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Abstract. This paper introduces Clide, a collaborative web interface
for the Isabelle theorem prover. The interface allows a document-oriented
interaction very much like Isabelle’s desktop interface. Moreover, it allows
users to jointly edit Isabelle proof scripts over the web; editing operations
are synchronised in real-time to all users.
The paper describes motivation, user experience, implementation and
system architecture of Clide. The implementation is based on the theory
of operational transformations; its key concepts have been formalised
in Isabelle, its correctness proven and critical parts of the implementa-
tion on the server are generated from the formalisation, thus increasing
confidence in the system.

1 Introduction

Just like mathematics, interactive theorem proving is at its heart a social ac-
tivity. Mathematical proof is rarely a solitary activity, it is most often done in
collaboration with others. It is thus unfortunate that present theorem prover
interfaces have very much been single-user; a real-time collaborative user inter-
face, where many users can jointly edit the same proof in the vein of the late
Google docs3 should add much to the user experience, enhance productivity and
enable new patterns of interaction between theorem provers and humans. Until
now, there have hardly been real-time collaborative user interface for theorem
provers, so this hypothesis had to remain untested. This paper presents a first
prototype of a real-time collaborative, web-based user interface for a state-of-
the-art interactive theorem prover, Isabelle, allowing us to experiment with the
collaborative user experience.

As the experience with Google docs shows, collaborative user interfaces thrive
when they are available on the web. The web has collaboration built-in, with
many users connecting to a single server, and web interfaces offer eo ipso a lot
of advantages: they are inherently cross-platform, portable and mobile, they re-
quire little installation effort (a recent web browser is enough), and only need
few resources on the user side. Recent advantages in web technology (collec-
tively and somewhat inaccurately known as ‘HTML5’) allow the development of
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3 Now available as Google Drive.
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Fig. 1. The Clide user interface: On the left there is a toolbar, on the right a theory
has been opened (above). The Isabelle output, here the current proofstate, is shown in
a separate part of the window; it can also be inlined.

web interfaces of near-desktop quality. The first version of the Clide system [1]
demonstrated a web-based interface for Isabelle; the present work extends this
to a truly collaborative setting. This is not a completely trivial exercise; the
basic problem is keeping the documents synchronised across the different clients
(user interfaces), the server and the theorem prover. Fortunately, well explored
solutions for this problem exist which we could draw on when implementing our
system, namely the theory of operational transformation. We have formalised
the basic algorithms of this theory in Isabelle, and generate parts of our imple-
mentation from this formalisation.

This paper is structured as follows: we first introduce Clide from the users’
perspective, then give the theory and pragmatics of the implementation. We
explain the system architecture and the underlying design decisions, and finish
with conclusions, where we review related and future work.

2 The User Experience

The interface was designed with an emphasis on typography over superfluous
graphics, with a clear arrangement reducing it to the basics such that it does
not distract from the main center of attention, the proof script. Pervasive use of
HTML5 and JavaScript make the interface very responsive; because the entire
user interface is implemented as a single-page application which dynamically
changes views through JavaScript the interaction more resembles a desktop ap-
plication than a web interface of old.
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Clide organises the user’s work in projects, which are collections of files and
folders. Projects are the basic unit of granularity for sharing. The Clide user
interface has two basic views: the backstage view is the starting point, where
users can review their projects, create new ones, and select a current one, and
the project view, where users can create, edit and delete files and folders in the
current project.

Fig. 1 shows a screenshot of the project view. On the left, there is a (hideable)
tool sidebar, where users can select files, invite collaborators, and access common
editing operations such as cut, copy & paste. The tool sidebar further shows the
other collaborators and their details. In the center of the view, there is the main
file editor, where files are opened in tabs. The editor is based on the CodeMirror
editor, and offers a seamless editing of mathematical text in a web-browser,
with features such as integration of mathematical symbols, Greek letters, and
other Unicode symbols, flexible-width font, super/subscripting and tooltips for
text spans. The interaction with Isabelle is very similar to the Isabelle/jEdit
interface [2]: users edit the theory while Isabelle processes it asynchronously on
the server, sending back the results as they become available. These results can
be the prover’s state, error or warning messages after executing this particular
prover command. The prover messages can be displayed inlined or in a separate
window, which is useful for larger proof states. In addition to the messages, the
inner syntax of the theory as well as special symbol substitutions are annotated
and type information for hovered terms is provided. All these annotations can
be deactivated individually if desired. There is also a chat window which allows
short text messages to be sent to collaborators. The collaboration is unintrusive,
and should be familiar to users of Google docs: each user can see the cursor
of other users and their editing operations, taking effect immediately without
blocking. Users also see the selection area of other users, which is useful for
communication purposes (“Where here is the error?”), and to warn other users
that this area of the file is about to be deleted; this feature can be deactivated
if it gets too intrusive.

