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Abstract— The estimation of robot’s motion at the prediction
step of any localization framework is commonly performed
using a motion model in conjunction with inertial measure-
ments. In the context of field robotics, articulated mobile robots
have complex chassis. They might require a complete model in
comparison with the traditionally used planar assumption. In
this paper, we use a Jacobian motion model-based approach
for real-time inertial-added odometry. The work makes use
of the transformation approach [1] to accurately model 6-
DoF kinematics. The algorithm relates normal forces with the
probability of a contact-point to slip. The result increases the
accuracy by weighting the least-squares solution using static
forces prediction. The method is applied to the Asguard v3
system, a simple but highly capable leg-wheel hybrid robot.
The performance of the approach is demonstrated in extensive
field testing within different unstructured environments. In-
depth error analysis and comparison with planar odometry
is discussed, resulting in a superior localization.

I. INTRODUCTION

Localization focuses on determining the pose (i.e. position
and orientation) with respect to a global coordinate frame and
typically within a map. Probabilistic localization frameworks,
as variants of Bayes filters, have been used to solve the local-
ization problem [2], [3], [4]. Those frameworks fuse sensory
data to propagate robot’s pose while moving. The process
is separated into prediction and correction of the pose using
proprioceptive and exteroceptive sensors respectively.

The estimation of motion in the prediction step is com-
monly performed using a motion model. Motion models have
real-time capabilities and are inexpensive in comparison with
sophisticated map matching techniques. The inheritance from
indoor robotics at the time robots were operating in struc-
tured ”planar” environments brings simplistic techniques.
However, this simplicity causes a performance degradation
specially while localizing on complex uneven terrains. There-
fore, extensive sensing capabilities have to overcome with a
poor odometry performance.

In this paper we present a method that is able to optimally2

combine the motion related to each contact point. Our
approach is motivated by the observation that the robot has
different normal forces at each contact point while moving.
The primary contribution of our work is fusing, in a unified
framework, normal forces with the probability of each con-
tact to slip. A performance analysis also demonstrates that
a complete motion model is more accurate than skid-steers
models. Moreover, the influence of fusing normal forces
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is also investigated and compared with commonly used
planar motion models. Related work is presented in the next
section. The details of the proposed technique are described
in Section III. Section IV contains the results for challenging
large-scale unstructured environments. The method is applied
to a particular rover, i.e. the Asguard platform [5] a capable
but simple skid-steer leg-wheel platform. Conclusions and
limitations of this work are mentioned at the end of the
manuscript.

II. RELATED WORK

Odometry has been widely studied since many robots
only rely in dead-reckoning processes for basic localization.
Starting from a known pose, odometry involves the calcula-
tion of robot’s body configuration from encoders readings.
The disadvantage of dead-reckoning systems is very well-
known. The localization uncertainty grows unbounded due to
accumulation of errors. Considerable research has been done
in order to reduce the undesirable effect of poor odometry
performace. The literature focusses on three specific types
of errors: (1) Systematic errors, such as misalignment of
actuators and uncertainty about effective link dimensions
(2) Non-systematic errors, which include slippage, dragging,
forces and multi-point wheel contact models with the ground.
(3) Numerical drift and linearization errors, due to discrete-
time integration of delta-poses.

The elimination of systematic errors is described from
early research [6]. Calibration methods were applied for
specific trajectories in order to reduce the effect of unequal
wheel diameter and uncertainty about the wheelbase (deter-
ministic errors). A general method based on least-squares is
proposed in [7] with no limitation to a particular predefined
path. Differential-drive platforms are commonly discussed
for indoor scenarios because they are mechanically simple
to build. Position tracking in challenging terrains was also
investigated in [8]. Simulations results are investigated for
the Rocky7 rover in [9] defining the wheel contact angle
and slip vector.

