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ABSTRACT
Our problem is one of a human-robot team exploring a
previously unknown disaster scenario together. The team
is building up situation awareness, gathering information
about the prescence and structure of specific objects of in-
terest like victims or threats. For a robot working with a
human team, there are several challenges. From the view-
point of task-work, there is time-pressure: The exploration
needs to be done efficiently, and effectively. From the view-
point of team-work, the robot needs to perform its tasks to-
gether with the human users such that it is apparent to the
users why the robot is doing what it is doing. Without that,
human users might fail to trust the robot, which can nega-
tively impact overall team performance. In this paper, we
present an approach to the field of semantic mapping, as a
subset of robotic mapping; aiming to address the problems
in both efficiency (task), and apparency (team). First, we
assess the situation awareness of rescue workers during a
simulated USAR scenario and use this as an empirical ba-
sis to build our robots spatial model. The approach models
the environment from a geometrical-functional viewpoint,
establishing where the robot needs to be, to be in an op-
timal position to gather particular information relative to
a 3D-landmark in the environment. The approach com-
bines top-down logical and probabilistic inferences about
3D-structure and robot morphology, with bottom-up quan-
titative maps. The inferences result in vantage positions
for information gathering which are optimal in a quantita-
tive sense (effectivity), and which mimic human spatial un-
derstanding (apparency). A quantitative evaluation shows
that functional mapping leads to significantly better van-
tage points than a naive approach.
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1 Introduction

When a rescue team reaches a disaster environment, they
seldom have information about the spatial organization of
it. The tasks of the rescue team are then to typically ex-
plore the environment, identify objects of interest such as
victims, fires, explosive risks; and perform actions such as
rescuing victims and extinguishing threats. Among these
tasks, exploration and identification of “objects of interest”

such as victims, hazardous substances are tasks that are per-
formable by the robot. See Fig. 1 for illustrations of envi-
ronments in which we have deployed human-robot teams.
For example, in responding to a tunnel traffic accident the
priority is to search for victims (inside cars), whereas in
a freight train accident we need to assess the presence of
dangerous materials. Exploration of the environment helps
build an awareness of the situation which proves invaluable
to rescue workers. The traditional method of a robot build-
ing up it’s own spatial awareness is by building a metric
map i.e. of laser scans and visual information. However
that alone is of limited use to a rescue worker.

Instead rescue workers might be more interested in a
semantic map, which is described in [20] as a map which
contains in addition to metric information, assignment of
mapped features (laser, vision) to entities of known classes.
Semantic maps allow users to communicate to the robot
referring to entities that are present in the environment.
The system matches keywords in this communication with
discovered or added entities in the semantic map. This
communication could be through a spoken dialogue sys-
tem [1, 31] or through a user interface [25]. We discuss in
more detail, the references made to objects in our environ-
ment by rescue workers in §3.

The mentioned approaches [25, 31] use knowledge
bases with associated reasoning engines to gather fur-
ther knowledge of such entities. Our approach differs
from these in that, we perform more detailed functional-
geometrical reasoning and our environment is largely un-
structured. In the field of search and rescue, known or com-
monly expected entities in the case of a car crash would be
cars, victims and so on. In our approach, we make use of a
handwritten OWL/RDF-based ontology based upon objects
of interest that may be observed in a disaster environment,
and their relation to each other. Our approach is functional
in the sense that, the system is adaptable to the functions
that the robot and it’s sensors may possess. We present this
information in more detail in §4.3.

Our approach to semantic mapping address both ef-
ficiency (task), and apparency (team). Our focus is on the
robot exploring and understanding the spatial structure of
the disaster environment from the viewpoint of information
gathering. Objects of interest often “contain” (in the topo-
logical sense) additional information that can be retrieved



from it. For example, a car might contain victims or a bar-
rel might have a label identifying the explosive substances
present within. In the former case, it would help for the
robot to be in optimally computed position to gather infor-
mation relative to the car i.e., the presence and locations
of victims in the car. This is a process of inference and
discovery. Upon the perception of a particular landmark,
inference establishes whether the landmark might contain
particular objects of interest. Gathering information then
turns into verifying whether these hypotheses hold, and if
verified, substantiating them as facts.

The context of our task is one of collaboration be-
tween humans and robots, with both being problem-
holders. The humans need a robot to provide them with
information about an environment which is too dangerous
for them to (currently) enter, whereas a robot needs the hu-
mans to help it to make sense of the environment or to find
its way around. Complications in this collaboration arise
both in its task-work dimension, and the team-work dimen-
sion (cf. [13, 14]): Tasks typically need to be performed
under time-pressure, requiring the robot to execute them
efficiently and effectively; and, the way the robot does so
needs to be understandable or apparent for the human user
to trust the robot in determining and executing its own ac-
tions [6, 11].

