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Abstract. In the first part of this additional evaluation we show that
our algorithm achieves a significantly lower perceptual error (error of
0.19) for a set of 16 newly measured materials when compared to other
state-of-the-art basis decomposition methods (LC, error of 0.50; RBF,
error of 0.38). Additionally, we show that the BRDF estimates computed
by RBF and the scattered data interpolation technique PP are often
physically implausible, in contrast to the results provided by our method.
In the second part of this additional evaluation we analyze how the size
of the generated basis affects the fitting accuracy of the final solution.

1 Experiments with Measured Data

1.1 Introduction

To demonstrate the applicability of our method on real objects we measured
the reflectance of a chocolate Santa Claus that was wrapped in a colored alu-
minium foil showing spatially varying reflectance behavior. The 3D geometry of
the object was scanned using a structured light setup. Reflectance samples were
captured from 766 different sensor / light directions.

We then clustered the reflectance samples of each surface point according to
their diffuse (i.e. average) color which results in BRDF samplings for 16 base
materials. To obtain the underlying dense BRDFs we applied our method (with
10 iterations) on every of these material samplings independently.

In this supplementary material we evaluate how well our algorithm can de-
scribe the individual materials based on the raw reflectance measurements. We
also evaluate and compare the performance of other state-of-the-art methods
(LC [4, 6, 5, 1], RBF [7, 6] and PP [4, 3]) in terms of perceptual error and physi-
cal plausibility.
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Table 1. Perceptual error comparison (in terms of ε) for all evaluated 16 measured
materials. To give a visual impression of these numerical values the table cells are
colored according to the error (from blue (0.0, low perceptual error), over green to red
(1.0, high perceptual error)). Our method outperforms the other basis decomposition
methods (LC [4, 6, 5, 1], RBF [7, 6]) significantly. Because PP [4, 3] reproduces each
measured value exactly the error is 0.0 constantly. However, the BRDF estimations
achieved by PP are physically implausible and not suitable for synthesizing images
with novel viewing or lighting configurations (see text for details)

Method

LC RBF PP Our

M
a
t
e
r
ia

l

1 0.37 0.31 0.00 0.19
2 0.49 0.35 0.00 0.21
3 0.53 0.47 0.00 0.23
4 0.51 0.29 0.00 0.18
5 0.58 0.29 0.00 0.19
6 0.54 0.41 0.00 0.19
7 0.37 0.34 0.00 0.19
8 0.45 0.38 0.00 0.19
9 0.57 0.37 0.00 0.19
10 0.48 0.36 0.00 0.18
11 0.47 0.41 0.00 0.23
12 0.56 0.40 0.00 0.18
13 0.54 0.55 0.00 0.20
14 0.49 0.39 0.00 0.18
15 0.61 0.44 0.00 0.19
16 0.49 0.31 0.00 0.15

Avg. 0.50 0.38 0.00 0.19

1.0

0.0

1.2 Evaluation

Perceptual Error We cannot provide the perceptual CIELAB error [2] of the
estimated fittings (as we did for the Benchmark section (3.1) of the main paper),
as no ground truth is available for this newly measured dataset. Nevertheless,
we want to provide a meaningful error that indicates how well the fitting is in
the perceptual sense.

In the main paper we have shown that iteratively applying a correction func-
tion minimizes the (perceptually meaningful) CIELAB error [2]. Thus, the more
correction functions are applied to a current estimate, the more accurate the
current estimate gets in the perceptual sense and the more the current correc-
tion function approaches 1 constantly. We conclude, that the closer a correction
function is to a constant 1 function the better the current approximation is in
the perceptual sense.

Input to all algorithms is a sparse set of n measurements (θhi, θdi, φdi, ρi, wi),
i.e. a BRDF was measured at ρ(θhi, θdi, φdi) = ρi. Each algorithm (LC, RBF,
PP and our) then outputs a BRDF estimate % ≈ ρ for this input. To describe the
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error in the perceptual sense we compute a correction factor for each available
raw measurement ρi as

σi =
ρi

%(θhi, θdi, φdi)
. (1)

We can then define an error metric that indicates how close the correction factors
σi approach 1 by

εi = 1 −

{
σi if σi ≤ 1
1
σi

else
. (2)

Finally, we compute the average error value % as

ε =
1

n

∑
εi . (3)

Based on our previous conclusions, the value ε then indicates the error of the
current estimate in the perceptual sense (i.e. close to 0 is low perceptual error,
close to 1 is high perceptual error).

For the experiments we compute a dense BRDF estimate % for each of the 16
sparsely measured base materials using the respective algorithms (LC, RBF, PP
and our) and compute the perceptual error ε for each of these estimation. The
results for all experiments are presented in Table 1. Compared to the other basis
decomposition methods LC (average ε = 0.50) and RBF (average ε = 0.38) our
algorithm can achieve a significantly lower perceptual error (average ε = 0.19).
We can thus conclude that our algorithm can significantly better describe the
measured materials than the other evaluated basis decomposition method.

