
Learning in Compressed Space

Alexander Fabischa, Yohannes Kassahuna, Hendrik Wöhrleb, Frank
Kirchnera,b

aUniversity of Bremen, Fachbereich 3 - Mathematik und Informatik, Postfach 330 440,
28334 Bremen, Germany

bRobotics Innovation Center, German Research Center for Artificial Intelligence
(DFKI), Robert-Hooke-Str. 5, 28359 Bremen, Germany

Abstract

We examine two methods which are used to deal with complex machine
learning problems: compressed sensing and model compression. We discuss
both methods in the context of feed-forward artificial neural networks and
develop the backpropagation method in compressed parameter space. We
further show that compressing the weights of a layer of a multilayer per-
ceptron is equivalent to compressing the input of the layer. Based on this
theoretical framework, we will use orthogonal functions and especially ran-
dom projections for compression and perform experiments in supervised and
reinforcement learning to demonstrate that the presented methods reduce
training time significantly.

Keywords: model compression, compressed sensing, artificial neural
networks, supervised learning, reinforcement learning

1. Introduction

Artificial intelligence is facing real world problems and thus machine
learning problems become more and more complex. Bengio and Lecun [5]
state that “a long-term goal of machine learning research is to produce meth-
ods that will enable artificially intelligent agents capable of learning complex

Email addresses: afabisch@informatik.uni-bremen.de (Alexander Fabisch),
kassahun@informatik.uni-bremen.de (Yohannes Kassahun),
Hendrik.Woehrle@dfki.de (Hendrik Wöhrle), Frank.Kirchner@dfki.de (Frank
Kirchner)

Preprint submitted to Neural Networks February 11, 2013

behaviors with minimal human intervention and prior knowledge”. As a
result, even more effort is shifted from human to machine.

Complex machine learning problems comprise learning complex behav-
iors like visual and auditory perception and natural language processing as
mentioned by Bengio and Lecun [5] as well as dealing with highly noisy data
such as electroencephalography (EEG) signals and learning behavior and
perception for complex robots with many actuators and sensors. Examples
for complex robots that have many actuators and sensors are ASGUARD
[19], SCORPION [47] and SpaceClimber [3, 42]. A common characteristic of
complex problems is an associated large amount of data, which includes a
large input space dimension and/or a large training set. For example, vision
problems usually have hundreds to millions of input components as well as
thousands of training examples to cover all possible distortions and a typical
brain-computer interface (BCI) [51] can sample 128 channels with 5 kHz.

Complex problems usually result in long training times. We will now
consider ways that reduce the training time. There are numerous ways of
dealing with large input spaces that reduce the training time. Examples
include methods of feature selection [23], dimensionality reduction or fea-
ture extraction. These methods require in most cases at least some domain
specific knowledge and a manually designed preprocessing flow. But devel-
opments that reduce the need for human expertise and intervention such as
convolutional neural networks (CNNs) [35] or deep belief neural networks
(DBNs) [4] exist as well. The first layers of these kinds of neural networks
can be seen as trainable feature extractors, which can be used to cope with
large input spaces. This way of dealing with machine learning problems
is better because information cannot be lost unintentionally when (almost)
unprocessed data is used as input for the learning algorithm.

Another way of avoiding unintentional loss of information is using con-
ventional machine learning algorithms without built-in preprocessing on raw
data. But this is computationally more challenging and requires lots of op-
timizations, in particular during the training. In this article we want to
present novel approaches that can deal with complex machine learning prob-
lems. In particular, we want to show how to reduce the time needed to train
feed-forward neural networks.

We consider only multilayer perceptrons (MLPs) here to demonstrate two
ways of simplifying machine learning optimization problems: model compres-
sion and data compression. Advantages of MLPs are that they are universal
function approximators [26] and they are simple in concept, well-known and

2

widely used. Since MLP layers are contained in CNNs and the backpropaga-
tion method is also used in DBNs, we think that this restriction is justifiable.
In addition, the presented concepts can be extended to many other learning
algorithms. One of these learning algorithms is the support vector machine
(SVM) [10, 49]. We can combine SVMs and data compression easily and use
SVMs to compare them to MLPs in this article.

The source code for most of the experiments we present here is available
online at https://github.com/AlexanderFabisch/OpenANN.

2. Related Work

We will first give a short overview of the foundations of our work, which
include two research branches. In addition, we will discuss related ideas.

We call the first research branch “model compression”. Schmidhuber
[45, 46] developed a universal network encoding language (NEL) to represent
neural networks in a compressed form for supervised learning. This was mo-
tivated by the search for the best generalizing network, because the simplest
hypothesis that fits the training instances should give the best generalization
for the latent function. Since the NEL is not continuous it was not possible to
use efficient optimization algorithms for this compressed representation. This
was the reason for Koutńık et al. [31, 32] to develop a continuous representa-
tion, where the weights of a recurrent neural network with fixed topology are
represented by coefficients of an inverse discrete cosine transform. The focus
of their work was reinforcement learning [48]. Therefore, they presented ex-
periments with the evolutionary optimization algorithm CoSyNE [22]. The
main goal in this research is the increase of sample efficiency, that is the
reduction of episodes needed to learn a good or successful policy. We will
present a very similar approach in this article. However, there will be some
differences:

• We will focus on feed-forward neural networks, and hence extend the
standard backpropagation procedure for learning in compressed space.

• Not only a combination of orthogonal cosine functions, but any kind
of orthogonal functions and even randomly generated values can be
used to generate the weights. Hence, we will provide a more general
framework for model compression.

3

https://github.com/AlexanderFabisch/OpenANN

• Koutńık et al. [31, 32] compress all weights of a neural network with
the same coefficients, although they already mention that it would be
better to have a distinct set of coefficients for each neuron. We will use
a distinct set of coefficients for each neuron to generate all incoming
weights.

The second research branch is the so called “compressed sensing” [13, 18].
In compressed sensing, sparse or compressible data is examined. It is possible
to compress compressible data through random projections and reconstruct
it with high probability by solving an optimization problem. In combina-
tion with machine learning it can be used as a preprocessing method that
requires almost no prior knowledge. In particular, the method does not need
to compute any features from the training set. Compressed sensing has for
example been combined with support vector machines by Calderbank et al.
[12] and least squares regression by Maillard and Munos [38]. In these cases
the reconstruction is not necessary. It is instead assumed that it is possible
to distinguish the instances in compressed space because we could recon-
struct the original data with high probability. This is true because random
projections approximately preserve distances between instances [6]. Random
projections are a very powerful technique to overcome the curse of dimension-
ality when approximate solutions are sufficient. This has for example been
proven for similarity search as well (see locality-sensitive hashing [21, 27]).

We have already shown in a previous paper [30] that compressed sensing
and compressing the weights of a neural network that has no hidden layer
(single layer perceptron, SLP) are mathematically equivalent. As a contribu-
tion to the state of the art, we will show that compressing the weight matrix
of any fully connected layer is equivalent to compressing the input to that
layer.