(a) (b) (c)

Figure 1. Examples of where we have deployed human-
robot teams: Tunnel accident (a), earthquake (b), train ac-
cident (c). (a) and (c) are at training areas, (b) is real-life
(Mirandola, Italy; July’12).

Our approach achieves efficiency by considering how
the structure of the landmark, the functional capabilities of
the robot, and the actually observed situation around the
landmark, all interact to establish positions where a specific
action can be optimally executed. We refer to these posi-
tions as vantage points. We formulate optimality as a quan-
titative measure of the success of the action, e.g. maximum
visibility into a landmark given position and sensor models.
Apparency is achieved by basing vantage point selection
on the kinds of the inferences humans tend to make about
space and “affordances,” i.e. from a functional-geometrical
understanding of space [5]. For example, if the robot needs
to look into a container-like object like a car, it makes more
sense to be at openings (windows) rather than an arbitrary
end (e.g. the tailpipe). Doing so naturally facilitates mak-
ing better observations, but it also results in behavior which
a human user can intuitively explain – and thus, possibly,
trust.

An overview of the paper is as follows. §2 relates our
approach to other work on knowledge gathering, and ac-

tive visual search. §3 describes a specific search and rescue
scenario, the “tunnel accident”. We describe how rescue
workers explore such an accident and the field data thus
gathered forms the empirical basis for our approach. §4 de-
scribes the approach in more detail, including offline- and
online workflows. §5 presents the experimental setup, and
quantitative results comparing our approach to a naive one,
on a tunnel accident use case. The paper ends with conclu-
sions.

2 Related Work

The basis of our research comes from the field of semantic
mapping which is still at a nascent stage. Most approaches
either use a complex spatial intelligence in structured en-
vironments or conversely a low-level spatial intelligence
in unstructured environments. [20] provides several cases
of semantic relations used to identify and label different
planes of an indoor scenario based on their relative orienta-
tion. Using similar methods, the authors also demonstrate
the identification of a ground plane in an outdoor scenario.
Other indoor semantic mapping approaches include using
laser scan patterns to classify rooms [9] and determining
the type of room based on the objects found in them [28].
These approaches are a computationally interesting form of
semantic mapping, but do not yield more complex spatio-
cognitive structures. On the other hand, our approach uses
human readable ontologies based on task-specific knowl-
edge of human beings. A precursor to our approach was
[30], where authors demonstrated a method for an indoor
robot to recognize common indoor themes like doors, and
the regions for interacting with them. The authors use spa-
tial knowledge based on human interactions with doors to
draw it’s conclusions. A recent approach using spatial on-
tologies was [25], where an indoor robot observed the in-
teraction of a human being with a kitchen environment and
then uses an ontology derived from this knowledge to inter-
act with the objects in that environment. These approaches
are on the other end of the spectrum since the environment
is indoor and controlled.

Another aspect of our approach comes from robotic
exploration of unstructured and previously unknown envi-
ronments. The current state of the art in mobile robotics is
limited in terms of autonomous planning and exploration
of such environments. We would like the robot to be ca-
pable of (collaborative) forms of exploration for informa-
tion gathering, similar to those discussed by e.g. Wyatt et
al [29]. We would like to cast exploration as a continual
planning & execution process in which inferences are made
over what information is missing, where such information
might be gathered, and what actions to perform in order to
gather this information.

This is different from an exhaustive search of the
disaster scene, as would result from typical information-
theoretic approaches to spatial exploration; cf. [26]. It is
more similar to active visual search techniques, in which
vantage points are planned in a particular space to search



for (or observe) a known object. This is potentially a hard
problem to restrict. In [8], an indirect search is suggested,
where searching for one object helps restrict the search pos-
sibilities for a target object. However, Tsotsos [27] showed
even this problem to be NP-hard in the general case. Plan-
based approaches like [1] then couple semantic knowledge
of spatial structure, like basic containment relations, with
search heuristics to help structure the search. A demon-
stration of this approach is even shown in large, unknown
spaces [2, 3]. Our approach relates to work in active visual
search, in that we reason about possibilities for information
gathering in an “indirect search” way (like [8]). We then
use continual planning to drive discovery i.e., we make in-
ferences on the objects we observe which generates new
plans for information gathering.