Slippage correction has been the main non-systematic
error as it causes bad results affecting the final pose. Visual
odometry techniques are used to overcome the effect of
slippery terrains [10], [11]. Fuzzy logic has also been used
to detect wheel slippage by comparing the motor current
on the called FlexNav architecture [12]. Their work corrects
wheel-slippage based on motor current measurements. They
introduce a linearized function to relate electric current and

2Optimally here refers to the best estimated value from a weighted least-
squares perspective.



wheel-terrain interaction [13]. Marcovitz et al [14] present a
delayed state filter technique in combination with a vehicle
system model to correct wheel slip. Adaptive odometry by
means of terrain classification using inertial data has been
investigated in [15]. A regression function is trained off-
line to directly output the adaptive correction coefficient of
the odometry model. A sensitivity analysis of the learned
parameters was not discussed. Performance analysis for
omnidirectional robots in rough terrain is available in [16].
Slip compensation based on wheel velocities differences is
analyzed for a traditional skid-steer kinematics in circumfer-
ence trajectories.

Nowadays, the localization problem requires a more elab-
orated analysis and understanding to identify the impact of
motion models. As of today, the improvement evaluation of
such impact is still an open issue. A field testing comparison
of more sophisticated motion models for odometry motivates
this manuscript.

III. STATISTICAL MOTION MODELS

Motion models together with attitude kinematics are the
two main methods for odometry. Nowadays, many robotic
applications combine both due to consistency over time.
The attitude kinematics is self-sufficient with inertial sensors
except for the less observable angle (i.e. the heading) [17].
Motion models are more accurate than double integration
of accelerometers readings, specially when tactical-grade
sensors are not affordable.

A. Kinematic Modeling

A minimum of two coordinate frames per kinematic chain
are required: a robot body frame (B) attached to the desired
rover center and a contact frame (Ci j) defined as a single
point of contact between the robot and the ground. The
rest of coordinate frames are the minimum required for the
computation of the transformation matrix TBCi j which relates
frame (B) with frame (Ci j). It will depend on a particular
kinematics and the number of joints represented by the
vector q = [q0 q1 ... qn] where n is the number of degrees
of freedom of the mechanism - see Fig. 1. The B frame
is related to a fixed world frame (W ) by the pose vector
U = uW,B = (x y z φ θ ψ).

Outdoor robots navigate on uneven terrains. They require
the definition of contact angles between the ground and the
point in contact. Typically, one contact angle in the direction
of motion is necessary for wheeled mobile robots δi j - see
Fig. 2. Pure walking machines might require two angles at
the point in contact (i.e. the gradients in the lateral and
transversal direction). In addition, the motion of the contact
point consists of a slip vector εi j, which is modeled in three
dimensions. A translation in the x axis by ξi j, lateral slip
ηi j along the y axis and rotational slip ζi j along the z axis
(εi j = [ξi j ηi j ζi j]).

Mobile robots are commonly commanded by desired ve-
locities. The mapping between the rover Cartesian space
rate vector u̇ = u̇B̄,B =

[
ẋ ẏ ż φ̇ θ̇ ψ̇

]
and the joint space

rate vector with the contact rate angle and slip rate vector

is solved by the Jacobian matrix. Velocity kinematics is
deduced by derivation of the transformation matrix. Defining
the transformation of the rover body at time step k− 1 (B̄)
to rover body at time step k (B) as TB̄,B = TB̄,C̄i j

TC̄i j ,Ci j
TCi j ,B,

the derivative is

ṪB̄,B = ṪB̄,C̄i j
TC̄i j ,Ci j

TCi j ,B +

TB̄,C̄i j
ṪC̄i j ,Ci j

TCi j ,B +

TB̄,C̄i j
TC̄i j ,Ci j

ṪCi j ,B (1)

The resulting Jacobian matrix Ji j related to the contact
point i j has the form[

ẋ ẏ ż φ̇ θ̇ ψ̇
]T

= Ji j

[
q̇ ε̇i j δ̇i j

]T
(2)

It defines the contribution of each kinematic chain to the
body motion allowing the analysis of each chain and contact
point to the resulting final velocity in u̇. Considering a single
contact angle the Ji j matrix size is 6× (n + 4) where n
corresponds to the DoF of the mechanism. The composite
rover equations are obtained combining the Jacobian matri-
ces for all kinematics chains into a sparse matrix equation
of appropriate dimensions.


