
Preliminary Report. Final version to appear in:
GraMSec’14

Possibilistic Information Flow Control for Workflow
Management Systems∗

Thomas Bauereiss Dieter Hutter
German Research Center for Artificial Intelligence (DFKI)

Bibliothekstr. 1
D-28359 Bremen, Germany

thomas.bauereiss@dfki.de hutter@dfki.de

In workflows and business processes, there are often security requirements on both the data, i.e. con-
fidentiality and integrity, and the process, e.g. separation of duty. Graphical notations exist for spec-
ifying both workflows and associated security requirements. We present an approach for formally
verifying that a workflow satisfies such security requirements. For this purpose, we define the seman-
tics of a workflow as a state-event system and formalise security properties in a trace-based way, i.e.
on an abstract level without depending on details of enforcement mechanisms such as Role-Based
Access Control (RBAC). This formal model then allows us to build upon well-known verification
techniques for information flow control. We describe how a compositional verification methodol-
ogy for possibilistic information flow can be adapted to verify that a specification of a distributed
workflow management system satisfies security requirements on both data and processes.

1 Introduction

Computer-supported workflows and business process automation are widespread in enterprises and or-
ganisations. Workflow management systems support the enactment of such workflows by coordinating
the work of human participants in the workflow for human activities as well as by automatically exe-
cuting activities that can be mechanised. Graphical notations such as BPMN allow for the specification
of workflows in an intuitive way. In addition to the control and data flows, there are typically various
security requirements that need to be considered during the design, implementation and execution of
workflows. A well-known security requirement on workflows is separation of duty for fraud prevention
[6]. Confidentiality of data is another important security requirement, e.g. the confidentiality of medical
data from non-medical personnel. These two can be seen as examples for different types of security re-
quirements. On the one hand, there are security requirements on processes, i.e. constraints on the control
flow and the authorisation of users, and on the other hand, there are security requirements on data, i.e.
constraints on the flow of information. Several proposals to extend BPMN with graphical notations for
both kinds of security requirements exist [5, 26, 33].

In this paper, we focus on the question of how the semantics of such a notation can be defined and
how to use them to formally verify both types of security requirements. We do this on an abstract level
without having to refer to details of enforcement mechanisms such as role-based access control (RBAC).
For this purpose, we model the behaviour of a workflow as a set of traces of events, each representing a
possible run of the workflow, and formalise our security requirements in a declarative way as properties
of such trace sets. We map process requirements such as separation of duty to sets of allowed traces, cor-
responding to safety properties [3], whereas we map requirements on data to information flow properties,

∗This research is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant Hu737/5-1, which is part of the
DFG priority programme 1496 “Reliably Secure Software Systems.”

2 Possibilistic Information Flow Control for Workflow Management Systems

which have been extensively studied [27, 14, 36, 21, 8]. This allows us to verify the absence not only
of direct information leaks via unauthorised access, but also of indirect information leaks via observing
the behaviour of the system. For example, if the control flow depends on a confidential data item and an
unauthorised user observes which path of the control flow has been taken, they might be able to deduce
the confidential value of the data item.

The relation between possibilistic information flow and safety properties is not trivial due to the re-
finement paradox, i.e. enforcing a safety property by removing disallowed traces might introduce new
information leaks [17]. We discuss this relation for the case of separation of duty, give sufficient condi-
tions for the compatibility with information flow properties, and show that these conditions are satisfied
in our example setting.

We build upon the MAKS framework for possibilistic information flow control [14], which is suitable
for formulating and verifying information flow policies at the specification level, and in which many
information flow properties from the literature can be expressed. We describe how a compositional
verification methodology [12] can be applied to verify our system models, which has the advantage that
we can split up the verification task into separate verification tasks of the individual activities that make
up the overall workflow.

Essentially, our approach allows for the formal modelling of workflows and the verification of se-
curity requirements on data and processes at a high level of abstraction. We have verified our results
using the interactive theorem prover Isabelle/HOL [24]. To improve practicality, future work will focus
on refinement approaches of these specifications towards concrete implementations, while preserving as
much as possible of the security properties established on the abstract level. The long-term goal of our
work is to facilitate the step-wise development of secure workflow management systems, starting from
an abstract specification, derived from a workflow diagram, for example, then performing a series of
refinement steps and eventually arriving at a secure implementation.

The rest of this paper is structured as follows. In the following subsection, we present a running
example of a workflow that we will use for illustration throughout this paper. Section 2 introduces the
system model. In Section 3, we elaborate on modelling confidentiality and separation-of-duty require-
ments, respectively. In Section 4, we describe how existing techniques for compositional verification of
information flow properties can be applied and adapted for our workflow systems. Section 5 discusses
related work and Section 6 concludes the paper.

1.1 Example Scenario

As a running example, we use the workflow depicted in Figure 1, adapted from an industry use-case
described in an (unpublished) paper by A. Brucker and I. Hang. It models a hiring process including
interviews and medical examinations. The swimlanes represent two departments of the organisation
running the hiring workflow, the Human Resources (HR) and the medical department. The placement of
activities in the swimlanes indicates the responsible department, and thus the authorised employees. The
input and output relations of activities are depicted as directed flows of documents between activities.

We use this workflow to illustrate security requirements with respect to both data and process. On
the process side, we demand separation of duty between the two medical examinations, i.e. they have to
be performed by different medical officers, such that no single medical officer can manipulate the hir-
ing process by rejecting unwanted candidates for fabricated medical reasons. Regarding confidentiality
requirements, we assume that the two medical reports are highly confidential due to their potentially sen-
sitive contents. In particular, they are confidential for the employees in the HR department, who should
only be able to access information on a need-to-know basis, e.g. the CVs of applicants.

T. Bauereiss, D. Hutter 3

Figure 1: Example workflow (adapted from A. Brucker and I. Hang, unpublished)

In general, we assume there is a set of security domains, which are used to classify documents
exchanged between activities, and a flow policy that specifies the allowed information flows between
domains. We assign a domain to every document (a security classification) and to every employee (a
security clearance). These classifications and clearances determine which users are allowed to participate
in which activities of the workflow. For example, employees with an HR clearance are not allowed to
participate in the activities creating the medical report; otherwise, they would have direct access to
confidential medical data. We formally define the constraints regarding classifications, clearances and
flow policies in Section 3.1.

Besides direct information flows via transfer of documents, we aim to control indirect flows, where
confidential information is deducible from observations of the system behaviour. For example, an HR
employee in the above workflow can deduce whether the two medical officers agreed about the fitness of
the candidate by observing whether the workflow proceeds to activity 12 after the medical examinations
or reverts to activity 4. This is acceptable and actually necessary in our scenario, as long as this is the only
bit of information about the medical condition of the candidate that can be deduced by HR personnel.
Our goal is to verify that the workflow indeed does not leak any additional medical information to non-
medical personnel. In the next section, we begin by formally modelling the workflow, and then proceed
to formalise the security requirements.

1.2 Preliminaries

We briefly recall the definitions of (state-) event systems and security predicates from the MAKS frame-
work for possibilistic information flow [14] that we use in this paper. An event system ES = (E, I,O,Tr)
is essentially a (prefix-closed) set of traces Tr ⊆ E∗ that are finite sequences of events in the event set E.

4 Possibilistic Information Flow Control for Workflow Management Systems

The disjoint sets I ⊆ E and O⊆ E designate input and output events, respectively. We denote the empty
trace as 〈〉, the concatenation of traces α and β as α.β , and the projection of a trace α onto a set E as
α|E . In the composition ES1‖ES2 of two event systems ES1 and ES2, input events of one system match-
ing output events of the other system are connected (and vice versa) and thus become internal events of
the composed system. The set of traces is the set of interleaved traces of the two systems, synchronised
on events in E1∩E2:

Tr(ES1‖ES2) = {α ∈ (E1∪E2)
∗ | α|E1 ∈ Tr(ES1)∧α|E2 ∈ Tr(ES2)}

A state-event system SES = (E, I,O,S,s0,T) has a set of states S, a starting state s0 ∈ S, and a transition
relation T ⊆ (S×E×S). The event system induced by a state-event system has the same sets of events
and the set of traces that is enabled from the starting state via the transition relation.