Functional mapping was coined in [30] in which we
consider only ontological inference to establish functional
aspects of space. In §3 we discuss empirical results from
end-user experiments with human-robot teams [6] in which
human users tele-operating a robot (UGV) displayed “ex-
actly” the kind of behavior in selecting optimal viewpoints
for exploration as predicted by our approach. In §4 we de-
scribe a combination of top-down ontological inferences
about the structure of 3D landmarks, with Support Vec-
tor Machines(SVM)-based probabilistic inference for de-
termining optimal positions relative to a given landmark
and (inferences over) a given robot morphology includ-
ing physical shape and sensor characteristics. We provide
a more precise, functional-geometrical characterization of
space in terms of the environment and the way the robot
(given its configuration) can interact with it. Furthermore,
we provide a setup for quantitative analysis of the approach
(in simulation), and present experimental evaluation re-
sults. The idea of deriving inferences from ontologies de-
tailed with task-specific human knowledge comes from pa-
pers such as [10,30]. Our approach makes a concise model
of optimal positions for performing specific tasks similar
to the approach [25]. The authors have a concept similar to
functional mapping called action-related places. Action-
related places use training data to create point distribution
models to reduce the dimensionality of successful poses to
perform a task. These point distribution models are then
sampled from during testing operations. Our approach per-
forms more complex geometrical inferencing, over more
generalized objects and robot types and stores the success-
ful poses as SVMs in the ontology.

3 Empirical Basis

Our scenario is one that involves a human-robot team
jointly exploring a traffic incident in a tunnel. Vision
is impaired by smoke filling the tunnel. We have per-
formed high-fidelity simulations of the disaster scenario,
with robots and firefighters at the training site of the Ital-
ian National Fire Watch Corps (SFO at Montelibretti, Italy)
and at the one of the Fire Department of Dortmund, Ger-
many (FDDO). In the setup at SFO, we wanted to observe

the visual points of attention that firefighters maintained
during a rescue operation and match these with their spoken
communication. For this reason, they were equipped with
eye-gaze machines that track their visual attention [16],
and their communication during several mock rescue op-
erations was also recorded. A sample audio recording of a
firefighter read as follows:

(1) A car, a civil car, with some people inside.

(2) A family. People. A woman drives. A person in the front seat.
A child. Another child in the rear seat. Another child, a baby.

One thing that can be observed here is the felicitous use of
hearer-new definite descriptions (marked in italics) [22,23].
Definite descriptions are supposed to refer to mutually
known entities in the domain of discourse. The informa-
tion of the structure of the car (eg: rear seat) is from the
mental representation of the firefighter, where the represen-
tation of a car has been evoked by the indefinite description
“a car” (the so-called trigger entity). And through his prior
knowledge about cars he can be assumed to know that cars
in general have (front and rear) seats. Such uses of a defi-
nite description to refer to an implicitly evoked entity that
can be inferred based on background knowledge are called
“inferrables” [23] or “bridging anaphora” [4]. The group of
bridging anaphora that come into play in our recordings are
the so-called “indirect references by association”, which
Clark explains with their predictability as being an asso-
ciated part of the trigger entity. From the transcriptions,
we observe that the firefighter’s task is tightly correlated
with the hierarchical composition of the spatial structure:
the tunnel contains cars, which in turn contain victims; a
truck, which typically contains goods; and barrels which
usually contain (potentially hazardous) substances. It is
generally assumed that humans adopt such a (partially) hi-
erarchical representation of spatial organization [19]. This
demonstrates the kind of inferences on background knowl-
edge that the robot must perform, not only to autonomously
determine a plan for locating victims but to produce and
comprehend natural language scene descriptions.

At another simulation scenario at FDDO, firefighters
were given tele-operational control of the robot. The sce-
nario was of an unknown smoke-filled environment and
where they had to record the positions of vehicles, vic-
tims and hazardous material that they observed. Our inter-
est in the experiment was to notice the vantage points the
firefighters assumed when observing the inside of a car to
look for victims, when looking at a motorbike, and explo-
sive barrels. Once the trials were completed, we marked a
boundary of 1 meter around the regions of interest (the car
windows, the motorbike, and the barrel). We assumed that
this was a sufficient visual range for affording the function
of observing these regions of interest. We call the areas
marked off by the boundaries as ‘functional areas’ – since
these areas enable the function of observing these regions.
In Fig. 2, we show the runs of three of the firefighters who
participated in our experiment. Table 1 shows the percent-
age of ‘observation time’, or time spent inspecting the re-
gions of interest. We further mention the percentage of the



Figure 2. Maps acquired by tele-operation in FDDO, Germany, showing points from where observations/transcriptions were
made(red), points of attention which they were observing(yellow), functional areas(light blue) and the path of the robot (blue
trajectory).

Participant Percentage
of ob-
servation
time

Percentage
of ob-
servation
time in
func-
tional
areas

Percentage of
observation time
in functional
areas of differ-
ent objects of
interest

Vehicles Expl.
Barrels

1 38.17 66.7 86.67 13.33
2 53 97.6 0 100
3 48 65.3 41.96 58.04

Table 1. An analysis of the time spent for the tele-operated
runs shown in Fig. 2

observation time spent in functional areas of objects. From
the data, we notice that Participant 1 and 3 spent over half,
and Participant 2 spent nearly all observation time in the
functional areas, divided into time spent observing vehicles
and threats. This confirms our belief that rescue workers
do employ strategic vantage points to observe regions of
interest. We would like our robot to draw similar human-
compatible spatial inferences to search for victims.

