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PROBLEM OVERVIEW BASIS DECOMPOSITION CORRECTION BASIS SYNTHETIC EVALUATION (CONT.)

e The appearance properties for opaque materi-
als are effectively described using the Bidirec-
tional Reflectance Distribution Function (BRDF).

e Idea: Express BRDF function using suitable basis W;: e Our intuition was that novel correction functions can be well de- e Our method: (10% data, 40% outliers)
scribed using a basis of previously generated correction functions.

~ Z o; U, (Z) e Idea: Generate global basis of correction functions C; from set of 100
e BRDF describes how much light from an inci- measured materials M; [3]:
dent direction is reflected to an outgoing direc- . S
Hon. e Global basis: ¥; non-zero for a large range of parameters. 1. For each BRDF M; from this database, compute an approximation
p(0n, o1, 04, Da) . using the remaining 99 materials as a basis:
e We assume that we are provided with a  anisotropic / 4D e Local basis: ¥; zero for a large range of parameters.
X sparse, X irregularly sampled set of angular p(0n, 04, dq) e Estimate coefficients c; by fitting to the measurements. M;(On, 04, @a) = 0(0n, 04, a) = Z BiM;(0n, 04, da)
BRDF measurements containing X outliers. isotropic / 3D 537
e How to define a good fit? — Choose error metric.

2. Compute dense correction function C; as:

_ M; (01,04, da)

v/ Task: Robustly reconstruct the complete BRDF that accurately de-

0.72
scribes the sparsely measured behavior. X Quality of result is highly dependent on this choice!
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:::2::::‘: e Characteristics of such generated scaling correction functions C;:
e A common approach to non-parametric BRDF estimation is the ap- .000.000:0 ,_ | e Average perceptual errors:
proximation of the sparsely measured input using basis decomposition. ::::g:::g: v/ Values of each correction function are distributed within a narrow — —
e We introduce the novel concept of correction functions which :2::::8::' ranse. Our 1.0 07 05 03 01 | Glof 1.0 0.7 05 03 0.1
greatly improves the overall fitting accuracy of such methods. Measured  Global basis of 99 . . oartmie Our Method v/ Each correction function itself is a relatively smooth function. . .
e We also introduce a basis to efficiently estimate novel, dense BRDF material measured materials [3] ~ 17.55 18.10 13.36 0.62 — In sharp contrast to usually rapidly changing BRDF functions!
correction functions from sparse measurements. — Space of correction functions is less complex than space of BRDFs.
— Finding good approximations is more easy in this space.
e Our algorithm is the first to explicitly address outliers and computes OUR METHOD 58 4 y P
physically meaningful solutions. e Operate using global bases — robust w.r.t. sparse data. X Open question: Is generated basis expressive enough to model 10 0.7 Dagrgio 03 0.1 10 0.7 Da(t)ar;io 03 01
e Further, the method is invariant to different error metrics which al- o Key idea: Avoid the inflexibility and reduced accuracy of a global novel correction functions?
leviates the error-prone choice of an appropriate one for the given basis by iteratively applying different corrections to an initial estimate. Test: How well is each C; (top) described using the remaining 99 func- 17.32 15.59 17.28 14.00 12.30
input. tions (bottom p
o Explicitly identify and exclude outliers during iterative process to | | , E
e Real and synthetic experiments show that our method can outper- converee to true solution 1 i | T ° 0'60 ke " 2.0OQRlZ o6 154
: iy 5 ' | .' 3 0.80]15.18 15.32 15.28 15.16 15.92
form other state-of-the-art basis decomposition methods by an or- | L -
der of magnitude in the perceptual sense. 1. Initialize dense estimate p from sparse measurements p; =~ | ' | i v Outperformed other methods by an order of magnitude in the per-
p(01;,04;, 0a;) using basis of 100 measured materials M; [3]: , w ' ceptual sense for outlier ratios up to 40%.
PRIOR WORK p(0n, 04, da) ~ 0(0n, 04, pg) = Z a; M; (01, 04, da) v/ Average scaling deviation of only 0.076 units. e Sensitivity towards error metric:
y y ’ y (4 Y ’ 2D projected for visualization
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2. Formulate a BRDF correction function o that represents the error of SYNTHETIC EVALUATION

this estimate using scaling factors: o State-of-the-art methods: (10% data, 40% outliers) / . - - .
Method is invariant w.r.t. different error metrics.
Measured BRDF data  Desired output Synthesized image  Synthesized image _ il L
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. . e REAL DATA EVALUATION
Scattered Data Global Basis Local Basis X Problem: Dense o is unknown and must be estimated! Rk
Interpo]ation Decomposition Decomposition . e Evaluation using 16 newly measured materials:
3. Compute sparse set of correction factors o;:
7, 6] 4,6,5,1] 7, 6]
' . ‘ Method 1.0
o — Pi - Glo Loc Our
P =
0(Onis as, Pa;) - 1
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4. Assign a low weight to correction factors where measured input p; 3
Linear Logarithmic Linear Logarithmic and estimate o; = 9(0n;, 04;, ®4;) differ largely to detect outliers: - 4
0.59 0.37 0.40 0.31 Linear Logarithmic Linear Logarithmic 5
—yleieil 26.88 23.21 47.79 13.67 8.83 6
v/ Measured values directl v, Phvsicallv plausibl Wi =€ "
represented y P ysica y pratsibie v/ Large flexibility /
Y . v Relatively robust w.rt. out- | x Dependent on error met- . ] i . . , Sparse ~ Ground  Global Global Local Local Tabular = 8
No error metric needed liers e 5. Estimate correction function from o; using suitable global correction 5
X Physically implausible X Dependent on error met- : : : . IHPUt Truth [4,6,5,1] [4,6,5,1] [7, 6] [7, 6] [4, 2] 0.0 S 0
: , , : X Physically implausible basis C'::
X Noise and outliers directly ric X b i ¢ 10
represented X Low ﬂexibility Not robust w.r.t. outliers 0_(th 9d7 ¢d E : 6@ th Hd ¢d) 11
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