
SPECifIC — A New Design Flow for
Cyber-Physical Systems

Christoph Lüth, Serge Autexier, Dieter Hutter, Mathias Soeken, Robert Wille, Rolf Drechsler
DFKI Bremen

Cyber-Physical Systems Research Group
Bremen, Germany

Abstract—In this position paper, we propose a new design flow
for cyber-physical systems which builds on our previous experi-
ences in both the hardware and software domain. Its defining
features are the integration of natural language processing, the
formal specification level which allows an abstract description of
the system’s behaviour, and a comprehensive functional change
management throughout. We introduce the design flow and its
three levels of abstraction by example, and argue why it is
particularly suited for the development of cyber-physical systems.

I. INTRODUCTION

Due to their very characteristics, the development of correct
cyber-physical systems is a greater challenge than those of
traditional embedded or software systems. The reasons for this
complexity include:

• during their operational time, the working environment
of CPS changes, often in an unforeseen fashion;

• because of this, the (formal) specification of the CPS
remains unclear initially;

• and hence, our development process needs to be able
to handle frequent changes gracefully;

• CPS often operate in close collaboration with humans,
leading to obvious legal issues with regards to health
and safety concerns;

• besides distinguishing which parts of a CPS are re-
alised in software and hardware.

In this position paper, we aim to address these issues and
sketch how the Cyber-Physical Systems research group at
DFKI Bremen aims to tackle them in the nearer future. To this
end, we propose a new, comprehensive design flow informed
by our previous experiences.

II. OUR BACKGROUND

The background of our group includes formal development
and modelling in both the hardware and software domain, com-
bined with a long-standing experience in change management.

• Hardware verification has been a focus of the work
in the computer architecture group at the University
of Bremen for a number of years. In a large number
of projects, often joint with industrial partners such
as NXP, Infineon, or Intel Mobile Solutions, formal
tools have been developed for the design flow. These
include approaches based on BDDs [1], [2], SAT

solvers, test pattern generation, or their combina-
tions [3], [4], which are targeted at the lower and more
concrete levels of the development process, or tools for
model-checking SystemC specifications [5].

• The concept of a development graph [6], pioneered
by our group in the 90s, is a key concept for change
management. The generic DocTIP system [7] and its
more specific instantiation SmartTies [8] supported
the semantic analysis of structured documents by
the declarative specification of the semantic structure
(document models), and rules describing the impact
of changes in the structure.

• Work on software verification, in particular in the
robotics domain [9], [10], used the interactive theorem
prover Isabelle as well as automatic tools, focusing on
the C programming language [11] and also integrating
change management into the verification process [12].
The robotics domain is a particularly good represen-
tative for cyber-physical systems as it combines a rich
physical environment requiring expressive modelling
with sophisticated control algorithms, unlike tradi-
tional embedded systems.

III. ADDRESSING THE CHALLENGES

We aim to address the challenges laid out in Sect. I
by the following three measures: the integration of natural
language specifications; the introduction of a new abstract
system description level called the formal specification level
(FSL); and functional change management throughout, which
allows us both to react to changes in specifications as well as
to reuse existing developments.

A. Natural Language Specifications

We explicitly consider natural language specifications,
from which we synthesise formal specifications (early work
included e.g. extracting SysML requirement diagrams with
formal OCL specifications from English specifications). One
advantage of natural language is that it is more inclusive than
any formal specification language, and subsequently can be
understood by far more stakeholders of the development pro-
cess. Moreover, this approach bridges the notoriously difficult
first step from informal to formal (safety) requirements; if
we can extract the latter automatically from the former, the
gap narrows and we can concentrate attention, in particular
in the reviewing process, on the more easily understood
informal specification. This addresses the issues of unclear

CPS20 – preproceedings

4



Fig. 1. Functional change management: from the documents (lower row), we
abstract a semantics (symbolised by the cloud), which allows us to propagate
the impact of changes and project them back to the documents, by keeping
track of their origin.

specifications above, but also — by making specifications more
readily understood and easy to review — legal issues.

B. The Formal Specification Level

The formal specification level models the functional aspects
of the system on an abstract level. It is based on modelling
approaches such as UML or SysML, and allows a description
of the hardware of the system under development on an
abstract level, close to what is custom in software development.
Thus, development of hardware and software can proceed in
a uniform and comprehensive environment; in fact, in the
early stages of the development, the engineer does not need to
distinguish between the two. On the formal specification level,
properties such as deadlocks, inconsistencies and dynamic
properties expressed in OCL can be verified [13], and flaws
detected very early in the design flow, reducing costs and
effort. This addresses the hardware/software divide, but also
problems arising from changing environments.