Our goal is to reduce training time by reducing the number of parameters
that we have to optimize for a neural network. There are other approaches
in machine learning that have the same goals and could be combined with
the methods we present here. Two ways to do this with neural networks are
weight sharing and sparse connections, which are actually forms of model
compression. Prominent examples that combine both methods are CNNs
[35]. These have been particularly successful in recognizing objects in im-
ages such as traffic signs [16]. All kinds of CNNs consist of at least one
convolutional layer. A very simple example is shown in Figure 1. In this
convolutional layer, we have a two-dimensional input with 3× 3 entries and

4

Input feature map

x 1 x 2 x 3

x 4 x 5 x 6

x 7 x 8 x 9

Convolutional Layer

Output feature map

y1 y2

y3 y4

Kernel

w1 w2

w3 w4

Figure 1: Convolutional layer of a convolutional neural network. The input feature map is
convolved with a parametrizable kernel to create the output. For example, the first entry
of the output feature map is y1 = w1x1 + w2x2 + w3x4 + w4x5.

a two-dimensional output with 2× 2 entries. These are called feature maps.
The input is convolved with a 2 × 2 kernel to obtain the output. We can
construct a fully connected layer, that computes the same output through

y1
y2
y3
y4

 = W ·

 x1
...
x9

 , (1)

where W is the weight matrix

W =


w1 w2 0 w3 w4 0 0 0 0
0 w1 w2 0 w3 w4 0 0 0
0 0 0 w1 w2 0 w3 w4 0
0 0 0 0 w1 w2 0 w3 w4

 . (2)

It is obvious that W is sparse and the weights w1, . . . , w4 occur in more than
one row in this matrix, that is, they are shared among neurons. As a result,
we can say that the weight matrix W is generated by a transformation of
the convolution kernel. We can make a similar statement about any kind of
convolutional layer: the weight matrix of a convolutional layer is generated
from less parameters by a transformation. Why this is a form of model
compression will become clear at the end of Section 4.1.

5

(a) (b)

g∑
w

w

w

ji

ji-1

ji+1

x

x

x

i-1

i+1

i y

...

x

x

x

y

y

y

i-1

i

i+1

j-1

j

j+1

Figure 2: (a) Artificial neuron. (b) Multilayer perceptron.

3. Basics

Before we start with the discussion of model compression, we want to
summarize some basic knowledge about neural networks, introduce notation
we will use throughout this article and define what is meant by reinforcement
learning for our purpose.

3.1. Artificial Neural Networks

In supervised or reinforcement learning we want to build a model of an
unknown function y = f(x) with x ∈ RD,y ∈ RF . When we talk about a
model in this article, we mean a feed-forward artificial neural network, which
is a parametrizable function y = f̂(x,w), where w ∈ RK is a weight vector.

The basic module of an artificial neural network (ANN) is the artificial
neuron (see Figure 2 (a)). It computes a weighted sum of its inputs xi,
which is called activation, and applies an activation function g to generate
the output y. These neurons can be connected and arranged in layers to
form a multilayer perceptron, where consecutive layers are fully connected
(see Figure 2 (b)). The output of the model y will be calculated through
forward propagation, that is the neurons will sequentially calculate their
outputs and the outputs of the last layer will generate the model’s output.

In order to fit the function f , we usually modify the model parameters
w directly, such that they minimize the error on the training set in super-
vised learning or maximize the return in reinforcement learning. That is,
in supervised learning we use an optimization algorithm to minimize an er-
ror function E(w). Fast optimization algorithms (see for example Table 1)

6

usually require the gradient of the error function ∇E(w) =
∑N

n=1∇En(w),
where En is the error of training instance n.

In order to calculate the gradient, we use the backpropagation procedure
[43]. This requires the calculation of a δj for each neuron j. This quantity
can be interpreted as the contribution of neuron j to the error. For each
neuron j in the output layer this is calculated as

δj =
∂En

∂aj
= g′(aj)

∂En

∂yj
, (3)

where g is the activation function of neuron j, aj is its activation and yj its
output. Then we can backpropagate these δ’s in order to calculate the δ’s of
lower layers through

δj =
∂En

∂aj
= g′(aj)

∑
k

wkjδk, (4)

where neuron k is in the layer above j. Finally, we can compute the derivative
of the error with respect to each weight

∂En

∂wji

= δjzi, (5)

where zi is the output of neuron i.

3.2. Design of Artificial Neural Networks

Conventional Artificial Neural Networks like MLPs usually have a disad-
vantage: it is hard to apply them to problems because their architecture has
to be determined in advance. Here, the “architecture” subsumes the number
of hidden layers, the number of neurons, the type of activation functions, the
error function, etc. In our experiments, we usually followed the advices of
Bishop [7], Sarle [44] and LeCun et al. [36] and extracted the following rules:

• Keep the architecture as simple as possible. We start from a single
layer perceptron (SLP) and will only add layers and/or neurons if that
improves the performance the neural network in terms of predictions
and/or time.

• In all hidden layers we use the activation function tanh.

7

• For two-class classification problems, we use tanh in the output layer.
For regression, we use the identity g(x) = x in the output layer. In both
cases we use the error function sum of squared errors (SSE). For more
than two classes, we use softmax activation functions and cross entropy
error function. Some reinforcement learning problems require more
tailored solutions, for example because the output has to be within a
given interval.

In this article, we use the following notation to describe the architecture
of an MLP:

J (0)-J (1)-. . .-J (l)-. . .-J (P),

where J (l) is the number of neurons in layer l and P + 1 is the total number
of layers, including input layer, hidden layers and output layer. For example,
2-20-20-1 means that there are 2 inputs, 20 hidden nodes in the first hidden
layer, 20 hidden nodes in the second hidden layer and 1 output node and
there is usually an additional bias in every layer.

3.3. Reinforcement Learning

When we talk about reinforcement learning in this article, we will focus
on direct policy search. Usually, reinforcement learning requires the approx-
imation of value functions that indicate how good it is for an agent to be in
a given state and then we can infer policies from these value functions [48].
In direct policy search, the policies are learned directly. In this article, we
use an optimization algorithm that directly adjusts the parameters of the
policy to maximize the return of an episode and the policy is represented by
a neural network.

4. Learning in Compressed Space

In this section we first describe a novel generalized framework for model
compression of artificial neural networks and present its advantages. In par-
ticular, we derive the extension of the backpropagation method for neural
networks. Afterwards we give an introduction to data compression in the
context of compressed sensing. Finally, we prove and discuss the equivalence
of model compression and data compression.

8

4.1. Model Compression

We can compress the model f̂(x,w) by representing w ∈ RK with less
than K parameters.

Definition 1. Let wji, i ∈ {1, . . . , Ij} be the weights of a neuron j as de-
picted in Figure 2 (a). The weight wji is generated from compressed param-
eter space by

wji =

Mj∑
m=1

αjmφmi, (6)

where Mj is the number of parameters αj1, . . . , αjMj
to be optimized and φmi

can be

• sampled from pairwise orthogonal functions, that is φmi = φm(ti) where
for all k, l ∈ {1, . . . ,Mj} ∫ 1

0

φk(t)φl(t) dt = 0, (7)

and ti is defined as

ti =
i− 1

Ij − 1
, (8)

for example, the set {φ0(ti) = cos (0πti) , φ1(ti) = cos (1πti) , φ2(ti) =
cos (2πti) , . . .} contains orthogonal cosine functions,

• or sampled from a random distribution that we discuss in Section 4.3.

In order to compress the model,
∑

j Mj = L < K must be satisfied.
That is, the weights of at least one neuron have to be represented by less
parameters than the number of weights of the neuron.