The MAKS framework defines a collection of basic security predicates (BSPs). Many existing in-
formation flow properties from the literature can be expressed as a combination of these BSPs. Each
BSP is a predicate on a set of traces with respect to a view V . A view V = (V,N,C) on an event system
ES = (E, I,O,Tr) is defined as a triple of event sets that form a disjoint partition of E. The set V defines
the set of events that are visible for an observer, C are the confidential events, and the events in N are
neither visible nor confidential. Notable examples for BSPs, that we will use in this paper, are backwards-
strict deletion (BSD) and backwards-strict insertion of admissible confidential events (BSIA)1, defined in
[18] as follows:

BSDV(Tr)≡∀α,β ∈ E∗.∀c ∈C.(β .c.α ∈ Tr∧α|C = 〈〉)
⇒∃α ′ ∈ E∗.

(
α
′|V = α|V ∧α

′|C = 〈〉∧β .α ′ ∈ Tr
)

BSIAV(Tr)≡∀α,β ∈ E∗.∀c ∈C.(β .α ∈ Tr∧α|C = 〈〉∧β .c ∈ Tr)

⇒∃α ′ ∈ E∗.
(
α
′|V = α|V ∧α

′|C = 〈〉∧β .c.α ′ ∈ Tr
)

Intuitively, the former requires that the occurrence of confidential events must not be deducible, while
the latter requires that the non-occurrence of confidential events must not be deducible. Technically, they
are closure properties of sets of traces. For example, if a trace in Tr contains a confidential event, then
BSD requires that a corresponding trace without the confidential event exists in Tr that yields the same
observations. This means the two traces must be equal with respect to visible V -events, while N-events
might be adapted to correct the deletion of the confidential event.

2 System Model

In order to verify that a workflow satisfies given security requirements, we need a formal model of
workflows and their behaviour. We first define our notion of workflows. For simplicity, we omit aspects
such as exceptions or compensation handling, but our definition suffices for our purpose of discussing
the verification of security requirements for workflows.

Definition 1. A workflow W = (A,Docs,SF,MF,U) consists of
• a set A of activities,

1In [18], BSIA is defined with an additional parameter ρ that allows to strengthen the property by further specifying positions
at which confidential events must be insertable. For simplicity, we choose to fix this parameter to ρE in the notation of [18],
i.e we only require confidential events to be insertable into a trace without interfering with observations if they are in principle
admissible exactly at that point in the trace.

T. Bauereiss, D. Hutter 5

• a set Docs of data items,
• a set SF ⊆ (A×A) of sequence flows, where (a1,a2)∈ SF represents the fact that upon completion

of a1, it may send a trigger to a2 signalling it to start execution, and
• a set MF ⊆ (A×Docs×A) of message flows, where (a1,d,a2)∈MF represents data item d being

an output of activity a1 and an input to a2, and
• a set U of users participating in the workflow.
The sets A and Docs correspond to the nodes of a workflow diagram such as Figure 1, while SF and

MF correspond to the solid and dashed edges, respectively.
We define the behaviour of workflows, not in a monolithic way, but in terms of the behaviours of

components representing activities communicating with each other. As we will show in Section 4, this
simplifies the verification, because it allows us to use the decomposition methodology of [12] to verify
the security of the overall system by verifying security properties of the subcomponents. We believe
that such a decomposition approach can help in scaling up verification of information flow properties to
larger systems.

Each activity a is therefore modelled as a state-event system SESa =
(
Ea, Ia,Oa,Sa,s0

a,Ta
)

analo-
gously to Definition 3 of [12]. The set of events Ea consists of events of the form
• Starta(u), starting the activity a and assigning it to the user u ∈U ,
• Enda(u), marking the end of the activity,
• Senda(a′,msg) and Recva(a′,msg), representing the sending (or receiving, respectively) of a mes-

sage msg from activity a to activity a′ (or vice versa),
• Setvala(u, i,val) and Outvala(u, i,val), representing a user u ∈U reading (or setting, respectively)

the value val of data item i, and
• a set of internal events τa.
We denote the set of events of a given activity a ∈ A as Ea, and the set of all events in a workflow

as EW =
⋃

a∈A Ea. We denote the set of events of a given user u ∈ U as Eu = {Starta(u) | a ∈ A}∪
{Setvala(u, i,val) | a ∈ A, i ∈ Docs,val ∈Val} ∪ {Outvala(u, i,val) | a ∈ A, i ∈ Docs,val ∈Val} ∪
{Enda(u) | a ∈ A}, and the set of all user interaction events as EU =

⋃
u∈U Eu. The messages between

activities can have the form
• Trigger, used to trigger a sequence flow to a successor activity in the workflow,
• Data(i,v), used to transfer the value v for data item i, and
• AckData(i), used to acknowledge the receipt of a data item.

Using separate messages for data and sequence flows is inspired by the BPMN standard, which describes
its (informal) execution semantics in terms of tokens that are passed from one activity to the next, repre-
senting control flow separately from data flows. In addition, this separation simplifies the modelling of
confidentiality, as it becomes straightforward to classify events transporting Data messages into confi-
dential or non-confidential events based on the classification of the data items they transport.

The local states of the activities include program variables such as a program counter and a mapping
Mem : Docs→Val, storing the values of data items. After initialisation, the activity waits for messages
from other activities, transferring input data or triggering a sequence flow. When one (or more) of the
incoming transitions have been triggered, the activity internally computes output messages (possibly via
interaction with users), sends them via the outgoing data associations, and triggers outgoing sequence
flows. In Appendix A, we formally specify two types of activities as examples, namely user activities
that allow users to read and write data items, and gateway activities that make a decision on the control
flow based on the contents of their input data items.

Each of these state-event systems SESa induces a corresponding event system ESa. The overall
system then emerges from the composition of these event systems ESa for every activity a ∈A, together

6 Possibilistic Information Flow Control for Workflow Management Systems

with a communication platform ESP:

ESW = (‖a∈AESa)‖ESP

We call ESW the workflow system for the workflow W . We reuse the communication platform of [12],
which is formally specified in Section 2.3 of [12]. It asynchronously forwards messages between the
activities. As we do not assume that it provides guarantees regarding message delivery, its specification
is very simple.2 Upon composition with the platform, the communication events between the activities
become internal events of the composed system. Only the communication events with users remain input
and output events. These events form the user interface of the workflow system.

A simple version of our example workflow can be represented as a composition of instances of the
activity types specified in Appendix A. We can represent the activity T11a in Figure 1 as a gateway that
decides on the control flow based on the results of the medical examinations: If they are positive, the
workflow continues with dispatching the contract, otherwise it goes back to selecting another candidate
from the shortlist. The other activities essentially consist of users reading and generating documents, so
we can represent them as user activities. Of course, these activities can be enriched with further details,
e.g. the interviews can be expanded to subprocesses of their own, but we assume that this is handled in a
subsequent refinement step and consider only the abstract level in this paper.

3 Security Policies

3.1 Confidentiality

HR

Med

Figure 2: Flow policy

We assign security domains from a set D of domains to the data
items exchanged between the activities of the workflow. We de-
note this domain assignment function by dom : Docs→D. A flow
policy is a reflexive and transitive relation on domains and speci-
fies from which domains to which other domains information may
flow.[23] Note that, even though we focus on confidentiality in
this paper, also integrity requirements can be seen as a dual to
confidentiality and handled using information flow control. For
example, in [23] a lattice of combined security levels is built as a product of a confidentiality lattice and
an integrity lattice. For our example workflow, we only require two confidentiality domains HR and
Med. The medical reports MedReport1 and MedReport2 created by activities T6–T8 and T9–T11 in
Figure 1 are assigned to the Med confidentiality domain, and other data items to the HR domain. The ex-
ample flow policy states that information may flow from HR to Med, but not vice versa, i.e. HR Med
and Med 6 HR (see Figure 2).