I6×6
I6×6

...
I6×6




ẋ
ẏ
ż
φ̇

θ̇

ψ̇

= J

q̇
ε̇

δ̇

≡ Su̇ = J ṗ (3)

Navigation kinematics relates the rover pose rates to joints
and sensed rate quantities. The navigation kinematics is the
input for statistical motion models and the basis for dead
reckoning estimation. Robot’s sensor availability defines
sensed and non-sensed quantities and (3) separates into the
following form:[

Ss Sn
][u̇s

u̇n

]
=
[
Js Jn

][ ṗs
ṗn

]
(4)

Rearranging into non-sensed (left-side) and sensed (right-
side) quantities, the resulting equation is obtained[

Sn −Jn
][u̇n

ṗn

]
=
[
−Ss Js

][u̇s
ṗs

]
≡Ων = b (5)

where Ω is the matrix whose dimensions depend on the
sensing capabilities of the rover and directly influence the
existence of a solution. The solution to the overdetermined
system above is based on minimizing the error vector E =
eTCe, where C encodes the individual contribution of each
kinematics chain to the estimated solution

E = eTCe = (b−Ων)TC(b−Ων) (6)

The solution for the linearized problem in (6) provides
a minimum error for the vector e. For further details on
kinematic model development the reader is referred to [1],
[9], [18].



Fig. 1: Illustration of Asguard rover kinematics modeling. W
is the world reference frame, B is the body frame located in
the middle of the front axle, Ai is the wheel frame and Ci j
the contact point frame. The pose estimation is computed as
composite equation of wheel Jacobian matrices.

Fig. 2: Schematic representation of coordinate frames for
the wheel i on an inclined terrain for hybrid leg-wheel
systems. The contact angle is a key distinction between
indoor and outdoor robots. While wheel’s contact point is
usually modeled in a constant position relative to the wheel
axle for common rigid disc wheels, the assumption does not
hold for a hybrid system.

B. Quasi-Static Forces Estimation

Computation of odometry is highly influenced by the
amount of wheel slip, which in turn depends on the max-
imum usable tractive force between ground and the wheel.
The maximum available traction [19], assuming a simple
friction model, is proportional to the normal force on each
wheel. The normal force distribution among the wheels of the
robot is based on static reaction forces caused by the robot’s
weight. The computation of every sample time, based on the
measured wheel positions and the estimated leg positions,
hence called quasi-static force estimation.

It is assumed that the leg which is the lowest, in relation
to the robot body plane, is in contact with the ground and
coincident with the contact point frame Ci j. This assumption

Fig. 3: Free body diagram for static force computations.

is mostly valid for relatively uneven surfaces. For highly
uneven surfaces, it is possible that the higher feet is in contact
with the ground and the lowest is not. In such scenarios, for
a more accurate estimation, additional sensors need to be
added to the feet to detect contact and forces [20]. Multiple
feet can be in contact simultaneously as well but mainly a
single foot is leading the motion.

The free body diagram for computation of static forces
is given in Fig. 3. W is the world reference frame, B the
body fixed reference frame with origin at the Center of Mass
(CoM) and w is the weight of the robot acting along the
gravity vector (z-axis of W ). Let i = {0,1,2,3}, then Ni are
the normal reaction forces from the ground due to the robot
weight and Pi are the position vectors to the leg contact
points. Henceforth the corresponding coordinate systems are
added to the representations.

A new reference frame B′ (not shown in the Figure) can
be defined with the origin coinciding with the CoM of the
robot, but aligned to W . The terms for NB′i and w in B′ is
given by,

NB′i =

0
0
ni

 ,w =

 0
0

mg

 (7)

Where ni are the scalar reaction forces along the z-axis of
B′, m is the mass of the robot and g is the acceleration due
to gravity.

The objective is to derive the equations for the values of ni.
The equations are developed based on the fact that the robot
has a free joint and this joint cannot transmit any torques.
Therefore the torques in the front and the rear part of the
robot along this free joint are independent. When the robot
is quasi-static,

1) Sum of forces along the z-axis of B′ equals the weight
of the robot.

Σni = mg (8)

2) Sum of torques along the y-axis of B is zero.

Σ(PBi×NBi) |y = 0 (9)



3) Sum of torques due to N0 and N1 along the x-axis of
B is zero.

(PB0×NB0 +PB2×NB1) |x = 0 (10)

4) Sum of torques due to N2 and N3 along the x-axis of
B is zero.