The quantity α is a vector that contains all parameters that are required
to generate the weights of an ANN. For supervised learning, we can extend
the standard backpropagation procedure to calculate the gradient of E(α).

Theorem 1. Given the partial derivative of the error En with respect to the
weight wji, the partial derivative of the error En with respect to the parameter
αjm can be calculated by

∂En

∂αjm

=
∑
i

∂En

∂wji

φmi. (9)

9

Proof. We apply the chain rule for partial derivatives.

∂En

∂αjm

=
∑
i

∂En

∂wji

∂wji

∂αjm

(10)

Using Equation (6), we can write

∂En

∂αjm

=
∑
i

∂En

∂wji

∂

∂αjm

 Mj∑
m′=1

αjm′φm′i

 (11)

=
∑
i

∂En

∂wji

φmi. � (12)

Since we focus on MLPs, the calculation of the activation for each layer
l is usually done by a matrix-vector multiplication

a(l) = W (l)x(l), (13)

whereW (l) ∈ RJ(l)×I(l) is the weight matrix of layer l with its components be-
ing (W (l))ji = w

(l)
ji , x(l) ∈ RI(l) is the input of layer l and a(l) ∈ RJ(l)

contains

the activations of each neuron j ∈ {1, . . . , J (l)}. If we use a bias in this layer,
x(l) will be the output of the previous layer with an additional component
that is always 1. For MLPs we can simplify the model compression.

Theorem 2. If we use the same number of parameters M (l) for all neurons
in layer l, the weight matrix of layer l is generated by

W (l) = α(l)Φ(l), (14)

where α(l) ∈ RJ(l)×M(l)
is a parameter matrix with the components (α(l))jm =

α
(l)
jm and Φ(l) ∈ RM(l)×I(l) is a constant matrix whose components are gener-

ated by (Φ(l))mi = φmi.

Proof. When we look at the components of the matrices in Equation (14) α
(l)
11 . . . α

(l)

1M(l)

...
. . .

...

α
(l)

J(l)1
. . . α

(l)

J(l)M(l)

 ·
 φ11 . . . φ1I(l)

...
. . .

...
φM(l)1 . . . φM(l)I(l)

 (15)

=

 w
(l)
11 . . . w

(l)

1I(l)
...

. . .
...

w
(l)

J(l)1
. . . w

(l)

J(l)I(l)

 , (16)

10

we can see that the weight w
(l)
ji is generated by Equation (6), since

(
α
(l)
j1 . . . α

(l)

jM(l)

)
·

 φ1i
...

φM(l)i

 =
M(l)∑
m=1

α
(l)
jmφmi. � (17)

Theorem 3. If we use backpropagation, we can construct a matrix V (l) ∈
RJ(l)×I(l), where (V (l))ji = ∂En

∂(W (l))ji
and use this matrix to form another ma-

trix Ω(l) ∈ RJ(l)×M(l)
, where (Ω(l))jm = ∂En

∂(α(l))jm
with

Ω(l) = V (l)(Φ(l))T . (18)

The proof for this theorem is straight forward and only requires to write
Equation (9) in matrix form. Thus, we will omit it here.

This method of model compression requires a transformation of the pa-
rameter matrix α(l) to generate the weight matrix W (l). This is in principle
similar to what is done in convolutional layers of CNNs implicitely. In con-
volutional layers, we could generate W (l) from the convolution kernel by a
transformation.

In Section 3.2 we describe how we abbreviate the description of an archi-
tecture of an ANN. Similarly, we describe the compression:

M (1)-. . .-M (l)-. . .-M (P),

where M (l) is the number of parameters that is used to generate the weights
of each neuron in layer l. For example, 3-6-3 means that we compress the
weights of the first hidden layer with 3 parameters per neuron, in the second
hidden layer with 6 parameters per neuron and in the output layer with 3
parameters per neuron.

4.2. Advantages of Model Compression

There are at least three ways to reduce the training time of neural net-
works:

Option 1: We can reduce the time that is needed for forward propagation
and backpropagation.

Option 2: We can reduce the time that the optimization algorithm needs
for each iteration. Here we have to exclude the time of forward
propagation and backpropagation.

11

Algorithm Time complexity

Newton Algorithm O(L3)
Gauß-Newton O(L3)
Levenberg-Marquardt O(L3)
BFGS O(L2)
Conjugate Gradient O(L)

Table 1: Time complexity of each iteration for several gradient based optimization algo-
rithms according to LeCun et al. [36]. The number of parameters that will be optimized
is denoted by L.

Option 3: We can reduce the number of iterations an optimization algorithm
needs to converge.

Reducing the number of model parameters has different effects in supervised
learning and reinforcement learning with direct policy search.

When we look at the extended backpropagation that is required when
we use this model compression method for supervised learning, we can see
that it only adds more computational cost. In addition, we have to generate
the weights anew, when we adjust the parameters. Thus, we clearly do
not use option 1. We even cannot assure that the number of iterations is
reduced (option 3), because an indirect weight optimization can even make
the optimization harder. Nevertheless, the overall learning process will speed
up, when we use complex optimization algorithms that are in O(L2) or even
O(L3), where L is the number of parameters that have to be optimized,
and we can reduce the number of parameters in comparison to the number
of weights sufficiently. Then each iteration of the optimization algorithm
requires only a fraction of time. Interestingly, some of the best optimization
algorithms for batch learning have high time complexity in each optimization
step (see Table 1).

We think that the computational cost is not important for reinforcement
learning. This is because the goal of reinforcement learning is to deal with
complex simulated environments that are computationally expensive or with
the real world. In the real world we want to minimize the possibility to wear
or break real systems. Thus, we have to minimize the number of function
evaluations an optimization algorithm needs. Each function evaluation in
this setup is called episode. The derivative-free optimization algorithm we
use here for direct policy search is CMA-ES [24]. To our knowledge there is
no convergence proof for CMA-ES yet, but our empirical results show that

12

the convergence speed depends on the search space dimension L. This is the
reason why the reduction of parameters will speed up the learning process.

4.3. Data Compression

Compressed sensing can be used for data compression. Baraniuk et al.
[2] summarize

“In Compressed Sensing (CS) [..], a random projection of a
high-dimensional but sparse or compressible signal vector onto a
lower-dimensional space has been shown, with high probability, to
contain enough information to enable signal reconstruction with
small or zero error.”

In specific terms that means one of the key equations in CS [13, 18] is

y = Φx, (19)

where x ∈ RN is sparse or compressible, y ∈ RM and M < N . Φ ∈ RM×N is
generated randomly and has to satisfy the restricted isometry property (RIP)
[14]. In this setting, we could approximately reconstruct x from y with high
probability. However, this is not required when we use CS as a preprocessing
method for machine learning.

According to Candès and Romberg [13], a signal x is said to be com-
pressible if the reordered Ψ-coefficients ν, x = Ψν, in decreasing order of
magnitude decay like a power law. That is, in the sequence

|ν|(1) ≥ |ν|(2) ≥ . . . ≥ |ν|(N), (20)

the nth entry obeys
|ν|(n) ≤ c · n−s (21)

for some constants c and s ≥ 1. That means it will be sufficient if the signal
is approximately sparse in some orthogonal basis Ψ.

