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ABSTRACT
We present results concerning the timing of children’s verbal
turn-taking behavior in quiz-game interactions with a hu-
manoid robot, spread over three sessions on different days, in
one of two conditions: the robot either gave explicit signals
of being familiar with the user from previous interactions,
or it did not. We found that communication problems such
as speech overlaps and child speech ignored by the robot are
decreasing across the three sessions. Moreover, these prob-
lems are fewer and decrease faster when the robot explicitly
signals familiarity with the user.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Natural language interfaces

Keywords
child-robot interaction; long-term interaction; verbal behav-
ior adaptation; turn-taking; familiarity display; dialogue man-
agement; natural language generation

1. INTRODUCTION
As social robots are getting more commonplace, it is likely
that they will interact with humans over longer stretches of
time. Various experiments in long-term HRI have already
been carried out [12, 11, 13, 16]. These have for example
attempted to identify factors that contribute to long-term
engagement. In order to enable robots to engage in and
sustain effective communication, it is also important to un-
derstand how humans behave in interaction with robots and
how their perception of and response to robot behavior de-
velops over time in multiple sessions. One such aspect is
adaptation of verbal behavior.

Interpersonal conversation is a dynamic adaptive exchange
where an interlocutor’s verbal and non-verbal signals are ad-
justed to the conversational partner (and the situation) in
a way that fosters the predictability, intelligibility, and ef-
ficiency of communication, and also manages social impres-
sions [10, 4]. Since it is by now also well established that
humans tend to treat computers as social actors and respond
to them as they would to another person [19] it can also be
expected that humans adapt their conversational behavior
to computers. And indeed, there is growing evidence that
humans adapt various aspects of their verbal and non-verbal
behavior to those of the computer interfaces they interact
with. Concerning linguistic adaptation, for example, exper-
iments with text-based human-computer interaction show
lexical and syntactic adaptation of users to the system [9,
3, 2]. Systematic work on speech signal feature adaptation
of users in spoken human-computer interaction is also start-
ing to emerge [18]. However, verbal behavior adaptation in
HRI remains to be studied. Moreover, human adaptation
to systems has so far been studied in one-shot, relatively
short encounters. Persistence of adaptation across sessions
has not been addressed.

In our work we investigate adaptation of children in HRI
across multiple sessions. In [17] we reported that children
adapt various aspects of their verbal and non-verbal be-
havior, including speech timing, speed and tone, verbal in-
put formulation, nodding and gestures. In this paper we
present more detailed results concerning children’s verbal
turn-taking adaptation.

This work is carried out in the larger context of the project
Aliz-E.1 The goal of Aliz-E is to develop the theory and prac-
tice behind cognitive robots capable of maintaining believ-
able any-depth affective interactions with young users over
an extended and (possibly) discontinuous period of time.
Different strategies for achieving this goal (with children)
are studied in the project[1].

2. EXPERIMENT METHOD
2.1 Participants
19 children participated in an experiment (Italian, 11 male, 8
female; age 5-12), which took place on Saturdays in March

1http://www.aliz-e.org/



Figure 1: Children playing with the robot during the experiments. Left to right: quiz, dance, imitation.

– May 2012. 13 participants were able to come to three
sessions on different days as foreseen in the protocol.

2.2 Procedure
The experiment consisted of three sessions that took place
on different days one week apart. The first session consisted
of a briefing about the experiment procedure and the child-
robot activities, followed by filling in a pre-interaction ques-
tionnaire and then an interaction with the system featuring
the activity that the child selected as main, and, time per-
mitting, a second interaction with another activity of the
child’s choice. Each interaction was followed by filling in
a questionnaire. The second and third sessions included no
briefing, just the interaction involving the main activity and,
time permiting, a second interaction with another activity,
and the questionnaire(s). Each session was limited to one
hour, including the questionnaire-filling time.

At the beginning of an interaction the robot greets and
welcomes the child. In the very first interaction it intro-
duces itself by name and asks for the child’s name. The
first time they do an activity the robot gives an explana-
tion. Then they play. In follow-up interactions the robot
greets the child, but does not repeat the name- and activity-
introductions.

The child can end the interaction at any point. At certain
points during the activity (e.g., end of a phase, or a game
round) the robot explicitly asks whether the child wants to
continue. The interaction duration is not fixed: the child
may quit playing, or continue as long as it wants, up to a
limit of 30 minutes (unless the interaction has to be ended
earlier for technical reasons). If the child continues playing
for 30 minutes, the robot apologizes that it needs to end the
interaction to take some rest.