Users read and write the contents of data items via the inputs and outputs of activities they participate
in. In order to exclude unwanted direct information flows, we have to make sure that the classifications
of the data items that users work with are compatible with their clearances. A straightforward approach
is to enforce a Bell-LaPadula style mandatory access control. This can be formulated in terms of classi-
fications that are assigned to activities based on the classifications of their inputs and outputs:

Definition 2. An activity classification clA : A→D is an assignment of domains to activities such that

2However, it is possible to adapt the decomposition methodology to other communication models, e.g. providing some
notion of reliability of message delivery or means for synchronous communication. For example, see Appendix A for some
remarks on guaranteeing a notion of ordered message delivery.

T. Bauereiss, D. Hutter 7

1. for all input data items i of an activity a, dom(i) clA(a), and

2. for all output data items i of an activity a that may be assigned to untrusted users, clA(a) dom(i).

We allow users to participate in an activity of a given classification only if they have a matching
clearance. We denote the mapping of users to clearances as clU : U →D. The conditions in Definition 2
correspond to the Simple Security and ∗-Property of the Bell-LaPadula model, respectively. Note that
we relax the ∗-Property by allowing trusted users to downgrade data items. Otherwise, we would not be
able to assign a classification to the activities T8 and T11 in our example workflow, because they have
high inputs (the medical reports) and low outputs (the statements about the final result of examinations).
However, this specific flow of information in the example is acceptable and necessary, because the output
should contain only the non-confidential final decision of the medical officer3 required by the HR de-
partment, while the detailed content of the medical reports remains classified as confidential. Essentially,
we admit inputs and outputs of trusted users to act as a channel for declassification that is not formally
controlled by our information flow analysis. It would be possible to model declassification more explic-
itly, e.g. using intransitive flow policies [16], but for simplicity we choose this solution for this paper.
The same approach is followed in [33], for example. See [32] for an early discussion of this approach to
downgrading and [28] for a general overview of principles and dimensions of declassification.

Regardless of whether trusted users are present or not, we want to verify that the system itself does
not leak information about data items i with classification dom(i) 6 d to users with clearance d. The set
of confidential events for a domain d thus consists of events setting or reading values of these data items,
while events of activities whose classification is allowed to flow into d are considered to be potentially
observable for users in domain d:

Definition 3. Let d ∈ D be a domain. The security view on a workflow system ESW for d is defined as
Vd = (Vd ,Nd ,Cd), where

Vd =
⋃

clA(a) d

Ea

Cd ={Setvala(u, i,val) | ∃u ∈U, i ∈ Docs,v ∈Val. dom(i) 6 d∧ clA(a) 6 d}
∪{Outvala(u, i,val) | ∃u ∈U, i ∈ Docs,v ∈Val. dom(i) 6 d∧ clA(a) 6 d}

Nd =E \ (Vd ∪Cd)

The set Cd contains the confidential input and output events.4 Note that we assume that confidential
information enters the system only via user input or output, and that the system does not generate con-
fidential information by itself (e.g. by generating cryptographic key material). If that were the case, the
corresponding system events would have to be added to the set Cd . Moreover, it is worth pointing out
that we consider certain other types of information to be non-confidential. In particular, the information
whether an activity has been performed or not, or the information which user has performed which ac-
tivity is considered to be non-confidential. Again, such requirements could be captured by formulating
the security view accordingly. For our setting, the above view reflects our security requirement that the
values of confidential data items should be kept secret. Hence, we use this view for the rest of this paper.

In Section 4, we describe how to verify that a given workflow system satisfies the security predicate
BSDVd ∧BSIAVd with respect to this view for every domain d. It expresses that confidential user inputs
and outputs can be deleted or inserted without interfering with the observations of users in domain d.

3Which can be further enforced by allowing only Boolean values as content of the low output.
4The set Cd only contains events of activities a with clA(a) 6 d, because activities with clA(a) d are considered to be

visible, and the set of visible and confidential events must be disjoint.

8 Possibilistic Information Flow Control for Workflow Management Systems

3.2 Separation of Duties

As discussed in the introduction, separation of duties is another common security requirement in work-
flow management systems. Separation of duties can be formally defined as a safety property [3]. The
“bad thing” happens when the same user participates in two activities constrained by separation of duty,
hence we only allow traces where this does not occur.

Definition 4. Let a,a′ ∈ A be two activities. We call the set of traces{
α ∈ E∗W | ∀u,u′ ∈U. ∀e1,e2 ∈ α.(e1 ∈ (Ea∩Eu)∧ e2 ∈ (Ea′ ∩Eu′))→ u 6= u′

}
a separation-of-duty property Pa,a′

SoD.

As we have modelled user assignment explicitly as events, this property can also be characterised by
requiring that 1. constrained activities are assigned to different users, and 2. users may participate in an
activity only after they have been assigned to it:

Pa,a′
SoD ⊇

{
α ∈ E∗W | ∀u,u′ ∈U. Starta1(u) ∈ α ∧Starta2(u

′) ∈ α −→ u 6= u′
}

∩{α ∈ E∗W | ∀a ∈ A,u ∈U,e ∈ (Ea∩Eu). Starta(u) /∈ α −→ e /∈ α}

A system with a set of traces Tr and events E satisfies such a property iff Tr ⊆ Pa,a′
SoD. In our example

workflow, there are separation of duty constraints between the activities belonging to the two medical
examinations (T 6–8 in Figure 1 one the one hand, and T 9–11 on the other hand). Hence, we want to
enforce Pa,a′

SoD for the pairs (a,a′) ∈ {T 6,T 7,T 8}×{T 9,T 10,T 11}.
Similarly, other runtime-enforceable security policies [30] can be modelled as safety properties. In

this paper, we focus on the above notion of separation of duty as an example and investigate its relation
to information flow in Section 4.2.

4 Verification

4.1 Information Flow Security

To ease the verification of the security of a workflow system, we decompose it into the individual activi-
ties of the workflow and make use of the methodology presented in [12] to verify the resulting distributed
system. For each domain d ∈D, we verify that users in that domain can learn nothing about information
that is confidential for them. The first step of the methodology [12] is to partition the activities into a
set of low activities Ad

L = {a ∈ A | clA(a) d} that are (potentially) visible in domain d and a set of
high activitiesAd

H = {a∈A | clA(a) 6 d} that are not visible and may handle confidential information.5

It follows that Vd from Definition 3 is a global security view as defined in [12, Definition 13], i.e. the
visible events are exactly the events of the low activities, the set of confidential events is a subset of the
events of the high activities, and the remaining events are non-visible and non-confidential.

The second step is finding suitable local views Va
d for high activities a ∈ Ad

H in order to verify that
they do not leak confidential information to low activities. Hence, we cannot generally treat communi-
cation events of these activities as N-events, as we did in the global view, but we have to consider some
of them as V -events (e.g. a high activity sending a trigger or a declassified data item to a low activity)

5In [12], the set Ad
L is called the set of observers, while Ad

H is called the set of friends. This might be a bit counterintuitive
in our setting for some readers, as the friends would be the activities that are not visible. To avoid confusion, we simply speak
of low and high activities, respectively.

T. Bauereiss, D. Hutter 9

and some of them as C-events (e.g. a high activity receiving a confidential data item). Intuitively, this
means we split each of these activities into a part that visibly interacts with low activities and a part that
handles confidential data, and verify that the latter does not interfere with the former. Technically, these
local views satisfy certain constraints that allow us to instantiate the compositionality result of [12], as
we discuss below.

Definition 5. Let d ∈ D be a domain, and a ∈ Ad
H be a high activity for d. Furthermore, let DocsC

d =
{i ∈ Docs | dom(i) 6 d} denote the set of data items that are confidential for d. The local view for a is
defined as Va

d = (V a
d ,N

a
d ,C

a
d) with

V a
d = (Ia∪Oa)\

⋃
i∈DocsC

d

Ei

Ca
d =

⋃
i∈DocsC

d

(Ei \{Senda(b,m) | ∃v. m = Data(i,v)∨m = AckData(i)})

Na
d = Ea \ (V a

d ∪Ca
d)

where the set Ei of high communication events containing data item i is defined as

Ei =
{

e |∃b ∈ Ad
H ,m,u,v. (m = Data(i,v)∨m = AckData(i))

∧ (e = Senda(b,m)∨ e = Recva(b,m)∨ e = Setvala(u, i,v)∨ e = Outvala(u, i,v))
}

Combining these local views, we define the composed view for d as Vd+ = (Vd+ ,Nd+ ,Cd+) where
Vd+ =

⋃
a∈Ad

H
V a

d ∪
⋃

a∈Ad
L

Ea Cd+ =
⋃

a∈Ad
H

Ca
d Nd+ = EW \ (Vd+ ∪Cd+)

Note that the combined view Vd+ is stronger than our global view Vd in the sense that more events
are considered confidential or visible for an observer in domain d. Theorem 1 of [18] tells us that
BSDVd+

∧BSIAVd+
for the stronger view implies BSDVd ∧BSIAVd .