Random distributions we use to generate the matrix Φ have to satisfy the
RIP. Candès and Tao [14] originally define the restricted isometry property
of a matrix Φ that has restricted isometry constants δM . These constants
limit the deviation of the norm, when we project any vector x on any M -
dimensional subspace by multiplying it with a submatrix ΦM of Φ, that is

(1− δM)||x||2 ≤ ||ΦMx||2 ≤ (1 + δM)||x||2. (22)

13

This definition is then used to prove that sparse data can be reconstructed
after compression. In addition, they show that there exist matrices with good
restricted isometry constants.

Baraniuk et al. [2] show for example that

Φmi ∼ N (0,
1

Mj

), (23)

Φmi =


+1√
Mj

with probability 1
2

−1√
Mj

with probability 1
2

, (24)

and Φmi =


+1√
Mj

with probability 1
6

0 with probability 2
3

−1√
Mj

with probability 1
6

(25)

satisfy the RIP.
Another property of these random projections is that they approximately

preserve distances between instances because they satisfy the Johnson-Lin-
denstrauß lemma [28] according to Baraniuk et al. [2]. In other words,
random projections preserve similarities of data vectors. This property is
especially useful for machine learning algorithms, because their ability to
generalize is based upon the fact that similar inputs have similar outputs.
We can regard compressed sensing as a preprocessing method that requires
almost no domain specific knowledge. We only have to know that the data
is compressible.

4.4. Equivalence of Model Compression and Data Compression

Theorem 4. Compressing the weight matrix W (l) of layer l is equivalent to
compressing the input x(l) of this layer.

Proof. Let us assume that we generate W (l) according to Equation (14).
Then we can write the calculation of the activations in layer l as

W (l)x(l) = (α(l)Φ(l))x(l) (26)

= α(l)(Φ(l)x(l)) (27)

= α(l)x′(l). � (28)

Hence, we can interpret α(l) as the new weight matrix and x′(l) as the com-
pressed input of layer l.

14

Compressing the weight matrix of layer l = 0 of the ANN is equivalent
to compressing its input x(0) (with a bias). Compressing the input can be
done using Equation (19). In particular, for single layer networks compressed
sensing and model compression are mathematically identical. Therefore, we
can transfer the ideas from compressed sensing to model compression.

Usually we use orthogonal cosine functions for compression in this article,
but when we deal with a large amount of data like BCI data, we could achieve
better results with random compression. Note that random compression has
one fundamental prerequisite: all data dimensions have to be nearly equally
scaled and should be equally important for the prediction.

The equivalence of input compression and model compression raises the
question which method we should prefer. The only criterion to decide this
is computational cost. The bottleneck for input compression obviously is
compression of new data. If we must compress the same data twice, we will
be able to cache the result. For model compression the bottleneck is the
adaption of parameters because we then have to generate the weights again.
Hence, we have to distinguish SLPs and MLPs during (batch) learning and
prediction. When we train a single layer perceptron, we can compress the
input because it does not change during training and thus only has to be
done once. If the weights of an SLP are optimized and we want to predict a
previously unseen instance, it will be faster to generate the weights of the SLP
from compressed parameters. That way we can compute the compression
of the training data and activation at once. For MLPs this is not feasable
because the input of all other layers except the first one will change whenever
the weights are adjusted. Thus, model compression is better for MLPs during
training as well as during prediction.

5. Supervised Learning

One of the key contributions of this article is the backpropagation al-
gorithm for compressed MLPs. Thus, we want to show the advantages of
compression by means of supervised learning. We want to demonstrate that
a reduced number of parameters accelerates the optimization process. The
main reason for this is the reduced time for each iteration of the optimization
algorithm because some of the best optimization algorithms for ANNs have
quadratic or cubic time complexity.

In the following experiments we use the Levenberg-Marquardt algorithm
(LMA) [37, 39] to optimize the parameters of the ANN. The implementation

15

Figure 3: Two interlocked spirals. Different colors indicate different classes.

we use is from the library ALGLIB [9]. This algorithm has cubic time com-
plexity in every iteration. But it usually needs significantly less iterations
than other optimization algorithms (for example conjugate gradient).

5.1. Two Spirals

In this experiment we use MLPs to compare the influence of model com-
pression on the training time. The two spirals data set, which has been
developed by Lang and Witbrock [34], is a standard benchmark for classi-
fication algorithms. The goal is to separate two classes of points that are
located on a two-dimensional surface (see Figure 3). They are arranged as
interlocked spirals. The data set we use here is taken from the fast artificial
neural network library (FANN) [40]. It consists of 193 training instances and
193 test instances.

We use MLPs with two hidden layers to solve this problem. The instances
of this data set are not compressible and an indirect weight representation
actually makes the optimization more difficult. Here, we only want to demon-
strate that the mere reduction of parameters accelerates the optimization.

In this experiment we use MLPs with two hidden layers to compare the
influence of compression on the training time. We use hyperbolic tangent in
every layer as activation function. The classes are encoded as -1 and 1. We
compress the weights with orthogonal cosine functions. We draw the initial

16

A
rc

h
it

ec
tu

re

C
om

p
re

ss
io

n

L C
or

re
ct

p
re

d
ic

ti
on

s

It
er

at
io

n
s

T
ra

in
in

g
ti

m
e

µ± σ µ± σ µ

2-20-10-1 - 281 188.25 ± 1.554 768 ± 21.979 5981 ms
2-20-20-1 - 501 188.57 ± 1.448 464 ± 13.867 12466 ms
2-20-20-1 3-21-21 501 186.06 ± 1.533 305 ± 9.903 8174 ms
2-20-20-1 3-12-12 312 185.66 ± 1.701 511 ± 16.075 5248 ms
2-20-20-1 3-6-6 186 184.75 ± 1.914 679 ± 18.572 3033 ms
2-20-20-1 3-6-3 183 185.14 ± 1.798 775 ± 20.821 3381 ms

Table 2: Results of experiments with the two spirals data set. The values are averaged
over 100 runs. The training time is measured with an Intel Core i7-2600K. The notation
of architecture is explained in Section 3.2 and the notation of compression is explained in
Section 4.1.

parameters from N (0, 0.05). The error function is the sum of squared errors
(SSE). In this experiment we use the following stopping criteria:

• the maximum number of iterations is 1,000,

• the difference of the error between consecutive iterations must not be
too small, hence we stop the optimization if

|Et+1 − Et| ≤ 10−8 ·max{|Et+1|, |Et|, 1},

• the gradient must not be too small, therefore we stop if

|g| ≤ 10−8,

where t is the current iteration, Et is the error at iteration t, and g is the
current gradient.

The results are shown in Table 2. The number of parameters to be opti-
mized is denoted as L. It is either the number of weights for uncompressed
ANNs or the number of parameters

∑
j Mj for compressed ANNs. For each

configuration we did 100 test runs.

17

The differences in the classification performance are negligible. As we
expected, the optimization problem became more difficult due to indirect
weight representation. The indicator for this is the number of iterations. This
number even increases when we reduce the number of parameters. However,
the training time also decreases because the time for each optimization step
decreases significantly. For example, the shortest average training time (1740
ms) is achieved with a compressed MLP that has only 186 parameters but
needs 401 iterations on average, that is each iteration takes less than 5 ms. In
comparison, the uncompressed MLP with the same topology has an average
training time of 7176 ms although only 251 iterations are required on average
because each iteration takes more than 28 ms. This shows that the additional
complexity of the extended backpropagation is by far not as crucial as the
reduced complexity of the optimization step.