4 Approach

The following subsections detail various aspects of our ap-
proach. §4.1 describes the use of autonomous control in
the system with a review of autonomy in HRI. §4.2 is a
description of the semantic mapping system that supports
our approach. §4.3 explains our use of ontology and sub-
sequent reasoning. §4.4 explains the measure of visibility
used for the search of victims in the car accident scenario.
§4.5 and §4.6 explain the offline and online workflows used
in our approach.

4.1 Link to Autonomy

Autonomous navigation of an unstructured disaster envi-
ronment is a collaborative task, where full robot autonomy
is currently beyond our scope. We have conducted sim-
ulated search and rescue exercises with firefighters in Ger-
many and Italy and also been involved in a real rescue effort
after the earthquake in Mirandola, Italy in 2012. We notice
that rescue workers come under a lot of stress in such ex-
ercises and have to often conduct several tasks simultane-
ously e.g., rescuing victims, observing a scene, conveying
information to superiors and discussing plans.

In a landmark report on the study of autonomy in
human computer interaction, Sheridan [24] introduces the
term levels of autonomy to indicate the different autonomy
options that could be presented to the system operator. Fur-
ther research in this field [7] studies the application of lev-
els of automation on performance and cognitive workload
in a dynamic control task. In a study on the effect of lev-
els of automation on air-traffic control operators, Parasura-
man [21] finds that varying the levels of automation appro-
priately can improve their working efficiency. The levels
of autonomy should be varied according to task difficulty.
Parasuraman uses the 10-point level of autonomy scale in-
troduced by Sheridan from level 1 being complete teleop-
eration to level 10 being complete autonomy.

Our task of the control of a search and rescue robot is
a cognitively demanding task like that of an air-traffic con-
troller. Thus we choose to apply the same system of levels
of autonomy. Traversal over a rough pile of rubble requires
complete operator control. On the other hand, robot navi-
gation over a relatively flat surface can be an autonomous
task. Operator control can bypass the autonomous motion
if the operator thinks the robot is performing the task wrong
or if the robot requires help. In the task of locating victims
in a car crash scenario, we would like the robot to proceed
to the most viable points of gathering this information, pro-
vide continuous video feed to the operator and only have
the operator intervene if the operator does not agree with
the robot’s plan or if the robot is stuck and requires teleop-



Figure 3. A screenshot of a simulated scenario with the
NIFTi robot. The red arrows indicate the vantage point
poses for looking into the detected car.

eration.
This model are applied to other functionalities of our

scenario too. For example, when the robot’s vision compo-
nent detects a crashed car with a low level of accuracy, it
will ask the user to verify the detection. This which falls
under level 4 of the model i.e., “(the robot) suggests one
alternative and awaits user input”. When the robot decides
upon a car to explore, we indicate through the semantic
map, the goal poses of the robot’s navigation and embed
them in the graphical user interface. The robot then exe-
cutes that plan and allows the human operator the possi-
bility of vetoing the suggestion. This falls under a higher
level 7 in the levels of autonomy, namely “(the robot) ex-
ecutes automatically, and necessarily informs the human”.
The descibed scenario is demonstrated in a screenshot of
our graphical user interface shown in Fig. 3, where a sim-
ulated rescue scenario is underway at the firefighter school
(SFO) in Montelibretti, Italy.

4.2 Semantic Mapping

As described in §1, we use semantic maps that are metric
maps annotated with additional information. This infor-
mation can include entities perceived by the robot, entities
perceived by the user or entities derived by the robot. As
will be described in §4.3 and §4.5, the robot queries it’s on-
tology for information and derives relations based on the
information.

Fig. 4 shows the entities that are present in our se-
mantic map. The base entity is called an Element Of In-
terest. This can be subdivided further into areas, locations
and objects. The areas would be defined in the message by
a polygon, the location by a point and the object by a point
and further properties. The Car Object Of Interest shows
elements that are contained (in a topological sense), within
the type. The Window is an element that is stored in, and
can be derived directly from the ontology. The Vantage-
Point Pose and Functional Area are elements that denote
optimal viewpoints for inspection inside the car. They are
computed by the robot through geometrical inferencing de-
scribed in §4.5. These entities are displayed on the user

Element Of Interest

Area Of Interest Object Of Interest Location Of Interest

Car Object Of InterestVictim Object Of Interest Sign Object Of Interest

Functional AreaWindow Vantage-Point Pose

Figure 4. The semantic mapping entities present in the
NIFTi system

interface as shown in Fig. 3, where a Car Object Of Inter-
est and Vantage-Point Poses can be seen. These can then
be interacted with by the user, talked about through spoken
dialogue or used by the planning subsystem.