(PB2×NB2 +PB3×NB3) |x = 0 (11)

Let the rotation from B′ to B and the position vector PBi
be given by

RBB′ =

r00 r01 r02
r10 r11 r12
r20 r21 r22

 ,PBi =

pix
piy
piz

 , (12)

Using (12), relationship between NB′i and NBi is given by,

NBi = RBB′NB′i =

r02
r12
r22

ni (13)

Computing torques from (12) and (13),

τBi = PBi×NBi =

pix
piy
piz

×
r02

r12
r22

ni (14)

τBi =

piyriz− pizriy
pizrix− pixriz
pixriy− piyrix

ni (15)

Using (15) let, piyriz− pizriy
pizrix− pixriz
pixriy− piyrix

=

tix
tiy
tiz

 (16)

Substituting (14), (15) and (16) in (9), (10) and (11), and
combining them with (8) gives,


1 1 1 1

t0y t1y t2y t3y
t0x t1x 0 0
0 0 t2x t3x




n0
n1
n2
n3

=


mg
0
0
0

 (17)

The set of linear equations (17) can be solved for ni by,
n0
n1
n2
n3

=


1 1 1 1

t0y t1y t2y t3y
t0x t1x 0 0
0 0 t2x t3x


−1

mg
0
0
0

 (18)

The reaction forces computed using (18) at every time step
goes as input to the weighted Jacobian odometry model.

C. Weighted Least-Squares of the Composite Equation

A limitation of the kinematic model comes from the
residual error E of the least-squares. Bad measurements
might have a big penalty when minimizing the sum of the
square of the errors. This case (e.g. a wheel is producing bad
measurements because of poor traction) can be minimized
by adjusting the matrix C in (6). How to optimally adapt
the matrix while the robot interacts with the environment is
performed by the quasi-static forces estimator described in
the previous Section.

The matrix C is a sparse weighting matrix with block
diagonal form. Each sub-matrix is a single wheel-weighting
matrix for the contact point which is more likely to make
contact with the ground. These sub-matrices are selected to
have the structure Ci =wiI where wi is the likelihood of each
contact point to contribute to the resulting body motion. All
wheels have equal probability to contribute to the motion
for a perfect balance robot configuration (i.e.: 1/N per each
contact point in contact with the ground Ci j, ∑i wi = 1). The
quasi-static force estimator combines the attitude information
coming from a Inertial Measurement Unit (IMU) to estimate
the forces. Each estimated force is computed every delta-
pose and the instantaneous probability per contact point is
selected accordingly.

IV. EXPERIMENTAL RESULTS

The methodology was applied to the Asguard v3 system.
Asguard is a simple yet highly capable hybrid system that
is intended to serve as the scout rover unit in a multi-
robot exploration scenario. It is able to navigate in complex
uneven terrains and overcome demanding obstacles while
maintaining a simple chassis mechanism (e.g.: skid-steer
robots). It is instrumented with optimal encoders in each
wheel and an absolute potentiometer for the passive joint. It
is also equipped with GPS and a Sensonor STIM300 IMU in-
cluding inclinometers, accelerometers and gyroscopes. When
possible, GPS readings were corrected with a base station for
more accurate positioning (e.g: RTK).

Inertial readings are sensed quantities in (5). The slip
vector ε̇ is not a sensed quantity and the contact point
angles δ̇ are defined as unknown values even though some
techniques could be used to estimate or measure these angles.
Non-sensed quantities of the vector u̇ are ẋ, ẏ and ż. Here,
the slip vector ε̇ is modeled as only rotation along its z-
axis ζi since it is assumed that the contact points slip with
non-holonomic constraints.

Field testing with a rich variety of uneven terrains were
selected to demonstrate the approach (see Fig. 4). The
experiments consist of three different odometry calculations
using on-board sensors readings from the encoders and the
IMU. GPS, when available, was only used to post-process
the correctness of the test. The proposed Jacobian odometry
was computed with and without the weighting quasi-static
forces and compared with a state of the art planar odometry.
The planar odometry is a skid-steer odometry similar to the
kinematic model described in [15].