At the end of an interaction, the robot asks the child whether
they liked playing, states that it enjoyed it and is hoping to
play again, and gives the child good-bye. The child then fills
in a post-interaction questionnaire for self-assessment of its
engagement and relationship to the robot, and its opinions
about the robot and the interaction.

The activities available for the children to choose from were
a quiz game, a pose-sequence imitation game and a short
dance-learning (Figure 1). In this paper, we present results
base on the Quiz activity interactions.

In Quiz the child and the robot take turns in asking each
other multiple-choice quiz questions from various domains,
e.g., diabetes, nutrition, sports, geography, history, science.
(The child gets a set of cards with the questions it can ask

and the corresponding answers.) The asker provides correct-
ness feedback. The asker can reveal the correct answer after
two wrong attempts or upon request. The robot makes mis-
takes on purpose (with an answer error rate of about 30%),
in order to avoid frustrating the child by a too good per-
formance. At the end of each round the robot provides a
summary of the number of correct and incorrect answers
and a short evaluative comment. A round of quiz normally
consists of four questions asked by the same asker, the child
can however propose to switch roles at any time.

Besides activity-specific conversation, the interactions in-
volve also a social component, such as greetings and intro-
ductions. When the robot provides performance feedback to
the user during an activity, the social aspect requires careful
handling of the evaluation process so as not to discourage the
user with negative feedback. Preference is given to positive
or encouraging comments on the child’s performance. There
is no comparison of the child’s and the robot’s performance.

2.3 Familiarity vs. Neutral Display Condition
Long-term interaction involves a series of encounters be-
tween the robot and a given user. As the robot interacts
with a particular user, they become familiar with each other,
i.e., they accumulate shared knowledge (a.k.a. shared his-
tory, personal common ground) [6] We can at least assume
that they know each other’s name, performance on a game,
ways of speaking or nonverbal behaviors. Their mutual fa-
miliarity increases over time.

In the experiment we compared two versions of the system in
a between-subjects design: In the familiarity-display (FD)
condition, the robot tries to foster a sense of persistence and
familiarity. It uses verbalizations explicitly acknowledging
and refering to the shared history with a given user, thus
showing that it is familiar with the user and remembers the
previous encounters. Such verbal moves are accompanied
by nonverbal behaviors showing familiarity, e.g., nodding,
higher excitement. In the neutral display (ND) condition,
the system uses verbalizations that are neutral with respect
to familiarity, i.e., they do not signal familiarity. Table 1
shows examples of verbalizations from both conditions.

2.4 System
The experiment was carried using the humanoid robot Nao2

with the HRI system described in [15, 14] (Figure 2).

We relied on a human Wizard to simulate the recognition
and interpretation of the user’s speech and gestures. After
the Wizard selects an interpretation of the user’s input in

2www.aldebaran-robotics.com



Familiarity display (FD) Neutral display (ND)
Use of user’s name: So, which answer do you choose, Marco? So, which answer do you choose?
References to previous encounters I am happy to see you again. I am happy to see you.
and play experiences It was nice playing with you last time. –
References to previous performance: Are you ready to play quiz again? Are you ready to play quiz?

Well done, you’ve done better than last time Well done.
Reference to a quiz question familiarity: The next question should sound familiar. Now the next question.

Table 1: Examples of verbalizations in the FD and ND condition

Middleware

Speech
Recognizer,
Voice Act.

Detector, Audio
Frontend

Dialogue
Manager

Game Move
Generator

Wizard-of-Oz
GUI

Parser, Dialogue
Act Classifier

Gesture
Recognizer

User Model

Language
Generator

Speech
Synthesizer

Motor Control

user and
system

dialogue
acts

system
dialogue
acts, text

text, speech
word

lattices

logical
forms, user

dialogue
acts

dialogue
acts, text

questions,
answers user data

gesture acts system
dialogue

acts, motor
commands

Figure 2: High-level architecture of the system used in the experiment

a GUI, the next system action is determined by the Dia-
logue Manager (DM), while the Wizard has the possibility
to override the automatic selection if needed.

The DM carries the primary responsibility for controlling the
robot’s conversational behaviour. It keeps track of the inter-
action state, and integrates the interpretations of the user’s
input/actions with respect to this state. It queries and up-
dates the game move generator and user model components,
and selects the next action of the system as a transition to
another state, making progress towards a goal. The next
system action is selected according to a set of policies that
specify a mapping from dialogue states describing situations
in the interaction, to (communicative) actions [8]. The dia-
logue policies are learnt offline from a simulated environment
partially estimated from real interaction data [7].