4.3 Ontology

Our use of semantic mapping is to attach meaningful cat-
egories to areas in the metrical map. In [31], a mobile
robot drives around an indoor scenario and assigns labels
to certain areas based on their physical charecteristics. It
first generally labels all explored areas as ontological in-
stances of the class Area. Based on further exploration, it
is then able to further classify them as of class type Room
or Corridor based on the analysis of the metrical map. It
does so by using a hand-written ontology and by reasoning
about categories based upon relations of specificity like is-
a i.e., Room is-a Area. Further if an object of class Couch
is found in this area, through a relation of object contain-
ment it could make an associative relationship e.g., Room1
has-a Couch. Fig. 5 shows a sample of our ontology of a
car accident domain where similar relationships are shown.
The arrows signify the classification relationship is-a, and
several has-a relationships have been indicated for the class
AudiR8. The has-a relationships specify for e.g., the geo-
metrical structure of the car like the positions and dimen-
sions of the windows and the car cabin.

We use a handwritten OWL/RDF-based ontology
with manufacturer information about “car-accident” do-
main entities such as cars, robots, their sensors and so on.
In our previous paper [15], we retrieved geometrical fea-
tures of car models and functional and geometrical features
of robot and sensor models from the ontology to use in our
computation of optimal poses for finding victims.

In this paper, we extend the ontology to include infor-
mation of the car cabin (i.e., the space where the passengers
are seated). As will be explained in §4.4, we then com-
pute information regarding the optimal “vantage points”,



Figure 5. An excerpt of the car accident domain ontology. Details of a car with geometrical information as well as computed
SVM models for visibility can be seen.

to look for victims inside the car cabin. We do so by query-
ing the ontology for physical and functional parameters of
the scene and use them as spatial parameters in our cal-
culation of these vantage points. This is done during an
offline step, and is added back to the ontology as explained
in §4.5. We use SVMs to concisely represent the vantage
points. The relationship has-a for representing the vantage
points for the car Audi R8 in terms of SVM models can
also be seen in Fig. 5. It is important to note that although
we are computing the optimal positions for looking into
a Car through a Window, our approach is relevant to any
members connected by the is-a relation to these entitites
i.e. Container and Opening. Thus it may be just as easily
applied to inspection of a container on an automatic pack-
aging line, robots working on automobile production etc.

To extract information from the ontology we submit
queries to the HFC reasoning engine with a standard OWL-
DL rule set and some custom rules [17, 18]. For example,
to retrieve geometrical information about the corner points
of the car cabin of the Audi R8, we submit the query:

SELECT DISTINCT ?pnt WHERE <funcmap:AudiR8>
<funcmap:hasPart> ?carcabin & ?carcabin <rdf:type>
<funcmap:CarCabin> & ?carcabin <funcmap:hasShape>
?shape & ?shape <funcmap:hasPoint> ?pnt

We submit similar queries to retrieve information
about the SVM models that we store, robot and sensor
information etc. The NIFTi robot possesses a detachable
robot arm, that is seen in Fig. 6 used to look into a car. The
ontology possesses information about the robot’s morphol-
ogy, any arms or cameras attached etc. If we would like to
find out physical properties for e.g., the range of the camera
that is mounted on the arm of the robot, we would submit
the query:

SELECT DISTINCT ?range WHERE
<¡funcmap:NIFTiUGVWithArm> <funcmap:hasPart>
?arm & ?arm <rdf:type> <funcmap:RoboticArm> &
?arm <funcmap:hasPart> ?camonarm & ?camonarm

Figure 6. The NIFTi robot looking into a car with the arm.
The physical configuration of the arm is written into the
ontology for use during reasoning.

<funcmap:hasRange> ?range

Naturally the queries to determine camera properties,
could be modified if we queried and found out that there
was no arm on the robot. This helps the flexibility of our
approach, as we can query variable configurations and per-
form our geometrical reasoning on the basis of different
configurations. We use the same method to find out the
camera’s field of view, the degrees of freedom and reach of
the arm etc.

4.4 Measure Of Visibility

The measure of visibility is a measure of the likelihood
of a human operator succesfully locating a victim through
looking at the robot’s camera feed from a certain position
around a car. In [15], we used the area of the car window
visible in the visualization cone of the robot’s camera(the
viewable volume in front of a camera) as shown in Fig. 7,
comparing it to the average size of a human face, which
would be detectable by a vision component running face
detection algorithms. However, we found that face detec-



tion is unreliable in smoky environments that we typically
find in such disasters, and the measure was not very accu-
rate as it ignored the rest of the car cabin where victims
may also be found. As mentioned in our discussion about
sliding autonomy in §4.1, our scenario is one where the op-
erator is overviewing the video feed provided by the robot.
We feel the operator is in a better position to do a critical
task such as determining if a certain area in a smoky video
feed contains a part of a human being, thus removing the
autonomy from the robot in that particular task.