5.2. P300 Speller

The two spirals data set is a difficult problem for neural networks. Never-
theless, it is not a complex problem because the input dimension is low and
the training set is small. In contrast, brain-computer interfaces (BCIs) [51]
generate a huge amount of data. Ordinary systems measure brain activity
with 64 or more electrodes and sample signals with a high frequency. The
relevant signal usually has a significantly lower frequency. Therefore the data
is highly compressible. In the following experiment we use data from a BCI
as an example for a complex problem and show that we can use compressed
sensing in combination with model compression to speed up the training time
and even improve the performance of the classifier.

A brain-computer interface can be used to spell characters. The P300
speller [17, 20] is based on the oddball paradigm: whenever a user encoun-
ters an important rare stimulus in a sequence of stimuli a P300 potential is
elicited. The P300 potential is a so-called event-related potential (ERP) and
occurs around 300 ms after the corresponding stimulus.

In this setup the user concentrates on the character he wants to spell at
the character matrix that is shown in Figure 4. All columns and rows are
intensified 15 times in random order. Each of these repetitions is called a
trial. A classifier is used to recognize P300 potentials that occur whenever the
row or column with the correct character is intensified. After each character
epoch the classifier’s score for each row and column will be accumulated and
the result will be the character which is contained in the column and the row
with the highest scores. A low classifier accuracy does not necessarily lead to

18

A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 1 2 3 4
5 6 7 8 9 _

(W)O R D

B
H
N
T
Z
6

Figure 4: Character matrix.

a low character accuracy because we accumulate 15 trials. Here we use the
the BCI competition III data set II [8, 33]. We chose this data set because
there are many published results that we can compare to our results.

An instance consists of 15,360 components, that is one second sampled
with 240 Hz from 64 channels. We use a single layer perceptron (SLP)
with hyperbolic tangent activation function for classification and allow two
preprocessing methods:

• Lowpass filter with cut-off frequency 10 Hz.

• Downsampling with a factor of eleven.

The combination of both is called decimation. We chose these preprocessing
methods because the winners of the competition had a similar setup [41].
After downsampling, an instance consists of 1,344 components.

The compression we use here is random compression, where each compo-
nent of Φ is drawn from the following distribution:

Φmi =


+
√

3
Mj

with probability 1
6

0 with probability 2
3

−
√

3
Mj

with probability 1
6

(29)

The result is a matrix with approximately 2
3

entries of 0, that is not all
parameters affect all weights. We have shown that compressing the input of
a layer is equivalent to compressing the weights of a layer (see Theorem 4).

19

P
ar

am
et

er
s

C
om

p
re

ss
io

n

L
ow

p
as

s
fi
lt

er

D
ow

n
sa

m
p
li
n
g

A
cc

u
ra

cy

T
ra

in
in

g
ti

m
e

It
er

at
io

n
s

15 trials 5 trials
801 X X X 93.9 % 63.8 % 59.6 s 12.4
801 X X - 94.1 % 64.2 % 85.3 s 16.1

1201 X - - 87.8 % 55.3 % 143.8 s 16.1
1345 - X X 93.5 % 64.1 % 145.5 s 16.3

15360* - - - 20.0 % - 25 h -

Table 3: P300 speller results. The values are averaged over two subjects and ten runs per
subject. (*) We only did one run with one subject for this configuration.

In an SLP we only have one layer. Thus compressing the data is equivalent to
compressing all weights. There is only one difference: we do not compress the
weight of the bias, when we compress the data. Nevertheless we do compress
the data here. This can also be regarded as a preprocessing method.

The most successful setups are listed in Table 3. We tried several config-
urations and noticed that neither higher compression nor lower compressions
yield better results. The results are averaged over two subjects and ten runs
per subject. The compression matrix Φ and the initial parameter vector α0

varied during the ten runs. An uncompressed SLP needed more than one
day of training and did not reach an accuracy better than 20 %.

The best results of the BCI competition III are shown in Table 4. Three
of our results would have been ranked second in this competition. Note that
we neither did use preprocessing methods like channel selection, detrending,
PCA, etc. nor did we use an ensemble of classifiers. Almost no domain
specific knowledge is required for our method. Only a lowpass filter is really
required in order to achieve comparable results. So we had to make a rough
assumption about the frequency of the P300 potential. We have no informa-
tion about the training time used to generate the competition results. Thus,
we cannot certainly say that we developed a significantly faster method.

5.3. Singe Trial P300 Detection

A more challenging task in BCI is P300 detection with only a single
trial. Here we use data from the project IMMI (Intelligent Man-Machine

20

Accuracy
15 trials 5 trials Classifier Preprocessing

96,5 % 73,5 % Ensemble of SVM Channel selection, bandpass fil-
ter, downsampling

90,5 % 55,0 % Bagging with SVM Channel selection, bandpass fil-
ter, eye movement artifacts re-
moval, downsampling

90 % 59,5 % - Lowpass filter, downsampling,
detrending, PCA, t-statistic

89,5 % 53,5 % Gradient Boosting Detrending, decimation
87,5 % 57,5 % Bagging with LDA Channel selection, bandpass fil-

ter, downsampling

Table 4: Best results of the BCI Competition III [8].

Interface)1 of the German Research Center for Artificial Intelligence (DFKI)
Robotics Innovation Center and the University of Bremen. We have 24 data
sets, that is three independent sessions from eight subjects.

In the experiment two kinds of visual stimuli were presented to the test
person: irrelevant “standards” and relevant “targets”. The targets are sup-
posed to elicit P300 potentials. When a target was presented the test person
had to react with a movement of the right arm. The ratio between stan-
dards and targets was 8:1. The voltage is recorded at 5 kHz sampling rate
with 124 electrodes. For the experiments we used 62 EEG electrodes. The
data was acquired using an actiCap system (Brain Products GmbH, Munich,
Germany) and amplified by four 32 channel BrainAmp DC amplifiers. We
preprocessed the data as follows:

1. Standardization: We subtracted the mean of each channel and divided
the data by the standard deviation.

2. Decimation to 25 Hz: The data was filtered with a lowpass filter and
subsampled.

3. Lowpass filter with cut-off frequency 4 Hz.

After this preprocessing an instance consists of 1,550 components: 25 samples
from 62 channels. These preprocessing methods were found to improve the

1Website of the project: http://robotik.dfki-bremen.de/en/research/projects/
space-robotics/immi.html

21

http://robotik.dfki-bremen.de/en/research/projects/ space-robotics/immi.html
http://robotik.dfki-bremen.de/en/research/projects/ space-robotics/immi.html

 0

 3000

 6000

 9000

 12000

 400 800 1200 1600

T
ra

in
in

g
 t
im

e
 /
 m

s

Parameter / Input dimension

SLP
SVM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 400 800 1200 1600

B
a
la

n
c
e
d
 a

c
c
u
ra

c
y

Parameter / Input dimension

SLP
SVM

Figure 5: Balanced accuracy and training time of compressed SLP and SVM. The values
are averaged over 80 experiments (ten per subject). The interval [µ − σ, µ + σ] is shown
for the balanced accuracy.

classification significantly in the project IMMI and the size of an instance
vector is still big for normal classification algorithms. Since this is not the
focus of this article we will not go into detail here.