The dialogue act corresponding to the selected next system
action is verbalized automatically by the natural language
generation component. It takes as input the dialogue act
and any additional relevant information from the DM and
constructs text for the speech synthesizer.

To avoid repetitive verbalizations, we implemented a large
range of verbal output variation. Selection among variants
is either random or controlled by selection criteria. Some
selection criteria refer to characteristics of the content to be
conveyed, e.g., how many answer options a quiz question
has and whether they are short or long. Other ones refer
to various parameters of the context, e.g., the user’s gender,
how many quiz questions have already been asked, who is
the current asker, etc. An important selection criterion is
the familiarity display condition: only when the robot is to
explicitly display familiarity, verbalization variants are used
that include the child’s name and/or explicitly refer to the
interaction history (cf. Table 1). In this case utterance plan-

ning uses the information whether the current user interacts
with the system for the first time or it is a subsequent en-
counter, whether they have already played the current game
or it is new, whether the user’s previous performance was
good or not, etc.

In summary, these features describe the system used in the
experiment: (1) Speech and gesture recognition simulated
by a Wizard; (2) System action selection automatic with
the possibility of Wizard override; (3) User barge-in: In-
terruption of the robot’s speech by an early child response;
(4) Automatically produced verbal output in Italian with
many variations and expressive speech synthesis distinguish-
ing sad, happy and neutral state; (5) Automatically pro-
duced head and body poses and gestures; (6) Persistent
user-specific interaction profile.

2.5 Collected Data
The data collected in the experiment consists of the pre- and
post-interaction questionnaires, video and audio recordings
of the interactions and system logfiles.

3. ANALYSIS AND RESULTS
As we reported in [17], the children seem to adapt various
aspects of their verbal and non-verbal behavior, including
speech timing, speed and tone, verbal input formulation,
nodding and gestures. Here we present the results of a sys-
tematic analysis of verbal turn-taking behavior using video
data from all children who completed three quiz interac-
tions. In this case we were also able to study the effect
of the FD vs. ND condition. Data from N=10 children
(equally distributed over FD/ND condition) were included
in this analysis, a total of 9.5 hours of video material.

3.1 Data Coding



We coded child speech segments (CSS). Any occurrence of
child speech was considered a CSS. A CSS could contain si-
lence between stretches of child speech, as long as there is
no robot’s speech in between. It could be a single complete
utterance or a sequence of utterances (e.g., a quiz question
followed by listing the answer options), but also just an ut-
terance fragment or a short acknowledgement or feedback.
It could also be a sequence of repetitions. A CSS could be
the realization of one or more dialogue moves (e.g., a quiz
question plus a reguest for answer, or an acknowledgment
plus the next dialogue move, etc.). CSSs were identified
manually by the coders and the following attributes were
coded for each CSS:

Start time The CSS onset time relative to the beginning
of the quiz interation.

Timing An abstract characterization of the timing of the
CSS w.r.t. the robot’s speech. This attribute has three
possible values:

Overlap The child and the robot speak simultaneously (at
some point) during the given CSS. Overlaps are coded
irrespective of which interlocutor started speaking first.

Forced The child clearly waits with its speech until the
robot finishes speaking, or even until the robot pro-
duces a particular prompt, for example a request for
the next quiz question. The child waits, even though
it does not have to, since it knows what to say next,
and it could barge in. Only clear cases of the child ob-
viously delaying its speech are coded with this value.

Timely The CSS comes in a timely fashion, resulting in
smooth turn-taking (without an overlap or forced wait-
ing). It might be that the child waits a little with their
speech, but not obviously so.

Robot’s reaction Whether the robot appears to take the
CSS into account for its next action. This attribute has two
possible values:

Ignore The CSS has no or only a partial effect on the
next action of the robot, the robot carries on with
the interaction as if (a part of) the CSS did not occur.
This often leads to the child repeating (part of) their
speech. An example of a partial effect is when the child
presents the next quiz question along with the answer
options, but the robot still asks for the latter. Ignoring
a CSS is not a decision made by the Wizard: most of
time it is a consequence of a delay in the system (from
the moment when the wizard sends the command to
the actual execution by the robot), the child’s barge-
in and thus speech overlap, or the child’s move to a
dialogue state out of the coverage of the system.

Not-ignore The robot’s next action is a coherent continua-
tion of the interaction given the CSS. The robot either
immediately responds to the CSS (e.g., answers a quiz
question), or it moves on to an appropriate next step.