In our current approach, we feel a better measure of
visibility would be the volume of the car cabin, which is
where the passengers are located, that is visible from a cer-
tain robot position. The idea is that, if we then plot a path
of such viable locations, we want to maximize the volume
of the car cabin visible in the robot’s camera feed while
the robot maneuvers through that path. That will then give
the human operator the highest possible chance of locating
a victim in the region of the car cabin. To have an idea
of the volume of the car cabin, we fill the model of the
car cabin with equal radii packing spheres in a hexagonal
close-packing arrangement, as shown in Fig. 7. This ar-
rangement has the highest packing density. We then calcu-
late the visibility measure from any robot position around
the car as, the ratio of the packing spheres visible from that
location to the total number of packing spheres. The algo-
rithm for computing the visibility measure is then given by
Algorithm 1.

To demonstrate the visual region that can be seen by a
camera, we use a visualization cone that contains the re-
gions that a camera can see from a certain position. In
Fig. 7, we can see the visualization cone from a certain
position around the car model looking towards it. Let the
visualization cone have a horizontal angle H and a vertical
angle V, rhv be a ray of the cone with angles h and v, R be
the reliable range of vision for the camera in this scenario,
pcam be the camera, S be the set of packing spheres, rsph be
their radii and W be the set of window polygons. Let the
expressions ray(A,B) be a ray from point A to B, dist(A,B)
be the orthogonal distance between A and B, proj(A,B) be
the projection of ray A on ray B, and int(A,B) be the point of
intersection of ray A on polygon B. In Algorithm 1, equa-
tion 6 isolates only those spheres that the current ray passes
through. Equations 7 and 9, then are criteria on whether the
length of intersection of the ray and the point, and that of
the ray and window; are less than the visual range of the
camera. The visibility measure is then calculated in Equa-
tion 19.

4.5 Offline Workflow

We use Support Vector Machines (SVMs) to form concise
models of high-visibility yielding vantage point poses. We
use the RBF kernel and our 3 input parameters are the X,
Y coordinates and the 2D angle of the robot with respect to
the detected car(θ). In Fig. 7, we can see car windows and
search spaces corresponding to each of them. Using linear

Figure 7. (clockwise from top-left) :(a) A sketch of a robot
looking inside a car, the camera’s visualization cone with
horizontal angle H and vertical angle V is able to view
an area A of the car window;(b) a car cabin(pink frame)
with packing spheres (multi-coloured);(c) a sketch of a
visualization cone of a robot’s camera(black) looking at
a car cabin (pink) through car windows (blue polygons),
also shows search spaces(red), car outline(green) and robot
pose(blue arrow). Figures (b) & (c) are constructed from
information extracted from the ontology for the Ladybug3
camera and an Audi R8 car

iterators(lin), say of 10-2 of searchspace side length, and
angular iterators(ang), say (π/16); for each search space we
generate a search set(S) of 16 ∗ 104 robot poses. With the
addition of the arm, we simply increase the number of it-
erations in the searchspace, including iterations from the
minimum to maximum reach of the arm. For each of these
poses, we then compute the measure of visibility(vismes)
as described in §4.4.

Of these values, a large number give zero visibility.
The others give varying amounts of positive visibility. We
use a system of set of varying thresholds(T), based upon
the top percentile of positive visibilities. We think this will
give the human operator, a choice between very high vis-
ibility (say top 10%) or a larger range of visibilities (say
top 50%). The online step of the algorithm is very fast,
so the human operator may switch between various ranges
of visibilities very easily if desired. The thresholds also
help in the evaluation of the method in §5. We choose a
specific threshold thus classifying the set S into 2 classes.
We choose the best RBF kernel parameters (c and γ) by
performing cross validation through coarse(CG) and fine
grid(FG) search parameters on these 2 classes. We then
use these best parameters to create an SVM model (Msp,t)
for this particular search space and threshold, consisting
of about 500 support vectors. The robot would finally store
the SVM model along with the search space parameters and
the threshold to the ontology.

Typically a robot (r) would perform these steps offline



Algorithm 1 Computing visibility of car cabin from single robot pose

1: nsph ← 0
2: Ntot ← |S|
3: for h← 0, H do
4: for v ← 0, V do
5: for all sc ∈ S do
6: if dist(rhv, sc) < rsph then
7: if proj(ray(pcam, sc), rhv) < R then
8: for all win ∈W do
9: if dist(int(rhv, win), pcam) < R then

10: nsph ← nsph + 1
11: S ← S − sc
12: end if
13: end for
14: end if
15: end if
16: end for
17: end for
18: end for
19: vismes← nsph/Ntot

on all car models (V) present in it’s ontology. For a car
model(v) we get the search space set (SP) and from both
robot and car we get the physical (window, car cabin di-
mensions) and functional (camera range, view angles) pa-
rameters (paramphy,fun). These steps are shown in Algo-
rithm 2.