Also note that all communication events with low activities are considered visible, and that the for-
warding of confidential data items from one high activity to another is considered non-confidential. The
justification for this is that secrets enter and leave the subsystem of high activities through communi-
cation with users and low activities, and the forwarding between high activities can be considered as
internal processing. Hence, we can use communication events between high activities for correcting per-
turbations caused by inserting or removing confidential user inputs. We make use of this fact in the proof
of the following theorem, which states the security of activities as we have specified them in Appendix A
in terms of the transition relations T gen

a , T user
a and T gw(Cond)

a .

Theorem 1. Let W be a workflow, d ∈ D a domain and SESa for a ∈ A an activity. If the transition
relation of SESa is
• T gen

a ∪T user
a , or

• T gen
a ∪T gw(Cond)

a and Cond does not depend on confidential data for d,
then BSDVa

d
(Tra)∧BSIAVa

d
(Tra) holds.

The proof of this and the following theorems can be found in Appendix B. We use the unwinding
technique [15] for the proof. Note that since the generic transition relation T gen

a and the activity-specific
transition relations are disjoint, we can partition this proof into a generic part that covers the events and
states used in T gen

a , and an activity-specific part. Therefore, if we want to use a different kind of activity
than the ones specified in this paper, and we reuse the generic part T gen

a of the transition relation, then we
can also reuse most of this proof.

10 Possibilistic Information Flow Control for Workflow Management Systems

The next step is to instantiate the compositionality result of [12], which states that the security of
the overall system with respect to the global security view is implied by the security of the subsystems
with respect to their local views. However, our local views do not quite satisfy the requirement of being
C-preserving in the sense of Definition 18 of [12], because that definition disallows N-events in the
communication interface between subsystems. Hence, we slightly adapt the notion C-preserving views,
allowing Send events to be in N:

Definition 6. Let Ad
H ⊆ A and C ⊆ EAd

H
. A family (Va)a∈Ad

H
of views Va = (Va,Na,Ca) for Ea is C-

preserving for C iff

1. a ∈ Ad
H and b /∈ Ad

H implies ∀m.Senda(b,m) ∈Va∧Recva(b,m) ∈Va.

2. a,a′ ∈ Ad
H implies

(a) Recva′(a,m) ∈Ca′ iff Senda(a′,m) 6∈Va and
(b) Recva′(a,m) ∈Va′ iff Senda(a′,m) ∈Va

3. C∩Ea ⊆Ca for all a ∈Φ.

As can be easily seen, our local views are C-preserving for the set of global confidential events Cd
from Definition 3: communication with low activities is visible, corresponding Recv and Send events
are either visible or non-visible (where non-visible Recv events need to be confidential, while the corre-
sponding Send events are allowed to be treated as N-events), and events that are confidential in the global
view are confidential for the local views.

It turns out that the compositionality result of [12] still holds for our weakened notion of C-preserving
local views; a sufficient (but not necessary) condition is that the subsystems satisfy not only BSD (as in
[12]), but BSD and BSIA, which our activities happen to do.

Theorem 2. Let W be a workflow, ESW = (‖a∈AESa)‖ESP be a workflow system, Vd be a global security
view for domain d, and

(
Va

d

)
a∈Ad

H
be a family of local views that is C-preserving for Cd . If for all a∈Ad

H ,
ESa satisfies BSDVa

d
∧BSIAVa

d
, then ESW satisfies BSDVd+

∧BSIAVd+
and, therefore, BSDVd ∧BSIAVd .

Note that, if other kinds of activities than the ones from Appendix A should be part of the workflow,
it is only required to prove that their specifications also satisfy the security predicates for the local views,
in order to show that the overall workflow satisfies the information flow security predicates.

We have formalised and verified our model and proofs using the interactive theorem prover Isabelle
[24]. Our development is based on a formalisation of the MAKS framework developed by the group of
Heiko Mantel at TU Darmstadt (unpublished as of this writing). We intend to make our formalisation
publicly available when the MAKS formalisation is released.

Conceptually, the main difference between our workflow management systems and the shopping
mall system described in [12] lies in the relation between users and the system. In the shopping scenario,
there is a one-to-one correspondence between users and software agents running in the system. Com-
munication with the users happens only during initialisation, when users write their preferences into the
initial memory of their agents, which run autonomously thereafter. In our workflow systems, the interac-
tion is much more dynamic, as multiple activities can be assigned to the same user at runtime and there
is ongoing communication between users and the system. This has impact on the system model — we
introduced additional events for user interaction — and the construction of views. The partitioning into
high and low activities is based on classifications of data items and activities, and access control has to
ensure that only users with a matching clearance can participate in an activity, so that our security views
are actually in line with the possible runtime observations of users. Despite these differences, we have
seen that the methodology of [12] can be applied with small technical adjustments.

T. Bauereiss, D. Hutter 11

4.2 Compatibility with Separation of Duties

As described in Section 3.2, we can formalise constraints such as separation of duty as safety properties.
Having established information flow security of our workflow system, we now ask whether these security
properties are preserved when enforcing separation of duty constraints. In general, this is not the case.
Altering a system such that it satisfies a safety property can be seen as a refinement, and it is well-known
that possibilistic information flow security is not preserved under refinement in general [17]. Consider,
for example, the security predicate BSIA. Repeatedly inserting confidential events of different users into
a trace can exhaust the possible user assignments that would satisfy the separation of duty constraints,
thus deadlocking the process and making further visible observations impossible. We can, however, try
to find sufficient conditions under which information flow properties are preserved:

Theorem 3. Let ES = (E, I,O,Tr) be an event system and V = (V,N,C) be a view for ES. Let Ea,E ′a⊆ E
be two disjoint sets of events corresponding to activities a and a′, and let Pa,a′

SoD be an SoD property. Let
Eu ⊆V ∪C be the communication events with a user u and EU =

⋃
u∈U Eu the set of all user events. If

1. user assignment is non-confidential, i.e. there is a set Eassign ⊆ E \C of assignment events, and
a user u may only participate in an activity after having been assigned to it via an event from
Eassign∩Eu, or

2. only confidential or only visible user I/O events of activities a and a′ are enabled in ES, i.e. there
is a set Edisabled ⊆ E of events that never occur in a trace of ES, and V ∩(Ea∪E ′a)∩EU ⊆ Edisabled

or C∩ (Ea∪E ′a)∩EU ⊆ Edisabled holds, or

3. the SoD constraint between a and a′ is already enforced by ES, i.e. Tr ⊆ Pa,a′
SoD,

then BSDV(Tr)∧BSIAV(Tr) implies BSDV(Tr∩Pa,a′
SoD)∧BSIAV(Tr∩Pa,a′

SoD).

In our running example, we can choose Eassign = {Starta(u) | u ∈U} and apply the first case of the
theorem for the workflow system ESW and a view Vd+ , because only the details of the results of the med-
ical examinations are confidential, not the information who carried out the examinations. Furthermore,
in case clA(a) 6= clA(a′), the mandatory access control described in Section 3.1 already enforces SoD
statically, so the third condition also applies. In general, Theorem 3 gives us sufficient conditions for the
compatibility of SoD constraints and information flow properties, taking into account the classifications
of events that are relevant for enforcing SoD. Similar results could be developed for other classes safety
properties that are of interest in workflows, but we leave this as future work. Note that Theorem 3 is
not specific to workflow systems as specified in this paper. It can be applied to any system where users
perform different activities in the presence of separation of duty constraints.