C. Functional Change Management

Our approach to functional change management [7] is illus-
trated in Fig. 1. Technically, we consider all artefacts occuring
in the development process and their semantics uniformly
as graphs. For documents in XML or similar representation,
this is the obvious document tree with links as additional
edges; for the semantics, this is the called development graph,
where nodes are the entities of the development such as
specifications, modules, safety requirements, single functions,
or proofs, and where edges include relations such as “satis-
fies”, “implements”, or “depends-on”, e.g. connecting a safety
requirement with a function which implements the required
safety functionality, and a proof verifying that.

The uniform representation with graphs allows us to for-
malise the semantics abstraction and change impact propaga-
tion as graph rewriting rules, and to use a graph rewriting
engine (GrGen) as a common implementation basis. These
rules can specify either automatic changes, or can trigger
further user interaction; e.g. they could specify that when a

safety requirement changes, the functions which implement it
and the referenced proofs need be checked as well.

This approach is flexible, and has been adapted to a variety
of settings, including software verification [12] or development
of safety-critical systems [8]. To cover the development of
cyber-physical systems, we must adapt it further to cover
FSL specifications, and to cover the artefacts occuring in the
electronic system level or the register transfer level (see below).

Functional change management addresses the issues of
frequent changes. It makes the development process more
agile, because it allows rapid feedback loops. It also addresses
the issue of reuse, which is particularly relevant in system
development (according to a recent study [14], in 2010 76%
of all designs included at least one embedded processor, and
the external IP adoption increased by 69% from 2007 to 2010).

The full integration of these three features into the design
flow will change it beyond what is known and is in use today,
and will result in a new design flow targeted specifically at the
needs of cyber-physical systems.

IV. A NEW DESIGN FLOW FOR CYBER-PHYSICAL
SYSTEMS

We illustrate the proposed design flow with a scenario
illustrating the design of a (simplified) traffic light system.

A. Exploring the New Design Flow

The starting point is the description of the system in natural
language. It comprises definitions such as the following

A traffic light consists of a light for cars, a light for
pedestrians, and a request button for pedestrians.
Lights are either green or red. The button counts
the number of actuations. The lights for cars and
pedestrians are never green at the same time.

and various use cases such as

(1) A pedestrian pushes the button.
(2) The light for cars gets red.
(3) The light for pedestrians gets green.
(4) The light for pedestrians stays green for some

period of time.
(5) The light for pedestrians gets red.
(6) The light for cars gets green.

This informal description is translated to a formal requirement
specification of the intended system on the FSL. Analysing
the phrase structure of the sentences (e.g. using the Stanford
Parser [15]) and grouping nouns, verbs, adjectives, and adverbs
into sets of cognitive synonyms (e.g. using WordNet [16]), we
can conclude that light and button represent components of the
considered system (to be represented by classes or attributes)
and verbs like push correlate to operations.

Fig. 2 illustrates a possible result of this computer-aided
transformation process. Manual interaction by the designer is
necessary to define the pre- and postconditions of operations
(e.g. switchCarLight or switchPedLight) and class invariants
(e.g. class TrafficLight).

CPS20 – preproceedings

5



TrafficLight

pedLight: Boolean
carLight: Boolean
request: Boolean

switchPedLight()
switchCarLight()

Button

counter: Integer

requesting()

button 2

light 1

context Button::requesting()
pre: light.pedLight = false
post: light.request = true
post: counter = counter@pre + 1

context TrafficLight::switchPedLight()
pre: request = true
post: pedLight != pedLight@pre
post: request = false

context TrafficLight::switchCarLight()
post: carLight != carLight@pre

context TrafficLight
inv: not(pedLight = true and

carLight = true)

Fig. 2. UML class diagram for traffic light scenario

Based on this formal specification, the overall behaviour
of the system is checked for various correctness properties
(e.g. liveness and safety properties). Further, test cases can be
derived from the informally specified use cases. In applying
them, the tool detects a potential deadlock that is evident in our
example. In order to reach a system state where pedestrians
get a ‘green’ light, first requesting has to be invoked (assigning
request to True). Due to the invariant, switchCarLight has to
be executed next in order to set carLight to False. Finally,
the call of switchPedLight leads to the desired system state.
However, no further operations are applicable in this state since
(1) the pre-conditions of requesting and switchPedLight fail
and (2) the call of switchCarLight would lead to a system
state which contradicts the invariant. Therefore, the operations
of traffic light have to be adapted accordingly and the changes
propagated to the other abstraction levels.