A public evaluation version of the system is online at http://clide.informatik.
uni-bremen.de/. The evaluation version features public projects, which are open
to all users of the system (normally not a desirable state of affairs), which is
great to get quickly up and collaborating.

2.1 Use Cases

Collaboration should not be end unto itself. We envisage at least the following
use cases for collaborative theorem proving:

– Scientific collaboration: two (or more) users are working jointly on a proof,
all contributing actively and staying in close contact; collaboration ensures
that all participants know the proof, and can continue working on it. In a
normal situation, collaborators would be sitting around the same machine;
with a collaborative interface this situation can be extended to collaborating
across countries and continents (timezone issues notwithstanding).

http://clide.informatik.uni-bremen.de/
http://clide.informatik.uni-bremen.de/
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– Proof review: one user is going through the proof, explicating it to others who
do not contribute actively, but try to understand what is being formalised.
This situation is useful in the classroom, both for lecturers to explain a
proof (while the students can interactively explore it), but possibly also for
teachers to see how students progress and be able to assist them if needed.

– Machine-assisted collaboration: here, other collaborators are software pro-
cesses. A simple example of this is Clide used as a single-user web-interface:
the user still collaborates with Isabelle.

We would be surprised to see massive open online collaboration, where thousands
of people work on one single theory. In this situation, an underlying version man-
agement and revision control system is needed; the ProofPeer project recently
started in Edinburgh is an interesting step in this direction [3].

3 Implementation

Research in the area of computer-supported cooperative work (CSCW) goes back
to the early eighties of the last century. One of the more challenging concerns has
always been real-time activity awareness and coordination [4]. A collaborative
system with these properties requires a mechanism to synchronise the distributed
document states as quickly as possible across all users without loss of information
or diverging documents. This is far from trivial because communication always
involves delays (ranging from usual network delay to temporary failure), and
thus edits will occur concurrently.

If we only consider the insertion of content the problem has a reasonably easy
solution by introducing a partial ordering of concurrently inserted document po-
sitions (e.g. via vector clocks). Problems come with concurrent insertions and
deletions especially if we do not only want state consistency but also basic inten-
tion preservation [5], which is essential for a usable system. The most popular
approach to this problem has been operational transformation (OT) [6].

3.1 The Basics of Operational Transformation

The problem of synchronisation is that we may have situations where two oper-
ations f and g are applied concurrently to the same document D, and we need
to complete the resulting span again with operations f ′, g′ into a common doc-
ument D′ as in (1). Writing applyOp f D for the application of an operation f

•

D

f -

D′

g ′
-

• f
′
-

g -

(1)

to a document D, the completion of (1) is written as

∀D. applyOp g′ (applyOp f D) = applyOp f ′ (applyOp g D). (2)
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The basic idea behind OT is to solely consider the operations, and not the
documents, and to restrict ourselves to a tractable set of basic operations. Hence,
operations are sequences of basic actions, where an actions is: advance one char-
acter; insert one character; or delete one character. To apply an operation, we
traverse the document and operation simultaneously, and apply the basic ac-
tions. Note that this application is partial; we can only apply an operation to
a document of the appropriate length. We can then transform these operations
against each other, written as transform f g = 〈f ′, g′〉, to obtain the completion
(1); applying first f , then g′ should be the same as first applying g, then f ′.

In order to state (2) point-free, i.e. without referring to a document D, we
need to define the composition ◦ of two operations. Note that this is not simply
the concatenation of the two sequences of actions; rather, we merge two sequences
into one new sequence which combines the effects of the two operations. We can
then drop the document D from the correctness property (2) and state:

transform f g = 〈f ′, g′〉 =⇒ g′ ◦ f = f ′ ◦ g (3)

The correctness of the composition operation ◦ is stated as

applyOp (g ◦ f) D = applyOp g (applyOp f D) (4)

and together these easily imply (2).