5 Related Work

We build upon the MAKS framework for possibilistic information flow control [14], which is suitable
for formulating and verifying information flow policies at the specification level. We have focused on
confidentiality of data from unauthorised employees within the organisation, but in principle information
flow control can be adapted to different attacker models and security policies by choosing the security
views appropriately. Furthermore, approaches have been proposed to take into account factors such as
communication over the Internet [11] or encrypted communication channels [13]. In [25], a connection
between role-based access control (RBAC) and mandatory access control is drawn, which might be
adapted to enforce the mandatory access control we described in Section 3.1 using RBAC mechanisms.

12 Possibilistic Information Flow Control for Workflow Management Systems

Early examples for workflow management systems with distributed architectures include [2, 22, 31].
Later, computing paradigms with a similar spirit have emerged, e.g. service-oriented architectures or
cloud computing. We see these techniques and standards as complementary to our work, as they can be
used for the implementation of our abstract specifications.

BPMN extensions to annotate business process diagrams with security annotations can be found in
[5, 26, 33]. Closest to the security requirements considered by us comes the notation proposed in [33]
that supports both the annotation of activities with separation of duty constraints and the annotation of
documents and process lanes with confidentiality and integrity classifications or clearances, respectively.

Several proposals for a formal semantics of workflow specifications can be found in the literature.
For example, [34] maps BPMN diagrams to CSP processes and describes how the formal semantics can
be leveraged to compare and analyse workflow diagrams, e.g. with respect to consistency. It focuses
on the control flow and does not model data flows. In [35], workflows are represented as statements in
a workflow description language, which is mapped to a representation as hierarchical state machines.
An information flow analysis algorithm is described, but the actual information flow property that it
checks is not stated in a declarative, mechanism-independent way. [1] represents workflows as Petri
nets and describes an approach for information flow analysis. The focus is on keeping the occurrence
of tasks confidential, whereas our work focuses on the confidentiality of the data that is processed in
the workflow. In [4] and [29], workflows are formalised as transition systems and model-checking is
employed to verify properties specified as LTL formulas. This is suitable to verify safety or liveness
properties, whereas the information flow predicates considered by us can be seen as hyperproperties [7].

6 Conclusion

Graphical notations such as BPMN are widely used for workflow specification. We have presented an
approach to formally model both the behaviour of a workflow and the associated security requirements,
and described how to apply the decomposition methodology of [12] and how to verify a distributed work-
flow management system with ongoing user interaction. We have shown that, even though possibilistic
information is in general not refinement-closed, the enforcement of separation of duty is compatible with
the information flow security of the system under certain assumptions.

We have sketched how a simple version of our example workflow can be represented as a composition
of instantiations of the activity types specified in Appendix A. As we have shown the security of these
activities in Theorem 1, we can use Theorem 2 to derive the security of the composed system from the
security properties of the individual activities. This demonstrates how instantiations of a type of activities
that has been proven secure once can be plugged into larger workflows in a secure way. Hence, we believe
that this compositional approach can help in making verification techniques for information flow scale
to larger workflow systems. However, more work is needed before this approach can actually be applied
to realistic systems. For example, tool support for translating a more realistic subset of BPMN to our
system model would be a major step in this direction, which would also help us evaluate our approach
with a sample of existing workflows.

Moving from an abstract specification towards the implementation level is another important direc-
tion of future work. This paper deals with workflows on a high level of abstraction. We intend to work
on notions of security-preserving refinement that allow us to expand abstract activities in a workflow into
more concrete subprocesses and refine the behaviour of atomic activities towards an executable imple-
mentation. There is a large body of existing work that we can build upon for this purpose, such as action
refinement for replacing atomic events on the abstract level with sequences of more concrete events [10],

T. Bauereiss, D. Hutter 13

switching between event-based and language-based notions of information flow [20], or directly gener-
ating executable code from specifications [9]. In the long term, we hope that these decomposition and
refinement techniques will contribute to making the step-wise development of secure workflow systems
from workflow diagrams to executable code more scalable and efficient.

Acknowledgements We thank Richard Gay, Sylvia Grewe, Steffen Lortz, Heiko Mantel and Henning
Sudbrock for providing a formalisation of the MAKS framework in Isabelle/HOL that allowed us to
verify our main results in Isabelle, and the anonymous reviewers for helpful comments on the paper.

References

[1] Rafael Accorsi & Andreas Lehmann (2012): Automatic Information Flow Analysis of Business Process Mod-
els. In: BPM, pp. 172–187, doi:10.1007/978-3-642-32885-5 13.

[2] Gustavo Alonso, Roger Günthör, Mohan Kamath, Divyakant Agrawal, Amr El Abbadi & C. Mohan (1996):
Exotica/FMDC: A Workflow Management System for Mobile and Disconnected Clients. Distributed and
Parallel Databases 4(3), pp. 229–247, doi:10.1007/BF00140951.

[3] Bowen Alpern & Fred B. Schneider (1987): Recognizing safety and liveness. Distributed Computing 2(3),
pp. 117–126, doi:10.1007/BF01782772.

[4] Wihem Arsac, Luca Compagna, Giancarlo Pellegrino & Serena Elisa Ponta (2011): Security Validation
of Business Processes via Model-Checking. In: Engineering Secure Software and Systems, LNCS 6542,
Springer, pp. 29–42, doi:10.1007/978-3-642-19125-1 3.

[5] Achim D. Brucker, Isabelle Hang, Gero Lückemeyer & Raj Ruparel (2012): SecureBPMN: Modeling and
Enforcing Access Control Requirements in Business Processes. In: SACMAT 2012, ACM, pp. 123–126,
doi:10.1145/2295136.2295160.

[6] David D. Clark & David R. Wilson (1987): A Comparison of Commercial and Military Computer Security
Policies. IEEE Symposium on Security and Privacy, pp. 184–194, doi:10.1109/SP.1987.10001.

[7] Michael R. Clarkson & Fred B. Schneider (2010): Hyperproperties. Journal of Computer Security 18(6), pp.
1157–1210, doi:10.3233/JCS-2009-0393.

[8] Riccardo Focardi & Roberto Gorrieri (1995): A Classification of Security Properties for Process Algebras.
Journal of Computer Security 3(1), pp. 5–33, doi:10.3233/JCS-1994/1995-3103.

[9] Florian Haftmann & Tobias Nipkow (2007): A code generator framework for Isabelle/HOL. In: Theorem
Proving in Higher Order Logics: Emerging Trends. Available at http://es.cs.uni-kl.de/events/
TPHOLs-2007/proceedings/B-128.pdf.

[10] Dieter Hutter (2006): Possibilistic Information Flow Control in MAKS and Action Refinement. In: ETRICS,
LNCS 3995, Springer, pp. 268–281, doi:10.1007/11766155 19.

[11] Dieter Hutter (2007): Preserving Privacy in the Web by Using Information Flow Control. In Andreas U.
Schmidt, Michael Kreutzer & Rafael Accorsi, editors: Long-Term and Dynamical Aspects of Information
Security: Emerging Trends in Information and Communication Security, Nova Science.

[12] Dieter Hutter, Heiko Mantel, Ina Schaefer & Axel Schairer (2007): Security of multi-agent systems: A case
study on comparison shopping. Journal of Applied Logic 5(2), pp. 303–332, doi:10.1016/j.jal.2005.12.015.

[13] Dieter Hutter & Axel Schairer (2004): Possibilistic Information Flow Control in the Presence of Encrypted
Communication. In: ESORICS, LNCS 3193, Springer, pp. 209–224, doi:10.1007/978-3-540-30108-0 13.

[14] Heiko Mantel (2000): Possibilistic Definitions of Security - An Assembly Kit. In: CSFW, IEEE Computer
Society, pp. 185–199, doi:10.1109/CSFW.2000.856936.