One iteration of the offline workflow takes about 6
hours on a fairly powerful computer (8 core, 2.8GhZ). We
argue that this is acceptable, since this offline process has to
be performed only once on every robot for every car model
present in the ontology. The SVMs also clearly reduce the
dimensionality of the vantage point poses, enabling them
to be stored easily in an ontology. Retrieval of SVM model
can be easily done through queries, and once retrieved com-
puting the classification for a test pose is a simple process.

4.6 Online Workflow

Fig. 8 shows the online workflow, which takes place af-
ter the offline workflow has been completed for every car
model. In step 1, when a car is detected, the robot retrieves
from the ontology for that particular car model each search
space and threshold, the SVM model and linear and an-
gular iterators it had stored in the last step of the offline
process. In step 2, a particular search space and threshold
are chosen. All search spaces may be chosen one at a time,
or a certain search space may be chosen for proximity to
the robot to have a quick look. The thresholds are cho-
sen according to the operators choice, based on the type of
visibility desired, i.e. high visibility or a broad range of vis-
ibilities. In step 3, using the linear and angular iterators of
the search space, a random robot pose is generated. If the
robot has an arm, this is detected by looking into the ontol-
ogy. If so the length of the arm is also randomized through
iterators. Then the robot pose is appended with this arm

Algorithm 2 Offline workflow
1: for all v ∈ V do
2: SP ← GetSearchSpaces(v)
3: paramphy,fun ← GetParameters(r, v)
4: for all sp ∈ SP do
5: S ← GenerateSearchSet(sp, lin, ang)
6: for all s ∈ S do
7: vismes←MeasureOfVisibility(s)
8: end for
9: S ← (S, vismes)

10: for all t ∈ T do
11: S ← ClassifyThreshold(S, t)
12: CG← (..2−9, 2−7, 2−5, 2−3, 2−1, 2, 4, 8, 16..)
13: for all cg ∈ CG do
14: (ccg, γcg)← CrossValidation(cg, S)
15: end for
16: (cb, γb)← max(ccg, γcg)
17: FG← (..(cb, γb).2

−0.3, (cb, γb).2
−0.1..)

18: for all fg ∈ FG do
19: (cfg, γfg)← CrossValidation(fg, S)
20: end for
21: (cb, γb)← max(cfg, γfg)
22: Msp,t ← CreateSVMModel(cb, γb, S)
23: AddToOntology(Msp,t, sp, t, lin, ang)
24: end for
25: end for
26: end for

length. Next, the robot pose is checked against the SVM
model to see if it is classified in the class of visibility above
the threshold. This process is repeated till a suitable pose
is found. For all the cases that we have tested, this takes
a very short amount of time, upto 5 seconds. We believe
this is a reasonable amount of time for getting a pose that
might yield good visibility. Additionally, it is also possi-
ble to check the measure of visibility for this pose against
the car model, which can be evaluated very quickly. How-
ever, this is usually not necessary as the cross-validation
performed in the offline step usually produces a very high
rate (> 95%), as the successful cases are well ordered and
can easily be clustered. Finally, this vantage point pose can
be used as a planning coordinate.

Figure 8. Schematics of the online functional mapping
workflow



5 Experiment

5.1 Impact of Environment on Real Trials

Performing experimental trials in our setup requires a ro-
bustly working mapping, vision detection and planning in-
terfaces. However the state of the art in these components
as applied to outdoor scenarios does not ensure a robust
system. The vision detection system used in NIFTi is de-
scribed in [12]. The real scenario consists of a mixture
of unpredictable lighting and prescence of smoke that im-
pairs robustness in live experiments. The state of the art
in path planning in unstructured environments is not reli-
able enough for live experiments either. In most current
approaches, it is required at the very least that the area be
premapped. This is not a realistic scenario.

In §2, we explain the Action-Related Places approach
in comparison to ours. For this approach, autonomous
motion could be implemented since the environment was
largely static, indoors and planar. The object detection was
robust since the authors were detecting kitchen items in in-
door environments as compared to vehicles in our case. For
these reasons, we have chosen to demonstrate our results in
simulation.

5.2 Simulation Experiments

We found our method difficult to evaluate during real ex-
periments, due to unreliable results from the vision and
navigation components, which are managed by other part-
ners in our project. This is expected as given the severe en-
vironmental conditions (uncertain lighting, smoke, rough
and uneven terrain, unexpected obstacles) in these scenar-
ios, the current state of the art approaches in these fields do
not perform robustly. Thus it is difficult to obtain test data
from a real scenario. Instead we run the offline workflow
as usual, and generate the poses from the online workflow.
We then check the measure of visibility obtained from these
poses on a simulated car model which is generated from the
car dimensions of the ontology.