3.2 Formalisation in Isabelle/HOL

We introduce the formalisation of the theory of operational transformation on
which our implementation is based. For reasons of space, we do not show the full
formalisation; we give enough details to show the actual algorithms, but we elide
most lemmas and all Isabelle proofs (most of which are very short anyway).4

We start with the basic concepts. For documents, we keep the actual char-
acter set as a type parameter, actions are as mentioned above, and operations
are then lists of actions:

type synonym ′char document = ′char list

datatype ′char action = Retain | Insert ′char | Delete

type synonym ′char operation = ′char action list

We can now recursively define the application function:

fun applyOp :: ′char operation ⇒ ′char document ⇒ ′char document option

where

applyOp [] [] = Some []

| applyOp (Retain# as) (b# bs) = Option.map (λds. b# ds) (applyOp as bs)

| applyOp (Insert c# as) bs = Option.map (λds. c# ds) (applyOp as bs)

| applyOp (Delete# as) ( # bs) = applyOp as bs

4 The full theory can be found at http://www.informatik.uni-bremen.de/∼cxl/papers/
itp2014-appendix.pdf for reference.

http://www.informatik.uni-bremen.de/~cxl/papers/itp2014-appendix.pdf
http://www.informatik.uni-bremen.de/~cxl/papers/itp2014-appendix.pdf
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| applyOp = None

However, reasoning about this function directly is not straightforward because
of its partiality: applyOp f d is only defined for a document d of a certain
inputLength, given by the number of Retain and Delete actions in that operation.
A straightforward induction on the definition of applyOp would leave us with an
induction assumption where it is not immediate that applyOp is applicable to
its arguments. In order to get around this difficulty, we define the graph of the
function as an inductive set:

inductive set application :: (( ′char operation × ′char document) × ′char document)
set where

empty [intro!]: (([],[]),[]) ∈ application

| retain[intro!]: ((a,d),d ′) ∈ application =⇒ ((Retain#a,c#d),c#d ′) ∈ application

| delete[intro!]: ((a,d),d ′) ∈ application =⇒ ((Delete#a,c#d),d ′) ∈ application

| insert [intro!]: ((a,d),d ′) ∈ application =⇒ (((Insert c)#a,d),c#d ′) ∈ application

We can show that application is exactly the graph of applyOp:

lemma applyOpSet : ((a,d),d ′) ∈ application ←→ applyOp a d = Some d ′

The composition of two operations traverses through the two operations and
combines the actions pointwise. In the following definition, the second argument
of the composition is executed after the first one (the other way around as ◦);
so e.g. a delete action first executed is always kept, because nothing can undo
a delete, and an insert action executed second is kept for the same reason. An
insert action followed by a retain is just that insert, and insert followed by delete
cancel each other out:

fun compose :: ′char operation ⇒ ′char operation ⇒ ′char operation option

where

compose [] [] = Some []

| compose (Delete# as) bs = Option.map addDeleteOp (compose as bs)

| compose as (Insert c# bs) =

Option.map (Cons (Insert c)) (compose as bs)

| compose (Retain# as) (Retain# bs) = Option.map (Cons Retain) (compose as bs)

| compose (Retain# as) (Delete# bs) = Option.map addDeleteOp (compose as bs)

| compose (Insert c# as) (Retain# bs) =

Option.map (Cons (Insert c)) (compose as bs)

| compose (Insert # as) (Delete# bs) = compose as bs

| compose = None

The above function uses addDeleteOp to insert a delete action. This is an opti-
misation, where we permute deletes over inserts as much as possible, so we get
contiguous sequences of delete and insert actions, which we can later compress
for transmission. addDeleteOp is defined as follows:

fun addDeleteOp :: ′char operation ⇒ ′char operation

where
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addDeleteOp (Insert c#next) = Insert c# addDeleteOp next

| addDeleteOp as = Delete#as

The effect of addDeleteOp is to remove the first element of a document:

lemma addDeleteOpValid : applyOp (addDeleteOp a) (c#d) = applyOp a d

Again, in order to be able to show anything about compose we explicitly define
its graph as an inductive set.

inductive set composition :: (( ′char operation × ′char operation) × ′char operation)
set where . . .