[15] Heiko Mantel (2000): Unwinding Possibilistic Security Properties. In: ESORICS, LNCS 1895, Springer, pp.
238–254, doi:10.1007/10722599 15.

http://dx.doi.org/10.1007/978-3-642-32885-5_13
http://dx.doi.org/10.1007/BF00140951
http://dx.doi.org/10.1007/BF01782772
http://dx.doi.org/10.1007/978-3-642-19125-1_3
http://dx.doi.org/10.1145/2295136.2295160
http://dx.doi.org/10.1109/SP.1987.10001
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.3233/JCS-1994/1995-3103
http://es.cs.uni-kl.de/events/TPHOLs-2007/proceedings/B-128.pdf
http://es.cs.uni-kl.de/events/TPHOLs-2007/proceedings/B-128.pdf
http://dx.doi.org/10.1007/11766155_19
http://dx.doi.org/10.1016/j.jal.2005.12.015
http://dx.doi.org/10.1007/978-3-540-30108-0_13
http://dx.doi.org/10.1109/CSFW.2000.856936
http://dx.doi.org/10.1007/10722599_15

14 Possibilistic Information Flow Control for Workflow Management Systems

[16] Heiko Mantel (2001): Information Flow Control and Applications - Bridging a Gap. In: FME, LNCS 2021,
Springer, pp. 153–172, doi:10.1007/3-540-45251-6 9.

[17] Heiko Mantel (2001): Preserving Information Flow Properties under Refinement. In: IEEE Symposium on
Security and Privacy, IEEE Computer Society, pp. 78–91, doi:10.1109/SECPRI.2001.924289.

[18] Heiko Mantel (2002): On the Composition of Secure Systems. In: IEEE Symposium on Security and Privacy,
IEEE Computer Society, pp. 88–101, doi:10.1109/SECPRI.2002.1004364.

[19] Heiko Mantel (2004): A uniform framework for the formal specification and verification of information flow
security. Ph.D. thesis. Available at http://scidok.sulb.uni-saarland.de/volltexte/2004/202/
index.html.

[20] Heiko Mantel & Andrei Sabelfeld (2003): A Unifying Approach to the Security of Distributed and Multi-
Threaded Programs. Journal of Computer Security 11(4), pp. 615–676. Available at http://iospress.
metapress.com/content/r0pr0ma4kv8wa542/.

[21] J. McLean (1996): A general theory of composition for a class of “possibilistic” properties. IEEE Transac-
tions on Software Engineering 22(1), pp. 53–67, doi:10.1109/32.481534.

[22] Peter Muth, Dirk Wodtke, Jeanine Weissenfels, Angelika Kotz Dittrich & Gerhard Weikum (1998): From
Centralized Workflow Specification to Distributed Workflow Execution. Journal of Intelligent Information
Systems 10(2), pp. 159–184, doi:10.1023/A:1008608810770.

[23] Andrew C. Myers, Andrei Sabelfeld & Steve Zdancewic (2006): Enforcing Robust Declassification and
Qualified Robustness. Journal of Computer Security 14(2), pp. 157–196. Available at http://iospress.
metapress.com/content/EYT2D3ERKY3A2H25.

[24] Tobias Nipkow, Lawrence C Paulson & Markus Wenzel (2002): Isabelle/HOL: a proof assistant for higher-
order logic. LNCS 2283, Springer, doi:10.1007/3-540-45949-9.

[25] Sylvia Osborn, Ravi Sandhu & Qamar Munawer (2000): Configuring role-based access control to en-
force mandatory and discretionary access control policies. ACM Trans. Inf. Syst. Secur. 3(2), p. 85–106,
doi:10.1145/354876.354878.

[26] Alfonso Rodrı́guez, Eduardo Fernández-Medina & Mario Piattini (2007): A BPMN Extension for the
Modeling of Security Requirements in Business Processes. IEICE Transactions 90-D(4), pp. 745–752,
doi:10.1093/ietisy/e90-d.4.745.

[27] A. Sabelfeld & A.C. Myers (2003): Language-based information-flow security. IEEE Journal on Selected
Areas in Communications 21(1), pp. 5–19, doi:10.1109/JSAC.2002.806121.

[28] Andrei Sabelfeld & David Sands (2009): Declassification: Dimensions and principles. Journal of Computer
Security 17(5), pp. 517–548, doi:10.3233/JCS-2009-0352.

[29] Andreas Schaad, Volkmar Lotz & Karsten Sohr (2006): A model-checking approach to analysing organi-
sational controls in a loan origination process. In David F. Ferraiolo & Indrakshi Ray, editors: SACMAT,
ACM, pp. 139–149, doi:10.1145/1133058.1133079.

[30] Fred B. Schneider (2000): Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), p. 30–50,
doi:10.1145/353323.353382.

[31] Hans Schuster, Stefan Jablonski, Thomas Kirsche & Christoph Bussler (1994): A Client/Server Architec-
ture for Distributed Workflow Management Systems. In: PDIS, IEEE Computer Society, pp. 253–256,
doi:10.1109/PDIS.1994.331708.

[32] Daniel F. Stork (1975): Downgrading in a Secure Multilevel Computer System: The Formulary Concept.
Technical Report, DTIC Document. Available at http://oai.dtic.mil/oai/oai?verb=getRecord&
metadataPrefix=html&identifier=ADA011696.

[33] Christian Wolter & Christoph Meinel (2010): An approach to capture authorisation requirements in business
processes. Requir. Eng. 15(4), pp. 359–373, doi:10.1007/s00766-010-0103-y.

[34] Peter Y. H. Wong & Jeremy Gibbons (2008): A Process Semantics for BPMN. In: ICFEM, LNCS 5256,
Springer, pp. 355–374, doi:10.1007/978-3-540-88194-0 22.

http://dx.doi.org/10.1007/3-540-45251-6_9
http://dx.doi.org/10.1109/SECPRI.2001.924289
http://dx.doi.org/10.1109/SECPRI.2002.1004364
http://scidok.sulb.uni-saarland.de/volltexte/2004/202/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2004/202/index.html
http://iospress.metapress.com/content/r0pr0ma4kv8wa542/
http://iospress.metapress.com/content/r0pr0ma4kv8wa542/
http://dx.doi.org/10.1109/32.481534
http://dx.doi.org/10.1023/A:1008608810770
http://iospress.metapress.com/content/EYT2D3ERKY3A2H25
http://iospress.metapress.com/content/EYT2D3ERKY3A2H25
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1145/354876.354878
http://dx.doi.org/10.1093/ietisy/e90-d.4.745
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.3233/JCS-2009-0352
http://dx.doi.org/10.1145/1133058.1133079
http://dx.doi.org/10.1145/353323.353382
http://dx.doi.org/10.1109/PDIS.1994.331708
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA011696
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA011696
http://dx.doi.org/10.1007/s00766-010-0103-y
http://dx.doi.org/10.1007/978-3-540-88194-0_22

T. Bauereiss, D. Hutter 15

[35] Ping Yang, Shiyong Lu, Mikhail I. Gofman & Zijiang Yang (2010): Information flow analysis of scientific
workflows. Journal of Computer and System Sciences 76(6), pp. 390–402, doi:10.1016/j.jcss.2009.11.002.

[36] Aris Zakinthinos & E. Stewart Lee (1997): A General Theory of Security Properties. In: IEEE Symposium
on Security and Privacy, IEEE Computer Society, pp. 94–102, doi:10.1109/SECPRI.1997.601322.

A Specification of Activities

In this appendix, we give a formal specification of the behaviour of our activities using PP-statements.
In this formalism, the transition relation of a state-event system is specified by listing pre- and post-
conditions on the state for each event (see Section 2.1 of [12] for a formal semantics).