We compare the visibility obtained from these poses
to pose obtained from a more naive approach. For the naive
approach, we wanted to choose poses that do not consider
the structure of the car but are aware of the position and
size of the car. These dimensions can easily be seen from a
2D occupancy map, like one that is generated from a laser
scan with 2D mapping. The positions of the naive approach
were random points around the car up to a distance of the
search space length of 3m. The directions of the robot for
the naive approach, were chosen such that they pointed to
any point on the model of the car. Thus the robot in the
naive approach has an understanding of where the car is,
but does not know what parts it is composed of e.g., win-
dows.

We calculated the measures of visibility obtained
from 5000 robot poses generated from the functional map-
ping approach and the naive approach. We performed ex-

Case Threshold Naive Functional
Visibility Algorithm Mapping

Percentage Visibility Visibility
50% 1.3732 % 2.6416%

1 25% 1.3012 % 3.4687%
10% 1.3623 % 4.6090%
50% 0.9352 % 1.5547%

2 25% 0.9107 % 1.6379%
10% 0.8997 % 2.0271%
50% 6.9358 % 11.6519%

3 25% 7.4886 % 15.8252%
10% 7.3456 % 22.5355%
50% 2.5736 % 5.3523%

4 25% 2.7935 % 6.0341%
10% 3.0426 % 6.9374%

Table 2. Comparison of achieved positional visibility by naive
algorithm and functional mapping. Case 1 was with the NIFTi
robot and the Audi R8, case 2 with the NIFTi robot and the BMW
3Series Sedan, case 3 with the Pioneer PeopleBot and the Audi
R8 and case 4 with the NIFTi robot with the arm and the Audi R8

periments with 2 robot models and 2 car models and got
consistent results for all the cases.

Table 2 summarizes the results. We used as robot
models the robot developed during the NIFTi project which
is equipped with a Ladybug 3 omnicamera at a height of 40
cm and the popular Pioneer PeopleBot equipped with two
Flea 2 cameras fitted on the top of the robot at a height of
about 145 cm. We have an additional configuration of the
NIFTi Robot equipped with a customized arm. The arm
only has a degree of freedom in the vertical direction. It is
mounted at 34 cm and has a vertical reach of 112 cm. The
arm has a Flea 2 camera mounted for the simulation. From
the results, we see that even using a poor threshold of 50%
i.e., using 50% of non-zero visibility poses as a basis for
the SVM model yields almost twice as good visibility of
the car cabin as the naive approach. As we reduce the suc-
cessful visibility threshold percentage to 25% and 10% we
get even better results with about thrice as good visibility
as the naive approach. We see a similar trend among all the
robot and car models tested. Though, we do notice that the
NIFTi robot with the arm does not perform as well as the
PeopleBot which is slightly taller and has 2 cameras. This
could also be because the visibility poses from the NIFTi
robot with the movable arm are distributed along different
heights. Since the PeopleBot is at a fixed height the dis-
tribution of the poses would be more uniform. Also, the
visibility from the naive approaches are rather uniform in
all the cases demonstrating that 5000 poses are enough for
a reasonable comparison. The difference in height and the
use of an additional camera would explain the much higher
visibility for the Pioneer PeopleBot. In our computation of
visibility measure, we only add the shared visibility of any
attached cameras once. Fig. 9 shows 300 poses generated
from the functional mapping workflow and the naive algo-



Figure 9. 300 poses generated for a test case by the (top)
Functional Mapping and (bottom) Naive algorithms. The
red and green arrows are the poses, pink frame in the cen-
ter is the car cabin, blue polygons are windows and red
polygons are the search spaces

rithm for case 1. We choose 300 as it is not as crowded as
5000 poses and the directionality of the generated poses of
the functional mapping approach are clear and evident.

6 Conclusions

We demonstrated a method for the interaction of a robot
with 3D landmarks in a search and rescue environment,
based upon ontological knowledge, both pre-existing and
additionally computed, as an aid to collaborative efforts by
human-robot rescue teams. In particular, we analyzed the
case of victim search inside crashed cars. We developed
a workflow that concisely represents successful poses of
looking into cars (of the order of 100s of thousands) into
200-500 3-attribute SVM vectors per opening that affords
such visibility. We store these SVM vectors and the corre-
sponding search spaces into the ontology, which is retriev-
able during real-time operation. The time taken to gener-
ate a successful pose from these SVM models is about 1-5
seconds which is acceptable in real-time. We performed
experiments on some car models and robot configurations
and found that poses thus generated by the functional map-
ping workflow perform far better than those by an algo-
rithm naive of the ontological knowledge.

In the future, we plan to perform experiments with a
navigating robot, with a camera on a movable arm and plan
trajectories around several crashed cars that optimize the
amount of visualization inside these cars. Further, we plan
to extend the notion of openings and containers to other
use cases e.g., entering a hole into a room of known dimen-

sions, climbing a known stairway and so on.
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