We leave out the lengthy definition; it follows the recursive definition of compose
just as application follows the definition of applyOp. However, we show that
composition is the graph of the compose operation:

lemma composeSet : ((a,b),ab) ∈ composition ←→ compose a b = Some ab

The first proper result is the correctness of composition (4). It is first shown for
the relation composition (omitted), and then for the function compose:

theorem composeCorrect :

[[ compose a b = Some ab; applyOp a d = Some d ′; applyOp b d ′ = Some d ′′ ]]

=⇒ applyOp ab d = Some d ′′

Finally, we define the transform function, the core algorithm of operational trans-
formation. Recall that the transformation of a and b are two operations a′, b′ such
that a composed with b′ is the same as b composed with a′. The transformation
is defined recursively, with a lengthy case distinction on the first action of each:
e.g., insert actions remain, but cause a retain action to appear in the transformed
operation (in order to keep the inserted character); transforming two retain ac-
tions results in two retain actions; or a retain and a delete transform to a delete
and nothing (reflecting the fact that we either first keep an element, then delete
it, or delete it first, without need for a subsequent action):

fun transform :: ′char operation ⇒ ′char operation ⇒ ( ′char operation × ′char oper-
ation) option

where

transform [] [] = Some ([], [])

| transform (Insert c#as) bs =

Option.map (λ(at , bt). (Insert c# at , Retain# bt)) (transform as bs)

| transform as (Insert c# bs) =

Option.map (λ(at , bt). (Retain# at , Insert c# bt)) (transform as bs)

| transform (Retain# as) (Retain# bs) =

Option.map (λ(at , bt). (Retain# at , Retain# bt)) (transform as bs)

| transform (Delete# as) (Delete# bs) = transform as bs

| transform (Retain# as) (Delete# bs) =

Option.map (λ(at , bt). (at , Delete# bt)) (transform as bs)

| transform (Delete# as) (Retain# bs) =
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Option.map (λ(at , bt). (Delete# at , bt)) (transform as bs)

| transform = None

To our minds, this definition is intricate enough to warrant a formal treatment;
at least, we feel more confident about its correctness having done so. We can
show that the domain of this function is pairs of operations a and b which have
the same input length. To show the main correctness property (3), we define the
graph of transform as an inductive set (we leave out the lengthy definition):

inductive set transformation :: (( ′c operation × ′c operation) × ( ′c operation × ′c
operation)) set where . . .

and show that this is a superset of function graph. With this, we can show
the second main result, the correctness of transformation. This is even slightly
stronger as (3) as it also states that the composition of a and b′ (and implicitly
b and a′) is defined:

theorem transformCorrect : transform a b = Some (a ′,b ′)

=⇒ compose a b ′ 6= None ∧ compose a b ′ = compose b a ′

Further, we define identity operations ident, which consist only of retain actions,
and show that they are the left and right unit to the composition operator.
Unfortunately because of the optimisation underlying the addDeleteOp function,
these properties only hold up to normalisation, i.e. sorting operations such that
a delete action is never followed immediately by an insert action. Moreover,
transformation against an identity does not change an operation:

lemma transformIdL:

transform (ident (inputLength b)) b = Some (ident (outputLength b), b)

3.3 Implementing Operational Transformation

The previous section showed the formalisation of the core algorithms of opera-
tional transformation. The implementation uses these algorithms to synchronise
document states on one server and many clients. Our implementation follows
the approach by Google [7] which is a simplification of the original algorithms.

The server keeps a single history h = 〈a1, a2, . . . , an〉 which is a sequence of
operations ai. A revision ri refers to the state after operation ai (starting with
initial revision r0). Clients report operations together with a revision number,
〈b, i〉. On receiving 〈b, i〉, the operation b is transformed with respect to all op-
erations aj for i < j ≤ n, resulting in an operation b′, which is appended to the
history, and distributed to all other clients as a remote edit. Additionally, the
client which sent the operation receives an acknowledgment (see Fig. 2). The
correctness property (2) means that all squares in Fig. 2 commute, so the server
only needs to append the transformed operation to its history. The server does
not need to keep track of the actual document states, it is enough to keep track
of the operations.