Alignment Whether the child’s verbal behavior aligns with
the robot’s expectations (i.e., the implemented strategy),

in other words, whether the child adheres to the foreseen
interaction script. This is an attribute derived on the basis
of the other two, in order to see their combined effect. It
has two possible values:

Not-aligned The CSS has problems either in timing (over-
lap) or in the robot’s reaction (ignore), or both.

Aligned The CSS has no overlap and is not ignored by the
robot.

Two independent coders (two of the authors) performed
the coding. To check inter-annotator agreement the two
coders coded independently the same 36 minutes of video of
the same child to identify overlap- and ignore-CSSs. They
reached Cohen’s κ of 0.94, indicating very good reliability.

3.2 Results
Tables 2 – 5 show the distributions of the values coded in
the data for the factors of timing, robot’s reaction and align-
ment. We report the mean of each factor averaged over the
10 children, separated per session and per condition. For the
analysis of the effect of growing familiarity across the three
sessions and of the FD/ND condition we use two-way Anal-
ysis of variance (ANOVA), where each factor is a dependent
variable and the session number and FD/ND condition are
independent variables.

Timing. The relative number of CSSs with forced wait-
ing is increasing over the three sessions (F(2, 29)=5.185,
p=0.032), and it is increasing more in the FD condition
(F(1, 29)=4.570, p=0.021). Furthermore, the children in
the FD condition tend to force themselves to wait at least
twice as much as children in the ND condition.

The relative number of CSSs with overlaps appears to de-
crease across the three sessions from 14.15% to 7.63% in the
FD condition, and from 19.93% to 12.82% in the ND condi-
tion. While the statistical significance of this improvement
between sessions is only weak (F(2,29)=2.586, p=0.096), the
difference between the FD and ND condition shows higher
statistical significance (F(1, 29)=4.375, p=0.047).

Robot’s reaction. The relative number of CSSs ignored by
the robot drops across the three sessions: from 23.05% to
9.05% in the FD condition and from 28.2% to 12.89% in
the ND condition. There is statistical significance in both
the improvement across sessions (F(1, 29)=10.608, p=0.001)
and the difference between the FD and ND condition (F(1,
29)=5.121, p=0.033).

Alignment. Combining the above aspects, the relative num-
ber of CSSs that are aligned with the foreseen interaction
script increases across the three sessions from 68.78% to
85.95% in the FD condition and from 62.16% to 79.44%
in the ND condition. Also these improvements show sta-
tistical significance in both the improvement across sessions
(F(1, 29)=9.436, p=0.001) and the difference between the
FD and ND condition (F(1, 29)=5.514, p=0.029).



CSS timing
Forced (%) Timely (%) Overlap (%)

Session 1 2 3 1 2 3 1 2 3
FD cond. 04.17 10.98 15.90 81.68 77.50 76.47 14.15 11.52 07.63
ND cond. 00.94 05.03 07.83 79.13 79.07 79.36 19.93 15.91 12.82

Table 2: Distribution of CSS timing values across sessions and conditions

Robot’s reaction
Ignore (%) Not-ignore (%)

Sessions 1 2 3 1 2 3
Familiar 23.05 09.67 09.03 76.95 90.33 90.97
Non-Familiar 28.20 19.13 12.89 71.80 81.87 87.11

Table 3: Robot’s reactions to child’s speech

Alignment with the dialogue managed by the robot
Aligned (%) Not-aligned (%)

Sessions 1 2 3 1 2 3
Familiar 68.78 83.40 85.95 31.22 16.60 14.05
Non-Familiar 62.16 73.07 79.44 37.84 26.93 20.56

Table 4: Alignment of chid speech segments

It is also interesting to look at the improvements in align-
ment across sessions. We performed both the Tukey-Kramer
test for differences between means and the Scheffe test for
contrasts among pairs of means, using an α=0.05 for both
tests, and the result was the same: There is a significant
difference between the first and the second session (Sheffe
statistic 3.10, critical value 2.59; Tukey-Kramer statistic
4.384, p=0.0131), and between the first and the third ses-
sion (Sheffe statistic 4.19, critical value 2.59; Tukey-Kramer
statistic 5.919, p=0.0010), but not between the second and
the third session (Sheffe statistic 1.09, critical value 2.59;
Tukey-Kramer statistic 1.535, p=0.5322).

Child Speech Segment Rate. The number of CSSs in a
session per minute appears to be decreasing from 3.13 to
2.78 in the FD condition, and from 4.71 to 3.5 in the ND
condition. While the decrease across the sessions is itself
not significant (F(2, 29)=2.272, p=0.125), but the difference
between the FD and the ND condition is (F(1, 29)=12.511,
p=0.002). Apparently, children in the ND condition produce
almost 40% more CSSs than children in the FD condition.

