

[7] R. Drechsler and M. Soeken, “Hardware-software co-visualization:
Developing systems in the holodeck,” in Proceedings of the 16th IEEE
Symposium on Design and Diagnostics of Electronic Circuits and
Systems DDECS, 2013, pp. 1–4.

[8] G. Fey, D. Große, T. Cassens, C. Genz, T. Warode,
and R. Drechsler, “ParSyC: an efficient SystemC parser,”
in Workshop on Synthesis And System Integration of Mixed
Information technologies, 2004, pp. 148–154. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.7049

[9] F. Karlsruhe, “KaSCPar - Karlsruhe SystemC Parser Suite,” 2012,
http://www.fzi.de/index.php/de/component/content/article/238-ispe-
sim/4350-kascpar-karlsruhe-systemc-parser-suite.

[10] J. Castillo, P. Huerta, and J. I. Martinez, “An open-source tool for
SystemC to Verilog automatic translation,” Latin American Applied
Research, vol. 37, no. 1, pp. 53–58, 2007. [Online]. Available:
http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-
07932007000100011

[11] C. Brandolese, P. Di Felice, L. Pomante, and D. Scarpazza, “Parsing
SystemC: an open-source, easy-to-extend parser,” in IADIS International
Conference on Applied Computing, 2006, pp. 706–709.

[12] K. Marquet, M. Moy, and B. Karkare, “A theoretical and experimental
review of SystemC front-ends,” in Forum on Specification and Design
Languages, 2010, pp. 124–129.

[13] C. Genz and R. Drechsler, “Overcoming limitations of the SystemC
data introspection,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2009, pp. 590–593. [Online].
Available: http://dl.acm.org/citation.cfm?id=1874764

[14] H. Broeders and R. van Leuken, “Extracting behavior and dynamically
generated hierarchy from systemc models,” in Design Automation Con-
ference (DAC), 2011 48th ACM/EDAC/IEEE, 2011, pp. 357–362.

[15] K. Marquet and M. Moy, “PinaVM: a SystemC Front-End Based on an
Executable Intermediate Representation,” in Proceedings of the tenth
ACM international conference on Embedded software. ACM, 2010, pp.
79–88. [Online]. Available: http://dl.acm.org/citation.cfm?id=1879032

[16] J. Stoppe, R. Wille, and R. Drechsler, “Data Extraction from SystemC
Designs using Debug Symbols and the SystemC API,” in IEEE Com-
puter Society Annual Symposium on VLSI, 2013.

[17] A. H. Caudwell, “Gource: Visualizing software version control history,”
in Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications
Companion. New York, NY, USA: ACM, 2010, pp. 73–74.

[18] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: a
controlled experiment,” in International Conference on Software Engi-
neering, 2011, pp. 551–560.

[19] T. J. McCabe, “A complexity measure,” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308–320, 1976.

[20] B. Menhorn and F. Slomka, “Design entropy concept: a measurement for
complexity,” in Int’l Conf. on Hardware/Software Codesign and System
Synthesis, 2011, pp. 285–294.

[21] K. D. Welker, P. W. Oman, and G. G. Atkinson, “Development and
application of an automated source code maintainability index,” Journal
of Software Maintenance: Research and Practice, vol. 9, no. 3, pp. 127–
159, 1997.

[22] M. Zechner and R. Green, “What’s next?” in Beginning Android 4
Games Development. Springer, 2011, pp. 647–651.