On the client side, clients need to cater for both local edits (affected by the
user) and remote edits (sent from the server). To this end, the client keeps track
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Fig. 2. History management on the server. Here, the current revision is r3 when client
A sends in operation 〈b, r1〉 and client B sends in 〈c, r2〉. The operation b is transformed
with respect to a3 ◦a2 to b′′, and appended as a4 to the history; similarly, the operation
c is transformed to c′′ with respect to a3 ◦a4. Client A is sent a′3 ◦a′2 as the first remote
edit, an acknowledgment, and a5 as a second remote edit, while Client B is sent one
remote edit a′4 ◦ a′′3 , and an acknowledgment. In the end, r5 becomes the new current
revision on the server and both clients A, B. Note that we can resolve the convergence
the other way, with first resolving 〈c, r2〉 with respect to a3 (then a4 would be c′), and
then 〈b, r1〉 with respect to c′ ◦ a3 ◦ a2 (the result of which would become a5).

of which operation 〈a, r〉 has last been passed on to the server, and waits for an
acknowledgment of this operation (we say the operation is pending). If further
local edits occur while waiting, these are buffered. (Note that we only need to
buffer one operation, as we can compose multiple edits.) Once the operation 〈a, r〉
has been acknowledged, the revision is increased, and the buffered operation (if
there is any) is passed on and becomes pending. If a remote edit is received
before the operation 〈a, r〉 has been acknowledged, we know it refers to revision
r, so the operation is transformed with respect to the pending and buffered
operations, applied to the local document, and the revision is increased. In turn,
the remote edit operation transforms the pending and buffered operations (see
Fig. 3). (Note that the client does not receive its own local edits back as remote
edits from the server.)

A huge advantage of our Isabelle formalisation is the ability to generate Scala
code [8] for the composition and transformation of operations which we can use
in the server application. However, we need an implementation of the same algo-
rithms on the client. Unfortunately, due to the restrictions of the web environ-
ment there is no practical alternative to JavaScript as a programming language.
This leads to potentially divergent implementations. Experiments showed that
in principle we can even go one step further and generate the JavaScript code
from Scala with the new Scala.js compiler [9], but until this tool moves out of
the alpha stage we have to rely on a manual port.



10 Martin Ring and Christoph Lüth
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b - • Revision r
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c
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Fig. 3. History management on the client. Operation a is pending, operation b is
buffered. If a remote edit c is received, it is transformed with respect to a and b to c′′,
and applied. a′ and b′ become the new pending and buffered operations. The revision
number r is increased every time a remote edit or acknowledgment is received.

3.4 Further Extensions

In addition to plain text operations we need a mechanism to annotate the doc-
ument state to integrate information like remote cursors and selections, syntax
highlighting, or prover output. The original Google approach was somewhat
cumbersome to allow for rich text editing; here, because we do not require an-
notations to be editable we chose a simpler approach by keeping annotations
separate from the operations. In our implementation, annotations consist of two
types of actions: plain(n) is equivalent to n retain actions, and annotate(n, a) is
equivalent to n retain actions and additionally annotates the document with the
annotation a starting at the current position, and ranging n characters.

This means annotations are operations consisting only of retain actions, with
the side effect of augmenting the document with additional information. Recall
from above that such operations are identities, hence annotations cannot in-
terfere with other operations (see Lemma transformIdL in Sect. 3.2). However,
other operations have an effect on annotations, so we have to define how delete
and insert actions interact with annotate(a, n). We chose to simply extend or
shrink the annotation accordingly; this feels like natural behaviour that you
would expect if you type inside an annotation of a collaborator.

This leads to a very straightforward integration of annotations. On the client
side, annotations are transformed with respect to pending and buffered opera-
tions, and only sent on once the pending and buffered operations have been sent
on. On the server side, an incoming annotation 〈a, i〉 is transformed and sent
on to the other clients just as with editing operations, except that the sending
client receives no acknowledgment and the revision number is not increased. An-
notations are identified by their origin and an origin-unique name, and remain
until overridden by a subsequent annotation of the same origin and name.

4 System Architecture

Building a modern web application has become an increasingly complex task.
The demands placed on such an application have grown rapidly over the last
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couple of years. To offer an adequate experience to users, the interface must
always stay responsive. To be able to handle fluctuating numbers of visitors,
the system needs to be scalable. In addition to these universal demands, our
application involves very expensive computations on the theorem proving side
on one hand, and a highly distributed state due to the real time collaboration
between users on the other. The first version of Clide [1] was scalable, responsive
and resilient, but to properly integrate collaboration, it soon became obvious that
most of the architecture had to be carefully rethought.

For the new iteration of Clide, we chose the Typesafe Reactive Platform [10]
as a basis because it is event-driven and resilient by design, leading to a respon-
sive and scalable application. The platform includes the Akka actor library for
concurrency control [11], the functional relational mapper Slick as an efficient
database integration, and the Play! web framework. The uses of Slick and Play!
are obvious, but Akka became in fact the most important component for Clide,
as it is very well suited for a collaborative architecture.