CSS rate
Sessions 1 2 3
Familiar 3.13 2.89 2.78
Non-Familiar 4.71 3.85 3.50

Table 5: Child speech segment rate

3.3 Discussion
There is a clear change in the children’s speech timing and
their adherence to the interaction script. Whereas many
synchronization problems occur in their first session with
the robot, the second and third session are smoother. In
particular, the children are often waiting for the robot to

talk, even if they know how to continue without the robot’s
turn. For example, in the first interactions, having asked a
multiple-choice question, the children often go on to read the
list of possible answers, thus causing the robot to barge-in
with the possible answers request, while in the subsequent
interactions, they wait for the request from the robot before
reading the list. Conversely, when the robot asks a question,
children might answer straightaway in their initial interac-
tion, again causing the robot to barge-in, whereas in the later
interactions they wait for a prompt from the robot. To sum-
marize, children seem to adapt the timing of their speech to
the robot’s non-adaptive dialogue strategies, so as to avoid
speech overlaps. Similar channel exclusion phenomena have
been observed in another study of human turn-taking in
HRI: subjects waited for the robot to finish speaking before
they spoke and tended to avoid simultaneous speaking af-
ter a simultaneous start [5]. While other researchers have
also studied user speech timing adaptation, they focused on
different aspects, e.g., user response latency decrease with
practice during a single session [5] or user response latency
adaptation to the system’s extrovert/introvert style [18].

In the FD condition there are fewer overlaps between child
and robot speech, and forced waiting of the children for the
robot to speak is twice as frequent. These children are ap-
parently more lenient with the robot when it makes speech
timing mistakes. They adapt their behavior more, for the
sake of smooth turn-taking.

The children also adhere more to the foreseen interaction
script in the FD condition, as shown by a lower relative
number of speech segments to which the robot does not re-
act. A child’s speech segment is ignored either because it
is out of the currently implemented domain of interaction
(e.g., the child confides about belly ache to the robot), or
because the child “runs ahead” of the implemented script,
and provides information that the robot did not prompt for
yet in a situation where the robot’s implemented strategy
is not flexible enough to react to this, and thus the wizard
cannot select an appropriate next dialogue move. The chil-
dren in the FD condition seem more committed to respect
the robot’s expectations concerning the interaction script,
once they understand them.

The children in the ND condition appear to produce more
speech segments. What our analysis does not make clear
is whether this is a difference in the amount of speech or
only in the number of speech chunks. The latter could be a
consequence of there being more speech overlaps in the neu-
tral display condition, and thus the children’s speech is more
fragmented, and we therefore count more child’s speech seg-
ments. Moreover, since these children tend to deviate more
from the foreseen interaction script, resulting in a higher



number of speech segments to which the robot does not re-
act, they may (have to) repeat their input more often (until
the appropriate system prompt appears).

What it is that leads to these effects is not clear yet. Data
from the post-questionnaires concerning the children’s re-
lationship to the robot indicate that all the children felt a
strong connection with the robot and perceived it as a peer.
We observed informally that the use of the child’s name in
the familiarity display condition seems to catch their atten-
tion. This might result in more concentration on the inter-
action with the robot. We speculate that this might, con-
sciously or not, lead to the children’s higher commitment to
the (efficiency of) the interaction.

The fact that the change in alignment is larger between the
first and the second session than between the second and
third session seems to indicate that the children adapt their
behavior to the interaction with the robot quite fast, and
this level of adaptation persists. It is not clear whether
the children’s adaptation is just a consequence of becoming
trained in“the rules of the (interaction) game”, or it could be
linked to social aspects of the interaction, and particularly
the children’s perception of and interaction with the robot
as a social partner. The effect of the familiarity display
condition on the adaptation seems to corroborate the latter.

4. CONLUSIONS
We presented results on children’s verbal turn-taking behav-
ior in quiz interactions over three separate sessions. In par-
ticular, we analyzed the timing of the children’s speech, and
whether or not the robot reacted to a child’s turn. We found
that adaptation increases across multiple sessions. More-
over, we found that overall there is more adaptation in the
condition where the robot gives explicit signals of familiarity
with the child across sessions, as opposed to the condition
where the robot’s behavior is neutral in this respect.

Our findings have implications for the need for and the ben-
efits of persistent memory of robots. A robot explicitly
displaying familiarity thus seems to elicit more cooperation
from a (young) user leading to a smoother communication.
There might also be more tolerance towards such a system,
despite its inevitably imperfect interaction capabilities.
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