Here we compare two types of machine learning algorithms: SLPs and
SVMs. We use the library LIBSVM [15] with a linear kernel. We use com-
pressed sensing for both classifiers. We will measure generalization perfor-
mance and training time. In order to determine the generalization perfor-
mance, we use the data of the first two sessions as training set and the data
of the third session as test set and calculate the balanced accuracy [11]

balanced accuracy =
TP

TP+FN
+ TN

TN+FP

2
, (30)

which is suitable for unbalanced class distributions. Here, TP are true posi-
tives, FN are false negatives, TN are true negatives and FP are false positives.

22

θ1 θ2

x

F

Figure 6: Pole balancing environment.

The results averaged over all subjects are shown in Figure 5. The training
time of an SVM is usually much shorter and the reduction of parameters is
more effective for SLPs in terms of training time. However, we can approx-
imately preserve the accuracy when we reduce the number of parameters to
15 % of the number of weights (233 parameters) while at the same time the
training time is reduced to less than 20 % for SVMs (380 ms) and less than
3 % for SLPs (308 ms). The training time of this compressed SLP is just
a little bit shorter than the training time of the compressed SVM but it is
significantly shorter than the training time of an uncompressed SVM. The
balanced accuracy of SVMs and SLPs is approximately the same, but SLPs
seem to be slightly better for compressed data.

6. Reinforcement Learning

An area of application for model compression that has already been ex-
plored by Koutńık et al. [31] is reinforcement learning. Here the computa-
tional complexity of an optimization step is negligible. The only thing that
counts is the number of episodes required to learn a successful policy because
we usually deal with simulation environments that are computationally ex-
pensive or with the real world.

In these experiments we evolve the parameters or weights of MLPs that
represent the agent’s policy. This is a form of neuroevolution.

6.1. Pole Balancing

Our first reinforcement learning experiment is a very simple benchmark.
The pole balancing environment is depicted in Figure 6. The goal is to

23

balance two poles mounted on a cart by applying a force F . The dynamics are
described by Wieland [50]. We will analyze single and double pole balancing
with and without velocities. This has already been done by Koutńık et al.
[31] with the optimization algorithm CoSyNE [22].

We perform direct policy search to solve this problem. The optimization
algorithm IPOP-CMA-ES [1, 24] is used to adjust the weights of the policy
π : S → A, where S is the state space and A is the action space. A similar
approach has been examined by Heidrich-Meisner and Igel [25]. The fitness
function we want to maximize is the number of time steps per episode, that
is the weights will be updated after each episode.

The policy π is represented by a single layer perceptron without bias,
which is sufficient to solve the problem in the fully observable case. When
we do not know the velocities, we have to reconstruct them somehow from
the current and the last state. One way to do this is to realize a kind of
memory within the neural network. This is possible with recurrent neural
networks. The option we chose here is an augmented neural network with
Kalman filters (ANKF) [29]. ANKFs are neural networks with a specialized
recurrent neural network (α-β filter), which is used to estimate the velocities.
We will not compress the parameters of the α-β filters. Thus, we have to
optimize L parameters for the single layer perceptron and one parameter for
each α-β filter (we will call this number K).

We compare compressed and uncompressed SLPs in terms of the number
of episodes required to learn a successful policy. The results are summarized
in Table 5. SLPs with less parameters tend to converge faster if they are
able to represent a successful policy. So, we only listed the best compres-
sion setups. None of the 1,000 experiments for each configuration failed.
It was always possible to learn a successful policy with the listed config-
urations. In three out of four environments it was possible to reduce the
number of episodes required to learn a successful policy with model com-
pression. Double pole balancing without velocities is the exception. This
result is consistent with the result of Koutńık et al. [31]. They even slowed
down the learning speed significantly by compressing the weights for double
pole balancing without velocities. Another similarity is that single pole bal-
ancing can be solved in 2.5 episodes on average. Koutńık et al. [31] explained
that a solution only requires the weights of an SLP to be equal and positive.
When we represent all weights with only one parameter they always have the
same value. Therefore, the optimization algorithm only has to find a positive
value.

24

Environment Setup Episodes
V

el
oc

it
ie

s

P
ol

es

C
om

p
re

ss
io

n

L
+
K

µ σ m
in

m
ax

m
ed

ia
n

T
im

e

3 1 - 4 33.1 20.8 1 142 28 119 ms
3 1 3 1 2.5 2.4 1 40 2 104 ms
3 2 - 6 261.2 174.3 28 1410 224 210 ms
3 2 3 5 201.4 229.8 10 1336 139 160 ms
- 1 - 4 + 2 31.4 15.4 1 102 30 117 ms
- 1 3 3 + 2 14.3 9.6 1 57 12 114 ms
- 2 - 6 + 3 425.5 220.9 3 1714 388 229 ms
- 2 3 5 + 3 434.3 318.4 25 1909 352 195 ms

Table 5: Pole balancing results. The values are averaged over 1000 experiments.

Pole balancing with velocities Episodes
Method Publication Single Double
CoSyNE Gomez et al. [22] 98 954
CMA-NeuroES Heidrich-Meisner and Igel [25] 91 585
CoSyNE and DCT Koutńık et al. [31] 2 258

Pole balancing without velocities Episodes
Method Publication Single Double
CMA-NeuroES Heidrich-Meisner and Igel [25] 192 860
CoSyNE and DCT Koutńık et al. [31] 151 3.421
CoSyNE Gomez et al. [22] 127 1.249
CMA-ES and ANKF Kassahun et al. [29] - 302

Table 6: State of the art results in pole balancing. The results are compared in terms of
episodes that were required to learn a successful policy.

An overview of the best results in pole balancing at the moment is shown
in Table 6. We could at least reach or even outperform most of the results.
Again, the exception is double pole balancing without velocities. Kassahun
et al. [29] achieved a significantly better result even though almost the same
methods were used. The reason is that they did not learn the parameters of
the α-β filters. These parameters were fixed.

25

(a) (b)

Figure 7: (a) Octopus arm environment. The dark gray line is the straightened arm, the
light gray circles are pieces of food and the black circle is a mouth. (b) Octopus arm. The
black lines mark muscles and the circles designate point masses of the octopus arm.

Koutńık et al. [31] already achieved similar results with a similar ap-
proach. The differences are

• they used an optimization algorithm that does not work as good as
IPOP-CMA-ES in this case,

• they did use a recurrent neural network instead of α-β filters, which
also was disadvantageous.

6.2. Octopus Arm

The octopus arm environment 2 is a complex reinforcement learning prob-
lem. The dimensions of the state and action space are greater than those
of pole balancing. The environment is depicted in Figure 7. In the environ-
ment configuration we use here, the arm consists of 12 compartments and
each compartment consists of four point masses that are shared with adjacent
compartments and has three muscles. The position and velocity of the point
masses are components of the state as well as the positions and velocities of
the food. The agent has to control the muscles that can be contracted with
a continuous degree of strength. A state consists of 106 components and
an action consists of 36 components. The values of the action’s components

2The octopus arm environment is available at http://www.cs.mcgill.ca/~dprecup/
workshops/ICML06/octopus.html.