4.1 Universal Collaboration

To reflect the collaborative nature of the application, instead of offering a spe-
cialised API for plug-ins, we utilise the same API for human and non-human
users. We call this approach universal collaboration. The unification has several
advantages: On one hand it simplifies the core system itself, on the other hand
it also makes it easier to write plug-ins that involve heavy computations (and
thus delays). All the management of distributed asynchronous document states
is achieved in the operational transformation framework. This way plug-ins can
focus on the important aspects — annotating or otherwise contributing con-
tent to documents — in a simple, synchronous manner. Moreover, it is easy for
plug-ins to work together without knowing anything about their respective im-
plementations. It is not even required for plug-ins to run on the same machine
as the server. Neither is it necessary for the server to know anything about the
plug-ins a priori; the plug-ins can actively register with the server via a TCP
connection. Users can choose to invite a plug-in into a project just like they
would with human collaborators.

4.2 The Clide Infrastructure

The Clide infrastructure consists of modules which are loosely coupled, stan-
dalone applications whose actor systems communicate with each other via Akka
remoting. The modules themselves can easily be further divided and distributed
across different machines which leads to great scalability. Fig. 4 shows an ex-
ample setup with several modules connected to the clide-core module. The
modules can be configured to connect to a specific address and are implemented
in a way that they retry until they are connected to an instance of clide-core
and reconnect on network failure or in case the peer is restarted. This way it is
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Fig. 4. Overview of the system architecture.

very easy to configure a Clide infrastructure because only a couple of configu-
ration files have to be adjusted. The modules do not have to be started in any
particular order and individual failures do not propagate.

The purpose of the clide-web module is somewhat special in that it mainly
serves as a translator between JSON messages transmitted via WebSockets and
the internal message representation. WebSockets are a very good fit for the com-
munication between web clients and clide-web because their properties are sim-
ilar to those of message channels connecting actors. WebSockets are full-duplex
and thus allow us to send messages from the server to the client without any
overhead. clide-web directly connects the client with an actor in clide-core;
that way web clients have the same access to all levels of the API as any other
client. The second task of clide-web is to provide the resources of the user inter-
face (HTML, CSS and JavaScript files) to the clients. For the user interface we
utilised the angular.js library which allows for declarative data bindings defined
in HTML code. The client side logic and thus also the client side implementation
of the operational transformation framework are implemented in CoffeeScript,
a language that compiles to JavaScript but compensates for many deficiencies
of that language. Because we only used technology from the HTML5 standard,
it is possible to use the web interface on any modern, HTML5 compliant web
client, i.e. not only on classic computers but also tablets, and given an adapted
user interface even smartphones, or television sets.

4.3 The clide-core API

Fig. 5 shows a simplified view of the internal actor system with instances of all
available types of actors as well as the ownership hierarchy and message flow
indicated. The starting point from the outside world is the UserServer in the
Global API which authenticates users, and acts as a message router. It is also
possible to sign up a new user here.
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Fig. 5. Actor infrastructure in clide-core.

Each UserActor is responsible for one authenticated user via the Backstage
API. It allows to create and manage projects and access rights. Peers also get
informed about new projects and invitations.

Each project is coordinated by a ProjectActor. It accepts requests from a
UserActor to access a project (after checking the rights), and creates a Session-

Actor for each user accessing the project. The SessionActor provides the Ses-
sion API which is the core API in the sense that it provides the editing and
annotation operations for one client. The ProjectActor coordinates the opera-
tions, distributing them to all clients as described in Sect. 3.3. Access to files and
folders is given by other dedicated child actors of the ProjectActor. Individual
FileActors manage a single file each and are responsible for the server side
operational transformation framework.

4.4 Assistants and Integration with the PIDE Framework

One intriguing aspect of Clide is that collaborators need not be human. We
call such non-human collaborators assistants, and provide a simplified interface
to implement them. It allows easy access to state changes, edit operations and
annotations. An assistant only needs to reference the state on which its actions
are based, the underlying framework takes care of everything else. This way
assistants do not drastically differ from usual plug-ins for IDEs.