(a) Pictures at the sand field

(b) DFKI’s outdoors test track with the performed trajectory depicted as dotted line

(c) Panoramic view of the motocross track

Fig. 4: Some images of the scenarios used for the experiments

A. Quantitative Results

Table I and II present the Root Mean Square Error (RMSE)
and final error trajectory for the sand field and motocross
test. From these results the Jacobian Odometry appears to
have significant performance. The X-Y error is improved
when modeling completely the robot kinematics instead of
implementing a planar assumption. The weighted Jacobian
approach improves the RMSE in all directions. A Jacobian
odometry is less accurate in the Z-direction than the planar
odometry. However, it is significantly improved by weighted

Fig. 5: Sand field test trajectory

the composite equations using quasi-static forces. The fact
that planar model only estimates translation velocities in
the X-Y directions, influences the error in elevation. This
is because in the planar case the error is only due to the
drift in attitude.

Table III shows the final error at the DFKI’s test track. GPS
values were not available during this test. Poor satellite signal
was sensed due to the narrow view of the test track between
buildings. Nevertheless, the results still present improve-
ments for the final pose (closed loop). The improvement is

Fig. 6: Motocross test trajectory



Fig. 7: DFKI’s test track trajectory

less significant than for the sand field and motocross areas
since the terrain was mainly flat. Only when negotiating
the bridge and climbing up the stairs a weighted Jacobian
solution improves the localization performance.

Percentage error per distance travelled is compared for
each different technique in Fig. 8. As a matter of importance,
the bar chart shows the percentage error per each test as
a function of the distance travelled. The planar odometry
has 8.3% final error over a total distance of 168 m for the
motocros test. The Jacobian and weighted Jacobian solution
have 3.5% and 2.7% final error respectively for the same
test. The sand field test comprises a total distance of 85 m.
The proposed solution decreases from 6.1% down to 2.1%
of the final error. The improvement is less significant at the
DFKI’s test tack, with 4.1% final error for a total distance
travelled of 122 m. The error induced for the drift in pitch
is dominant for this dataset. The RMSE comparison for the
motocross and sand field tests are also shown in the bar chart
of Fig. 9.

B. Qualitative Results

Fig. 5 and 6 depict qualitative results for the experiments
when GPS was available. As expected, planar odometry
suffer for lack of modeling while the Jacobian odometry
estimates body motion more accurately. However, Jacobian
odometry still has negative impact from wheels slippage and
dragging. The weighted Jacobian solution better overcome
with these negative effects. It is also appreciable in Fig. 7
that the pitch drift becomes dominant at DFKI’s test track.

TABLE I: Trajectory error for the Root Mean Square (RMS)
and final error at the sand field

Method RMSE [m] Final [m]
x y z x y z

Planar Odometry 0.94 3.39 0.93 1.43 4.65 1.95
Jacobian Odometry 0.89 1.59 2.14 0.73 1.47 3.18
Weighted Jacobian Odo. 0.84 1.08 0.39 1.18 1.10 0.78

TABLE II: Trajectory error for the Root Mean Square (RMS)
and final error at the motocross track

Method RMSE [m] Final [m]
x y z x y z

Planar Odometry 7.38 11.78 1.37 5.96 12.55 1.46
Jacobian Odometry 4.05 5.64 1.44 2.83 4.78 1.82
Weighted Jacobian Odo. 4.32 5.15 1.99 2.55 2.56 2.90

TABLE III: Trajectory error for the final error at DFKI’s test
track

Method RMSE [m] Final [m]
x y z x y z

Planar Odometry - - - 2.12 3.48 4.67
Jacobian Odometry - - - 2.10 3.13 4.42
Weighted Jacobian Odo. - - - 1.74 2.72 3.95

V. CONCLUSIONS

Motivated by the research during recent years and the
interest of seeking better kinematics modelling, the work
presented here improves the state of the art odometry models.
We first compared acceptable planar odometry models versus
full 6-DoF Jacobian models with representative field testing
datasets. In addition to this, we proposed a modification of
the technique by weighting the composite equation using
quasi-static forces. The weighted Jacobian odometry while
still simplistic in its modelling, shows an improvement in the
localization error especially for challenging uneven terrains.

Force sensors at each contact point in order to accurately

Fig. 8: Percentage error of the distance travelled per each
test



Fig. 9: Comparison of the Root Mean Square Error (RMSE)
for the sand field and motocross (i.e: when GPS available)
tests

estimate the interaction with the terrain is desirable for future
improvements. Those extra sensors would help on accurately
measuring normal forces as well as a better estimation of the
contact angle δi j. Moreover, it will entail further leg-wheel
developments.
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