Recva(b,Data(i,v)); affects: Mem, AQueue
Pre: pc = 0, (b, i,a) ∈MF , (b, i) /∈ AQueue
Post: Mem′(i) = v, AQueue′ = AQueue ∪
{(b, i)}

Senda(b,AckData(i)); affects: AQueue
Pre: pc = 0, (b, i) ∈ AQueue
Post: AQueue′ = AQueue\ (b, i)

Recva(b,Trigger); affects: TriggeredBy
Pre: pc = 0
Post: TriggeredBy′ = b

τActive
a ; affects: pc

Pre: pc = 0, TriggeredBy 6=⊥, AQueue = /0
Post: pc′ = 1

τSendData
a ; affects: pc, MQueue

Pre: pc = 2
Post: pc′ = 3, MQueue′ =
{(b, i) | (a, i,b) ∈MF ∧Mem(i) 6=⊥}

Senda(b,Data(i,v));
affects: MQueue,AQueue

Pre: pc = 3, (b, i) ∈MQueue
Post: MQueue′ = MQueue \
{(b, i)},AQueue′ = AQueue∪{(b, i)}

Recva(b,AckData(i)); affects: AQueue
Pre: pc = 3, (b, i) ∈ AQueue
Post: AQueue′ = AQueue\{(b, i)}

τAckTimeout
a ; affects: AQueue

Pre: pc = 3
Post: AQueue′ = /0

τ
SendTriggers
a ; affects: pc, SQueue

Pre: pc = 3, MQueue = /0, AQueue = /0
Post: pc′ = 4, SQueue′ = {b | (a,b) ∈ SF}

Senda(b,Trigger); affects: SQueue
Pre: pc = 4, b ∈ SQueue
Post: SQueue′ = SQueue\{b}

Figure 3: PP-statements of generic transition relation T gen
a

We specify the behaviour of our activities in two parts. The PP-statements in Figure 3 specify the
generic part of the behaviour of activities, i.e. the communication with other activities in order to ex-
change data items and trigger sequence flows. For this purpose, it maintains program variables MQueue
(which data items still have to be sent), AQueue (which data items still have to be acknowledged), SQueue
(which triggers still have to be sent), TriggeredBy (whether and from where a trigger has been received),
and User (to which user this activity is assigned). The program counters 0, 3 and 4 correspond to the
phases of waiting for inputs and triggers, sending outputs, and sending triggers, respectively.

When the program counter reaches 1, an activity-specific transition relation takes over in order to
perform the actual activity. In our simple example workflow, we only need two kinds of activities, namely

http://dx.doi.org/10.1016/j.jcss.2009.11.002
http://dx.doi.org/10.1109/SECPRI.1997.601322

16 Possibilistic Information Flow Control for Workflow Management Systems

user input/output and gateways (deciding on the control flow based on a condition Cond on input data).
The latter continues the workflow with that activity b for which Cond(b,Mem) evaluates to true. These
two kinds of activities are specified in Figures 4 and 5, respectively. We denote the transition relations
induced by the PP-statements in Figures 3, 4, and 5 as T gen

a , T user
a , and T gw(Cond)

a , respectively. The
overall transition relation of an activity is the union of T gen

a and an activity-specific transition relation.

Starta(u); affects: User
Pre: pc = 1, User =⊥, clU(u) = clA(a)
Post: User′ = u

Setvala(u, i,v); affects: Mem
Pre: pc = 1, User = u
Post: Mem′(i) = v

Outvala(u, i,v); affects:
Pre: pc = 1, User = u, Mem(i) = v

Enda(u); affects: pc
Pre: pc = 1,User = u
Post: pc′ = 2

Figure 4: PP-statements of transition relation T user
a for user activities

Senda(b,Trigger); affects: pc
Pre: pc = 1, Cond(b,Mem) =>, (a,b) ∈ SF
Post: pc′ = 5

Figure 5: PP-statement of transition relation T gw(Cond)
a for gateways

After completion of the activity has been signalled by setting the program counter to 2, the generic
transition relation takes control again and starts sending output data items to the designated receivers.
It makes sure that they have been received by waiting for acknowledgements, and afterwards proceeds
by sending triggers to the successor activities in the workflow. An exception to this rule is if a receiver
fails to send an acknowledgement; in this case the τAckTimeout

a event can be used to signal a timeout and
proceed with the workflow. This is important for security, because otherwise a confidential activity could
block the progress of the workflow by refusing to acknowledge a data item.

Of course, other modelling decisions are possible to solve this problem. As an alternative, we have
also modelled and verified a system specification where the communication platform guarantees causal
delivery of messages, i.e. messages from one activity to another are always received in the order that they
are sent. This would make acknowledgements unnecessary, because an activity could always be sure that
a trigger message is received after all data items, if the messages are sent in this order. However, this
shifts complexity from the individual activities to the communication platform and the interface, and it
turns out that this makes the proof of compositionality more laborious. Essentially, we had to prove an
additional security predicate FCIA for the platform and the activities together with several additional side
conditions on the local views in order to obtain compositionality. In this paper, we therefore present the
above model with explicit acknowledgements for simplicity. However, we intend to further investigate
the implications of different guarantees provided by the communication platform in future work.

T. Bauereiss, D. Hutter 17

B Proofs

Proof of Theorem 1. Intuitively, we can convince ourselves that every possible confidential event can
be removed from a trace of one of our activities or inserted at admissible locations without interfering
with visible behaviour. For Outval events, this follows from the fact that they do not modify the state.
Confidential Setval and Recv events modify the memory content only of confidential data items, and
might make it necessary to send a corresponding output or acknowledgement afterwards. However,
these Send events are allowed to be inserted into or removed from the trace by our security predicates,
because we classified Send events of confidential data items as N events.

Formally, we prove the security of our activities using the unwinding technique of [15]. We define
the following unwinding relation such that two states are related if they allow the same visible behaviour.

s≈d s′⇐⇒ pc(s) = pc(s′)

∧
(
∀i ∈ Docsd . Mem(s)(i) = Mem(s′)(i)

)
∧
(
∀b ∈ A, i ∈ Docs.

(
b ∈ Ad

L∨ i ∈ Docsd

)
−→

(
(b, i) ∈MQueue(s)←→ (b, i) ∈MQueue(s′)

))
∧
(
∀b ∈ A, i ∈ Docs.

(
b ∈ Ad

L∨ i ∈ Docsd

)
−→

(
(b, i) ∈ AQueue(s)←→ (b, i) ∈ AQueue(s′)

))
∧SQueue(s) = SQueue(s′)

∧TriggeredBy(s) = TriggeredBy(s′)

∧User(s) =User(s′)

where Docsd = {i ∈ Docs | dom(d) d} denotes the set of documents that are visible in domain d.
Theorem 3 of [15] tells us that we can prove BSD and BSIA for our local view by proving the

following unwinding conditions:

osc≡∀s1,s′1 ∈ S.s1 ≈d s′1 −→ ∀e ∈ (E \Cd
a).∀s2 ∈ S.

[
(s1,e,s2) ∈ Ta −→

∃γ ∈ (E \Cd
a)
∗.∃s′2 ∈ S.

(
γ|V d

a
= 〈e〉|V d

a
∧ s′2 ∈ succ(s′1,γ)∧ s2 ≈d s′2

)]
lr f ≡∀s,s′ ∈ S.∀c ∈Ca

d .
((

reachable(s)∧ (s,c,s′) ∈ Ta
)
−→ s′ ≈d s

)
lrb≡∀s ∈ S.∀c ∈Ca

d .
(
(reachable(s)∧ s ∈ pre(c))−→ ∃s′ ∈ S.

(
(s,c,s′) ∈ Ta∧ s≈d s′

))
where succ(s,γ) denotes the set of states that the system can reach from state s via the sequence of events
γ , reachable(s) is true iff s is reachable from the starting state via some trace, and pre(c) is the set of
states that satisfy the preconditions of event c.

We first prove osc. We choose arbitrary but fixed states s1, s2, s′1 and a nonconfidential event e. We
have to prove that, if s1 ≈d s′1 holds, then the nonconfidential transition (s1,e,s2) can be simulated in the
state s′1 by a sequence of events γ that yields the same visible observations. We proceed by performing a
case distinction on e and finding a suitable witness γ for each case:
• In case e is of the form Recva(b,Trigger), τSendData

a , τAckTimeout
a , Senda(b,Trigger), Starta(u),

Setvala(u, i,v), Outvala(u, i,v), or Enda(u), then the assumption s1 ≈d s′1 implies that the precon-
ditions of e are satisfied not only in s1, but also in s′1. Furthermore, the postconditions of these
events imply that the relation s2 ≈d s′2 holds for the two successor states s2 and s′2 ∈ succ(s′1,〈e〉).
Hence, we can choose γ = 〈e〉 as the witness for osc.