26

http://www.cs.mcgill.ca/~dprecup/workshops/ICML06/octopus.html
http://www.cs.mcgill.ca/~dprecup/workshops/ICML06/octopus.html

Return in 900 episodes
(average of 20 experiments)

Compression L µ σ max
- 1466 -4,52 1,02 11,71

107-11 1466 2,49 0,82 11,73
80-11 1196 1,89 1,32 11,72
40-11 796 2,06 0,86 11,80
20-11 596 2,28 0,60 11,72
10-11 496 2,73 1,30 11,73
5-11 446 3,60 1,08 11,72

Table 7: Octopus arm benchmark results. The maximum return is an indicator for the
best policy that is representable with these setups and the mean average return indicates
how fast a good policy is learned. The notation of compression is explained in Section 4.1.

have to be in [0, 1]. For this reason, the activation function of the output
layer will be logistic in these experiment.

The return of an episode is the sum of all rewards. The reward for each
step is usually -0.01. When the agent feeds the mouth with the left piece
of food it receives the reward 5 and when it feeds the right piece of food it
receives the reward 7. An episodes stops if either both pieces of food are in
the mouth or 1,000 steps have passed. Hence, the minimal return is -10 and
the upper bound is 12.

We use almost the same approach to solve this problem as for pole bal-
ancing. But the policy is represented by an MLP with ten hidden units and
a bias, that is the MLP has 1466 weights. We assume that the task is simple
enough to be solved with less parameters. We compress the weights with
orthogonal cosine functions.

We calculate the average return in each experiment as an indicator for
the speed of the learning algorithm and the maximum return as an indicator
for the best representable policy. The results are listed in Table 7. One can
conclude from the maximum return that each configuration is in principle
able to represent a very good policy. The uncompressed MLP yields by far
the worst result. It is possible to learn a good policy but this does not happen
fast. When we represent the weights with orthogonal cosine functions and do
not reduce the number of parameters, the result is already better. Thus, this
representation is advantageous for this problem. But a significant reduction
of parameters further increases the mean average return and thus improves

27

the learning speed.

7. Conclusion

We introduced a general framework for compressing the weights of a neu-
ral network and extended the backpropagation method. We have shown that
compressing the input of a layer of a neural network is the same as com-
pressing the weights of the layer. In particular, compressing the input layer
is equivalent to compressing the input to the network. Therefore, we are
now able to transfer some ideas from compressed sensing. For example, we
can use randomly generated matrices to compress the weights of a neural
network, when we know that the data is compressible. In addition, model
compression can now be regarged as implicit preprocessing.

We have applied model compression to both supervised learning and re-
inforcement learning. We found that model compression

• reduces the computational cost of an optimization iteration and

• can reduce the number of episodes required to learn good policies in a
complex reinforcement learning problem.

We have examined only fully connected layers of neural networks here.
However, fully connected layers exist in neural networks like convolutional
neural networks or deep belief networks as well. Therefore it is simple to
transfer model compression to these types of neural networks. But it is even
possible to adapt this method to layers that are not fully connected or share
weights, for example convolutional layers in CNNs.

Acknowledgement

This work was supported through a grant of the Federal Ministry of Eco-
nomics and Technology (BMWi, FKZ 50 RA 1011).

8. References

[1] Auger, A., Hansen, N., 2005. A restart CMA evolution strategy with
increasing population size. In: Proceedings of the IEEE Congress on
Evolutionary Computation. Vol. 2. IEEE Press, pp. 1769–1776.

28

[2] Baraniuk, R. G., Davenport, M. A., DeVore, R. A., Wakin, M. B., 2008.
A simple proof of the restricted isometry property for random matrices.
Constructive Approximation (3), 253–263.

[3] Bartsch, S., Birnschein, T., Cordes, F., Kühn, D., Kampmann, P., Hill-
jegerdes, J., Planthaber, S., Römmermann, M., Kirchner, F., 2010.
SpaceClimber: Development of a six-legged climbing robot for space
exploration. In: 41st International Symposium on Robotics (ISR) and
6th German Conference on Robotics (ROBOTIK). VDE Verlag, pp. 1–8.

[4] Bengio, Y., 2007. Learning deep architectures for AI. Tech. Rep. 1312,
Dept. IRO, Universite de Montreal.

[5] Bengio, Y., Lecun, Y., 2007. Scaling learning algorithms towards AI. In:
Bottou, L., Chapelle, O., Decoste, D., Weston, J. (Eds.), Large-Scale
Kernel Machines. MIT Press, pp. 321–360.

[6] Bingham, E., Mannila, H., 2001. Random projection in dimensionality
reduction: applications to image and text data. In: Proceedings of the
seventh ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, pp. 245–250.

[7] Bishop, C. M., 1996. Neural Networks for Pattern Recognition. Oxford
University Press.

[8] Blankertz, B., 2005. BCI competition III webpage. Webpage.
URL http://www.bbci.de/competition/iii/

[9] Bochkanov, S., Bystritsky, V., 2011. Levenberg-Marquardt algorithm for
multivariate optimization. Webpage.
URL http://www.alglib.net/optimization/levenbergmarquardt.

php

[10] Boser, B. E., Guyon, I. M., Vapnik, V. N., 1992. A training algorithm
for optimal margin classifiers. In: Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory. ACM Press, pp. 144–152.

[11] Brodersen, K. H., Ong, C. S., Stephan, K. E., Buhmann, J. M., 2010.
The balanced accuracy and its posterior distribution. In: Proceedings of
the 20th International Conference on Pattern Recognition. IEEE Com-
puter Society, pp. 3121–3124.

29

http://www.bbci.de/competition/iii/
http://www.alglib.net/optimization/levenbergmarquardt.php
http://www.alglib.net/optimization/levenbergmarquardt.php

[12] Calderbank, R., Jafarpour, S., Schapire, R., 2009. Compressed learning:
Universal sparse dimensionality reduction and learning in the measure-
ment domain. Tech. rep., Princeton University.
URL http://dsp.rice.edu/files/cs/cl.pdf

[13] Candès, E. J., Romberg, J. K., 2005. Practical signal recovery from
random projections. In: Proceedings of SPIE Computational Imaging
III. SPIE Press, pp. 76–86.

[14] Candès, E. J., Tao, T., 2005. Decoding by linear programming. IEEE
Transactions on Information Theory 51 (12), 4203–4215.

[15] Chang, C.-C., Lin, C.-J., 2011. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology
2 (3), 27:1–27:27.

[16] Ciresan, D. C., Meier, U., Masci, J., Schmidhuber, J., 2011. A committee
of neural networks for traffic sign classification. In: International Joint
Conference on Neural Networks. IEEE Press, pp. 1918–1921.

[17] Donchin, E., Spencer, K. M., Wijesinghe, R., 2000. The mental prosthe-
sis: Assessing the speed of a p300-based brain-computer interface. IEEE
Transactions on Rehabilitation Engeneering 8, 174–179.

[18] Donoho, D. L., 2006. Compressed sensing. IEEE Transactions on Infor-
mation Theory 52 (4), 1289–1306.

[19] Eich, M., Grimminger, F., Kirchner, F., 2008. A versatile stair-climbing
robot for search and rescue applications. In: IEEE International Work-
shop on Safety, Security and Rescue Robotics, 2008. SSRR 2008. pp.
35–40.