If the system is specified as intended and exhibits the
required properties, the respective components are translated
to the next level of the design flow, the electronic system level
(ESL), where we model the system on a concrete, executable
level. A typical ESL language is SystemC, a C++ class library
providing hardware constructs and data types, which allows the
system behaviour to be simulated at an early stage of the design
flow. For the translation into the ESL, code generation methods
are applied to derive appropriate SystemC specifications. As
the correctness of the overall behaviour of the design has been
checked at the FSL, only the ESL implementations of the
individual components are left to be verified.

Finally, the ESL specification is translated to the lowest
level of our design process, called register transfer level (RTL),
based on which the individual hardware components are de-
signed. On the RTL, the system is described in a hardware
description language such as Verilog or VHDL.

Translating the specification of button of the traffic light
to RTL we may realise that we have already designed a
button in a previous project and we now like to reuse this IP
(intellectual property, i.e. previous or acquired development).
However, as it turns out, the behaviour of the existing button
is slightly different as its internal counter is incremented by an
arbitrary value provided through an additional input (instead
of a fixed value 1). Hence, reusing this design of a button
we have to adapt the usage of the counter in the traffic light
system accordingly and propagate these changes back across
the design flow to the higher levels, ensuring the continued
correctness of the overall development. Assuming that the
behaviour of the original system was verified at a higher

Specification

(natural language)

NLP

Code
Gen.

Synth.

Formal Spec (UML)

Implementation
(e.g. SystemC)

class A { . . . }
class B { . . . }
class C { . . . }

A

C

B

A

C

B

V
erifi

ca
tio

n
V

erifi
ca

tio
n

solely

solely

solely

F
o
rm

a
l

S
p

ecifi
ca

tio
n

L
ev

el(F
S

L
)

E
lectro

n
ic

S
y
stem

L
ev

el(E
S

L
)R

eg
ister

T
ra

n
sfer

L
ev

el(R
T

L
)

B
o
tto

m
U

p
B

o
tto

m
U

p

C
h

a
n

g
e

M
a
n

a
g
em

en
t

T
o
p

D
o
w

n
T

o
p

D
o
w

n

IP

Fig. 3. Proposed design flow

abstraction level, the changes which have their origin in a
lower abstraction level might invalidate the verification results
at a higher level. To avoid a time-intensive complete new
verification run, it would be helpful to know which proof
obligations are still valid in spite of the change and which
proof obligations have to be checked again. This kind of
change impact analysis is handled by the functional change
management.

B. The Stages of the New Design Flow

The proposed new design flow is sketched in Fig. 3. The
design flow originates with specifications formulated in natural
language. These are translated semi-automatically into formal
specifications, using techniques as sketched above. In case of
ambiguities or unresolvable specifications, the system will ask
the user to provide a clarification. Verification at the FSL will
allow to detect flaws early in the development process, saving
time and development costs.

FSL specifications will be translated automatically into
the ESL. The challenge is to translate annotations such as
pre- and postconditions from the FSL into a more concrete
representation at this level, and to identify at which level
(FSL, ESL or even RTL) which property can be verified.
The translation from ESL to RTL, finally, is routine. Further,
all these transformations must maintain traceability, as we

CPS20 – preproceedings

6



want to be able to trace defects found in lower levels of the
development — e.g. a timing flaw found at the RTL — back
to the higher levels.

The comprehensive functional change management covers
all levels of the design flow. It keeps track of proof obligations,
and reports which verification tasks have to be repeated after
a functional change and which properties are not affected and
are still valid. This will reduce verification loops, and makes
the development more agile.

The change management also covers the reuse of existing
IP. When we need to integrate existing IP, this may require
changes at the lower levels which impact on the higher levels;
the change management lets us compute the precise effect of
these changes.

V. CONCLUSIONS AND OUTLOOK

We have introduced the SPECifIC design flow, which
combines natural language processing, functional change man-
agement, and the new formal specification level. It arose from
our experiences in previous projects concerned with hardware
or software development, and addresses some of the key
challenges of developing cyber-physical systems.

The design flow will be put into place over the next
two-and-a-half years during the SPECifIC project, which has
started in July 2013. It will involve our industrial partners, and
hence will not be a purely academic prototype.

As an example, we are currently applying our techniques
to industrial benchmarks. In particular, we are addressing
the automatisation of requirement formalisation. Algorithms
aid to cluster requirements for an easier translation or help
in detecting requirements in a larger document. From this
evaluation we are pointed to more specific needs and adjust
our tools accordingly.

With the aim of producing something concretely useful, the
SPECifIC design flow does not address every possible problem
straight away; we rather chose to address the from our point
of view most potentially useful issues first, and follow up later
with concerns such as the following:

• Besides the UML, it would also make sense to in-
tegrate more expressive modelling techniques such as
hybrid or timed automata, and logics such as temporal
or modal logic.