18 Possibilistic Information Flow Control for Workflow Management Systems

• The same holds for the case where e is of the form Recva(b,Data(i,v)) or Recva(b,AckData(i)),
because it follows from e /∈Cd

a and our definition of local views that b must be an observer or i a
nonconfidential data item, i.e. b ∈Ad

L∨ i ∈Docsd . With s1 ≈d s′1 we then have (b, i) ∈ AQueue(s1)
iff (b, i)∈AQueue(s′1), hence the preconditions of e are also satisfied in s′1 and we can again choose
γ = 〈e〉 as witness.

• If e = Senda(b,AckData(i)), we know that (b, i) ∈ AckData(s1) from (s1,e,s′1) ∈ Ta.

– If (b, i) ∈ AckData(s′1) holds, then e is also enabled in s′1 and we again have γ = 〈e〉 as
witness.

– If (b, i) /∈ AckData(s′1), then s1 ≈d s′1 implies b ∈ Ad
H ∧ i /∈ Docsd . With our definition of

local views, this implies e ∈ Nd
a , hence 〈e〉|V d

a
= 〈〉. Furthermore, the postcondition of e then

implies that s2 ≈d s1 and, by transitivity, s2 ≈d s′1. Ultimately, we have γ = 〈〉 as a suitable
witness.

• Let e = Senda(b,Data(i,v)).

– If i∈Docsd , then Mem(s1)(i) =Mem(s′1)(i) and (b, i)∈MQueue(s′1) due to s1≈d s′1. Hence,
we can use γ = 〈e〉 as witness.

– If i /∈ Docsd , then b must be a high activity, because dom(i) clA(b) due to Definition 2,
and with dom(i) 6 d it follows that clA(b) 6 d must hold due to transitivity of . Hence,
e∈Nd

a , and analogously to the second sub-case of e= Senda(b,AckData(i)) above, we obtain
γ = 〈〉 as a suitable witness.

• If e = τActive
a , then e may not be enabled in s′1 because there are still some acknowledgements

waiting in AQueue(s′1). Due to s1 ≈d s′1 and AQueue(s1) = /0, these acknowledgements must be for
confidential data items and directed to high activities, i.e. ∀(b, i)∈AQueue(s′1).b∈Ad

H∧ i /∈Docsd .
The corresponding events Senda(b,AckData(i)) must then be in Nd

a , according to our definition of
local views. Hence, there is a sequence δ of these events and a successor state s′′1 ∈ succ(s′1,δ)
such that δ |V d

a
= 〈〉 and s′′1 is equal to s′1 except AQueue(s′′1) = /0. Then, e = Starta(u) is enabled in

s′′1 , and we obtain γ = δ .〈e〉 as witness.

• Similarly, if e = τ
SendTriggers
a , then e may not be enabled in s′1 because MQueue(s′1) or AQueue(s′1)

still contain confidential data items to be sent or acknowledgements waiting to be received. Anal-
ogously as for Starta(u) above, we can obtain a sequence δ of events Senda(b,Data(i,v)) with
(b, i) ∈MQueue(s′1) that sends the remaining data items, such that δ |V a

d
= 〈〉 and MQueue(s′′1) = /0

for s′′1 ∈ succ(s′1,δ). The remaining acknowledgements can be cancelled by inserting an event
τAckTimeout

a . Combined, we obtain a witness γ = δ .〈τAckTimeout
a 〉.〈e〉.

In order to prove lr f , we choose arbitrary but fixed states s, s′ and a confidential event c ∈Ca
d . Due

to our definition of local views, the confidential event c must have one of the forms Recva(b,Data(i,v)),
Recva(b,AckData(i)), Setvala(u, i,v) or Outvala(u, i,v) with b ∈Ad

H ∧ i /∈Docsd . In each of these cases,
the contents of the memory and the queues for nonconfidential data items and low activities are unaf-
fected. Hence, s′ ≈d s holds.

Finally, lrb is implied by lr f together with the facts that our unwinding relation is symmetric and
s ∈ pre(c)←→∃s′.(s,c,s′) ∈ Ta due to our specification of the transition relation via PP-statements.

Proof of Theorem 2. The proof proceeds as in [12], with the difference that we allow Send events to
be N-events in local views, i.e. they can be used for corrections of perturbations in confidential inputs.
The composition of high activities (friends) with the rest of the system is still well-behaved, because the

T. Bauereiss, D. Hutter 19

second case of Definition 6.3.6 of [19] is satisfied: The subsystem obtained by composing a set of agents
X ⊆A and the platform is total in Send-events of agents a /∈ X and satisfies BSIA.

Proof of Theorem 3. We first prove that BSD is preserved when restricting the set of traces from Tr to
Tr ∩ Pa,a′

SoD. BSD can only be violated if there is a confidential event c ∈ C, a trace β .c.α ∈ Tr with
α|C = 〈〉, and a perturbed and corrected trace β .α ′ ∈ Tr with α ′|V = α|V and α ′|C = 〈〉, such that
β .c.α ∈ Pa,a′

SoD, but β .α ′ /∈ Pa,a′
SoD. With Definition 4, this means there must be two distinct users u and u′

and events e1 ∈ (Ea ∩Eu) and e2 ∈ (Ea′ ∩Eu′) such that e1 and e2 both occur in β .α ′, but not both in
β .c.α . However, as by assumption all user interaction events are either visible or confidential in V , i.e.
EU ⊆ V ∪C, and α|V∪C = α ′|V∪C, this leads to a contradiction. Hence, BSD must hold for the refined
system.

For BSIA to be violated, there must be a trace β .α ∈ Tr with α|C = 〈〉, a confidential event c ∈ C
with β .c ∈ Tr, and a perturbed and corrected trace β .c.α ′ ∈ Tr with α ′|V = α|V and α ′|C = 〈〉, such that
β .α ∈ Pa,a′

SoD and β .c ∈ Pa,a′
SoD, but β .c.α ′ /∈ Pa,a′

SoD. Again, note that the subsequences of user interaction
events in α and α ′ are equal due to EU ⊆V ∪C, i.e. α|EU = α ′|EU . We perform a case distinction on the
three conditions of Theorem 3:

1. Assume that user assignments are nonconfidential. Hence, c ∈C is not a user assignment event. If
c is a user interaction event, i.e. ∃a,u.c∈ Eu∩Ea, then from β .c∈ Pa,a′

SoD we have that an assignment
event e ∈ Eassign ∩Ea ∩Eu must have occurred in β , i.e. a has already been assigned to u before
c has occurred. If c is not a user interaction event, it is irrelevant for Pa,a′

SoD. In both cases, with
β .α ∈ Pa,a′

SoD we conclude that the sequence of user interactions in α ′, which is the same as in α , is
still possible after c, i.e. β .c.α ′ ∈ Pa,a′

SoD, leading to a contradiction.

2. (a) Assume that all confidential user interaction events with a or a′ are disabled, i.e. C∩ (Ea ∪
Ea′)∩EU ⊆ Edisabled . Hence, c /∈ Ea and c /∈ Ea′ . With α|EU = α ′|EU we have β .c.α ′ ∈ Pa,a′

SoD

iff β .α ∈ Pa,a′
SoD, leading to a contradiction.

(b) Assume that all visible user interaction events with a or a′ are disabled, i.e. V ∩ (Ea∪Ea′)∩
EU ⊆ Edisabled . Hence, all user interaction events of activities a and a′ in β .c.α ′ must be in
C. However, as α ′|C = 〈〉, β .c.α ′ ∈ Pa,a′

SoD iff β .c ∈ Pa,a′
SoD, leading to a contradiction.

3. Assume that ES already enforces the separation of duty constraint, i.e. Pa,a′
SoD⊆ Tr. Then Tr∩Pa,a′

SoD =
Tr and the conclusion trivially follows.

	Introduction
	Example Scenario
	Preliminaries

	System Model
	Security Policies
	Confidentiality
	Separation of Duties

	Verification
	Information Flow Security
	Compatibility with Separation of Duties

	Related Work
	Conclusion
	Specification of Activities
	Proofs