There are two ways of building an assistant. The first is to directly use Akka
remoting to communicate with the UserServer via the messages available in
the clide.actors package. However, this requires detailed knowledge of the
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messaging protocol which might still be subject to future modifications and in
addition can only be comfortably used from Scala. For this reason there is also
a simpler way: Implementing the AssistantBehavior interface is all it takes to
build an Assistant the easy way. The interface contains a number of abstract
methods which will be called as events occur. The implemented interface can
then be registered with the generic AssistantServer class which will take care
of everything else. All method calls within the interface are synchronized. If a
calculation takes a long time, subsequent modifications to the document as well
as annotation activities (such as cursor movements) will be combined so that
the assistant does not lag behind if many changes occur in a short period of
time. Communicating back is done via the AssistantControls interface which
is supplied to the behavior. A short introduction on implementing assistants as
well as an API reference can also be found on the GitHub project page.

With this simplified framework, the integration of the PIDE framework [2]
(and hence Isabelle) is very straightforward, and a lot of code from Isabelle/jEdit
could be reused in the process of implementing the clide-isabelle module.
When the PIDE framework reports that new information about one of the viewed
theories is available, we translate the prover state, type information, inner syntax
as well as output messages into Clide annotations and report them back to the
assistant framework.

As a case study, we have also implemented an assistant to handle Haskell
files (try inviting Haskell as a collaborator on the web site). It calls the Haskell
compiler for each source file, parse its error and warning messages and passes
them back as annotations. In about two hundred lines of code, we implemented
some usable Haskell assistance.

The integration of native processes into a publicly available web interface
bear a serious security risk which must be considered when implementing an
assistant for Clide. For this reason we start Isabelle in safe mode, disabling all
ML integration because that would grant easy access to the server file system.

5 Conclusions

This paper has introduced Clide, a real-time collaborative web interface for the
Isabelle theorem prover. It combines modern web technologies with the Isabelle
PIDE back-end to offer a user interface which in terms of responsiveness and
display of mathematical notation and symbols equals conventional desktop in-
terfaces for Isabelle, such as Isabelle/jEdit or ProofGeneral. The single-user ex-
perience resembles Isabelle/jEdit, with the user editing documents which are
processed asynchronously on the server in the background, and results appear-
ing as they become available. However, Clide is easier to set up, is mobile, and
most of all offers real-time multi-user collaboration. It implements the theory
of operational transformations; we have formalised the key concepts in Isabelle,
proved its correctness, and derive critical parts of the implementations on the
server side from this theory, thus increasing confidence in the system.
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5.1 Related Work

There is a lot of related work in the community of computer-supported coopera-
tive work (CSCW) [4,12], including of course the theory of operational transfor-
mations [13], but to our knowledge, this is the first fully operational collaborative
interface for an interactive theorem prover.

Other web interfaces for theorem provers include Proof Web [14], which is
based on older web technologies and hence not as interactive as Clide. There
are also a number of mathematical wikis (e.g. [15,16,17]) based on interactive
provers such as Mizar or Coq, but they resolve collaboration in the typical wiki-
style, namely by versioning the edited files or pages; users do not edit the same
page at the same time, but instead create different versions.

5.2 Future Work

There are two ways in which this work can be extended. Firstly, there is noth-
ing specific about Isabelle in our framework, except for the fact that the PIDE
framework with its Scala API provides a good foundation of our work: it really
improves interaction if the theorem prover is multi-threaded and asynchronous,
and it helps if everything runs on the same platform. But the system architec-
ture is generic, and could be used to implement a collaborative IDE as well,
because all this needs in the first instance is to replace Isabelle with a compiler
which analyses the code. There is already a simple assistant for Haskell files; the
same approach could be used to integrate batch-based ITPs like HOL4 or HOL-
light. Another possible extension would be a ‘ProofGeneral module’, a generic
implementation of script management.

The second main avenue to pursue would be to add more, and richer, as-
sistants. Systems for Proof General such as ML4PG [18], which uses machine
learning techniques to help the user find similar proofs, could be adapted to our
system, but one could also envisage for example tutoring systems, where the
collaborating machine analyses the users errors, and offers helpful advice when
certain erroneous patterns occur, or assisted document authoring [19], where for
example the collaborating machine suggests an induction scheme based on the
current proof state. Apart from actively contributing assistants, there is also a
surprising benefit of passively listening collaborators: Clide can be used as a sim-
ple API for external applications which can delegate proofs to humans and wait
until the theorem prover agrees and then return. The possibilities are endless,
and we would like think the generic architecture of our system makes it easy to
explore these exciting new avenues of research.
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