• The natural language processing could be extended to
cover these formalisms as well. In fact, in our view it
is important to keep the natural language open, and not
restrict ourselves to a particular subset, as this allows
us to add in more expressiveness into the language at
a later point.

• We also think of replacing conventional design tools
which are in use today by collaborative tools to enable
a continuous connection between all stakeholders in
the design flow. An initial prototype [17] can be used
for this purpose and serve as a central tool inside the
SPECifIC design flow.

• Another issue is the long-term autonomy of CPS,
which may operate for a substantial or even indefinite

amount of time without the possibility to update or
amend them. This requires self-modification or even
self-healing capabilities, which it is unclear how to
describe formally.

REFERENCES

[1] R. Drechsler, B. Becker, and S. Ruppertz, “The K*BMD: A verification
data structure,” IEEE Design & Test of Computers, vol. 14, no. 2, pp.
51–59, 1997.

[2] R. Drechsler and D. Sieling, “Binary decision diagrams in theory and
practice,” STTT, vol. 3, no. 2, pp. 112–136, 2001.

[3] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schlöffel,
and D. Tille, “On acceleration of SAT-based ATPG for industrial
designs,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 27, no. 7, pp. 1329–1333, 2008.

[4] S. Eggersglüß and R. Drechsler, “A highly fault-efficient SAT-based
ATPG flow,” IEEE Design & Test of Computers, vol. 29, no. 4, pp.
63–70, 2012.

[5] A. Sulflow, U. Kuhne, G. Fey, D. Grosse, and R. Drechsler, “WoL-
Fram – a word level framework for formal verification,” in RSP ’09.
IEEE/IFIP International Symposium on Rapid System Prototyping, june
2009, pp. 11– 17.

[6] D. Hutter, “Management of Change in Structured Verification,” in Pro-
ceedings 15th IEEE International Conference on Automated Software
Engineering, ser. ASE, no. 2000. IEEE Computer Society, 2000, pp.
23–34.

[7] S. Autexier and N. Müller, “Semantics-based change impact analysis
for heterogeneous collections of documents,” in Proc. 10th ACM
Symposium on Document Engineering (DocEng2010), M. Gormish and
R. Ingold, Eds., 2010.

[8] S. Autexier, D. Dietrich, D. Hutter, C. Lüth, and C. Maeder, “SmartTies
- management of safety-critical developments,” in Proceedings 5th In-
ternational Symposium On Leveraging Applications of Formal Methods,
Verification and Validation (ISoLa’12), ser. LNCS, T. Margaria and
B. Steffen, Eds., vol. 7609. Springer, 2012, pp. 238– 252.

[9] H. Täubig, U. Frese, C. Hertzberg, C. Lüth, S. Mohr, E. Vorobev, and
D. Walter, “Guaranteeing functional safety: design for provability and
computer-aided verification,” Autonomous Robots, vol. 32, no. 3, pp.
303–331, April 2012.

[10] D. Walter, H. Täubig, and C. Lüth, “Experiences in applying formal
verification in robotics,” in SafeComp 2010 — 29th International
Conference on Computer Safety, Reliability and Security, ser. LNCS,
vol. 6351. Springer, 2010, pp. 347– 360.

[11] C. Lüth and D. Walter, “Certifiable specification and verification of C
programs,” in Formal Methods (FM 2009), ser. LNCS, A. Cavalcanti
and D. Dams, Eds., vol. 5350. Springer, 2009, pp. 419– 434.

[12] S. Autexier and C. Lüth, “Adding change impact analysis to the formal
verification of C programs,” in iFM 2010: Integrated Formal Methods -
8th International Conference, ser. Lecture Notes in Computer Science,
D. Méry and S. Merz, Eds., vol. 6396. Springer, 2010, pp. 59– 73.

[13] M. Soeken, R. Wille, and R. Drechsler, “Verifying dynamic aspects of
UML models,” in Design, Automation and Test in Europe, 2011, pp.
1077–1082.

[14] Wilson Research Group and Mentor Graphics, “2010-2011 Functional
Verification Study,” 2011.

[15] D. Jurafsky and J. H. Martin, Speech and Language Processing.
Pearson Prentice Hall, 2008.

[16] G. A. Miller, “WordNet: A Lexical Database for English,” Communi-
cations of the ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995.

[17] C. Lüth and M. Ring, “A web interface for Isabelle: The next gen-
eration,” in Conferences on Intelligent Computer Mathematics CICM
2013, ser. LNAI, J. Carette, Ed., vol. 7961. Springer, 2013, pp. 326–
329.

CPS20 – preproceedings

7