[20] Farwell, L. A., Donchin, E., 1988. Talking off the top of your head: To-
ward a mental prosthesis utilizing event-related brain potentials. Elec-
troencephalography and Clinical Neurophysiology 70, 510–523.

[21] Gionis, A., Indyk, P., Motwani, R., 1999. Similarity search in high di-
mensions via hashing. In: Proceedings of the 25th International Confer-
ence on Very Large Data Bases. Morgan Kaufmann, pp. 518–529.

30

http://dsp.rice.edu/files/cs/cl.pdf

[22] Gomez, F., Schmidhuber, J., Miikkulainen, R., 2008. Accelerated neural
evolution through cooperatively coevolved synapses. Journal of Machine
Learning Research 9, 937–965.

[23] Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature
selection. Journal of Machine Learning Research 3, 1157–1182.

[24] Hansen, N., Ostermeier, A., 2001. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation 9 (2),
159–195.

[25] Heidrich-Meisner, V., Igel, C., 2009. Neuroevolution strategies for
episodic reinforcement learning. Journal of Algorithms 64 (4), 152–168.

[26] Hornik, K., Stinchcombe, M. B., White, H., 1989. Multilayer feedfor-
ward networks are universal approximators. Neural Networks 2 (5), 359–
366.

[27] Indyk, P., Motwani, R., 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In: Proceedings of the 30th annual
ACM symposium on Theory of computing. ACM, pp. 604–613.

[28] Johnson, W. B., Lindenstrauss, J., 1984. Extensions of lipschitz mapping
into hilbert space. In: Conference in Modern Analysis and Probability.
Vol. 26 of Contemporary Mathematics. American Mathematical Society,
pp. 189–206.

[29] Kassahun, Y., de Gea, J., Edgington, M., Metzen, J. H., Kirchner, F.,
2008. Accelerating neuroevolutionary methods using a Kalman filter. In:
GECCO. ACM, pp. 1397–1404.

[30] Kassahun, Y., Wöhrle, H., Fabisch, A., Tabie, M., 2012. Learning pa-
rameters of linear models in compressed parameter space. In: Villa, A.,
Duch, W., Érdi, P., Masulli, F., Palm, G. (Eds.), Artificial Neural Net-
works and Machine Learning – ICANN 2012. Vol. 7553 of Lecture Notes
in Computer Science. Springer, pp. 108–115.

[31] Koutńık, J., Gomez, F. J., Schmidhuber, J., 2010. Evolving neural net-
works in compressed weight space. In: Pelikan, M., Branke, J. (Eds.),
GECCO. ACM, pp. 619–626.

31

[32] Koutńık, J., Gomez, F. J., Schmidhuber, J., 2010. Searching for mini-
mal neural networks in fourier space. In: Baum, E., Hutter, M., Kitzel-
nmann, E. (Eds.), Proceedings of The Third Conference on Artificial
General Intelligence (AGI 2010). Atlantic Press, pp. 61–66.

[33] Krusienski, D., Schalk, G., 2004. Wadsworth BCI dataset (P300 evoked
potentials). Data set description.
URL http://www.bbci.de/competition/iii/desc_II.pdf

[34] Lang, K. J., Witbrock, M. J., 1988. Learning to tell two spirals apart. In:
Touretzky, D., Hinton, G., Sejnowski, T. (Eds.), Proceedings of the 1988
Connectionist Models Summer School. Morgan Kaufmann, pp. 52–61.

[35] LeCun, Y., Bengio, Y., 1995. Convolutional networks for images, speech
and time series. In: Arbib, M. A. (Ed.), The Handbook of Brain Theory
and Neural Networks. MIT Press, pp. 255–258.

[36] LeCun, Y., Bottou, L., Orr, G. B., Müller, K.-R., 1998. Efficient back-
prop. In: Orr, G. B., Müller, K.-R. (Eds.), Neural Networks: Tricks of
the Trade. Springer, pp. 9–50.

[37] Levenberg, K., 1944. A method for the solution of certain problems in
least squares. Quarterly of Applied Mathematics 2, 164–168.

[38] Maillard, O.-A., Munos, R., 2009. Compressed least-squares regression.
In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., Culotta,
A. (Eds.), Advances in Neural Information Processing Systems 22. pp.
1213–1221.

[39] Marquardt, D., 1963. An algorithm for least-squares estimation of non-
linear parameters. Journal of the Society for Industrial and Applied
Mathematics 11 (2), 431–441.

[40] Nissen, S., 2003. Implementation of a fast artificial neural network li-
brary (fann). Tech. rep., Department of Computer Science University of
Copenhagen (DIKU).
URL http://leenissen.dk/fann/report/report.html

[41] Rakotomamonjy, A., Guigue, V., 2008. Bci competition iii: Dataset ii -
ensemble of svms for bci p300 speller. IEEE Transactions on Biomedical
Engeneering 55 (3), 1147–1154.

32

http://www.bbci.de/competition/iii/desc_II.pdf
http://leenissen.dk/fann/report/report.html

[42] Römmerman, M., Kühn, D., Kirchner, F., 2009. Robot design for space
missions using evolutionary computation. In: Evolutionary Computa-
tion, 2009. CEC ’09. IEEE Congress on. pp. 2098–2105.

[43] Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986. Learning repre-
sentations by back-propagating errors. Nature 323 (6088), 533–536.

[44] Sarle, W. S., 1997. Neural network FAQ. Postings to the Usenet news-
group comp.ai.neural-nets.
URL ftp://ftp.sas.com/pub/neural/FAQ.html

[45] Schmidhuber, J., 1995. Discovering solutions with low Kolmogorov com-
plexity and high generalization capability. In: International Conference
on Machine Learning. Morgan Kaufmann, pp. 488–496.

[46] Schmidhuber, J., 1997. Discovering neural nets with low Kolmogorov
complexity and high generalization capability. Neural Networks 10 (5),
857–873.

[47] Spenneberg, D., Kirchner, F., 2007. The bio-inspired SCORPION robot:
Design, control & lessons learned. In: Zhang, H. (Ed.), Climbing &
Walking Robots: towards New Applications. InTech, pp. 197–218.

[48] Sutton, R. S., Barto, A. G., 1998. Reinforcement Learning: An Intro-
duction. MIT Press.

[49] Vapnik, V. N., 1995. The Nature of Statistical Learning Theory.
Springer-Verlag New York, Inc.

[50] Wieland, A. P., 1990. Evolving controls for unstable systems. In: Touret-
zky, D. S., Elman, J. L., Sejnowski, T. J., Hinton, G. E. (Eds.), Connec-
tionist Models: Proceedings of the 1990 Summer School. CA: Morgan
Kaufmann, pp. 91–102.

[51] Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G.,
Vaughan, T. M., 2002. Brain-computer interfaces for communication
and control. Clinical Neurophysiology 113 (6), 767–91.

33

ftp://ftp.sas.com/pub/neural/FAQ.html

	Introduction
	Related Work
	Basics
	Artificial Neural Networks
	Design of Artificial Neural Networks
	Reinforcement Learning

	Learning in Compressed Space
	Model Compression
	Advantages of Model Compression
	Data Compression
	Equivalence of Model Compression and Data Compression

	Supervised Learning
	Two Spirals
	P300 Speller
	Singe Trial P300 Detection

	Reinforcement Learning
	Pole Balancing
	Octopus Arm

	Conclusion
	References