It is obvious that PP reproduces each measured value ρi exactly and thus has
an error ε = 0.0 in all cases. Consequently ε is not expressive when comparing
to PP. We have to empathize that this is not a drawback of how we defined
the perceptual error ε and it will be the same for every differently defined error
metric that compares to the raw measurements (since all measured values are
represented exactly using PP). Because the perceptual error is not expressive in
the case of PP we additionally compare the estimated solutions in terms of the
physical plausibility.

Physical Plausibility An estimated BRDF should be physically plausible and
be suitable for synthesizing images with novel viewing or lighting configurations.
We thus additionally provide synthesized images of spheres (of the respective
material estimations) under a natural illumination given by a HDR environment
map (Grace Cathedral, courtesy of Paul Debevec, see Figure 7) and under a
single light source illumination.

When comparing the synthesized images for each material the following ob-
servations can be made (see Figure 1):

1. The estimations achieved by PP are physically implausible. This is not sur-
prising: First, the measurement noise including all outliers are exactly found
in the resulting BRDF estimate. Also the outliers are not detected and in-
terpolated within the whole BRDF domain. As a consequence many visual
artifacts can be found in the synthesized sphere images.
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0.45 0.38 0.00 0.19

Sparse LC RBF PP Our
Input [4, 6, 5, 1] [7, 6] [4, 3]

1.0

0.0

Fig. 1. Visual evaluation for measured material 8:
- Row 1 correspond to the BRDF data. The sparse input and outlier afflicted input
can be seen in the first column (red indicates missing data). For visualization the 3D
BRDF data was projected along φd (x-Axis =̂ θh, y-Axis =̂ θd). The other columns
correspond to the estimations of the complete BRDF using the respective algorithm
(LC [4, 6, 5, 1], RBF [7, 6], PP [4, 3], Our).
- Row 2 is a visualization of the perceptual error ε when compared to the original input
(from blue (0.0, low perceptual error), over green to red (1.0, high perceptual error)).
- Row 3 shows a rendered sphere of the estimated material in a natural environment.
- Row 4 shows a rendered sphere of the estimated material under a single light source
which shows the estimated BRDF values more precise. The sphere corresponding to
the sparse input shows the available measured raw data for this specific camera / light
configuration.
- Row 5 indicates the average perceptual error ε

2. Artifacts can also be found in the results achieved by RBF (e.g. star-like
highlights). This is because RBF can not detect outliers and also tries to
approximate these as well.

3. The estimations computed by LC are physically plausible because its basis
consists of 100 densely measured BRDFs and is thus physically plausible
itself. As a consequence no visual artifacts are found in the synthesized sphere
images. However, the LC solutions have the largest perceptual error when
compared to the other methods.
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4. Our method achieves physically plausible results for two reasons: First, it
is initialized based on a physically plausible result. Second, the basis used
in each iteration step consists of 100 correction functions that were derived
from densely measured materials and are thus also physically plausible. As
a consequence, no artifacts can be observed in the in the synthesized sphere
images. This is similar to LC, however, our method achieves a significantly
lower perceptual error.

Additional examples for the estimated BRDFs can be found in Figure 2 - 5.

1.3 Additional Results

At this step we have already computed a number of 16 dense basis materials
that the object consists of. To model the overall spatially varying reflectance
behavior of the object we describe the reflectance of each surface point as a
weighted combination of these base materials (similar to [3, 6]). We choose the
weights using a simple non-negative least squares approach in order to remain
physically plausible.

Choosing these weights accordingly is not in the scope of this paper and
not evaluated further at this point. Nevertheless, we provide synthesized images
of the whole object (using the basis materials computed by our algorithm) in
Figure 6.

1.4 Conclusion

In this Section we provided additional evaluation for the case of 16 newly mea-
sured materials. We showed that our algorithm achieves a significantly lower
perceptual error (error of 0.19) when compared to other state-of-the-art basis
decomposition methods LC (error of 0.50) and RBF (error of 0.38). Additionally,
we showed that the BRDF estimates computed by PP and RBF are often phys-
ically implausible. In contrast, our method provides physically plausible results
that allow an artifact free synthesizing of images with novel viewing or lighting
configurations.

2 Effect of the Basis Size

We also analyzed how the size of the basis affects the fitting accuracy of the
final solution. We therefore repeated the benchmark in the main paper (see
Subsection 3.1 of the main paper) with an outlier ratio of 0.0 and data ratio of
1.0. However, this time we also controlled the size of the basis (i.e. the number
of basis functions used during basis decomposition). For each of the 100 test
materials we chose random subsets of the original basis functions Mi and Ci of
fixed sizes n. In this scenario n = 99 corresponds to the solutions calculated
in the original benchmark of the main paper, n < 99 corresponds to solutions
calculated by our algorithm using bases of reduced sizes. The mean CIELAB
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Table 2. Measured CIELAB error (color coded) for different basis sizes n and methods

Method

RBF LC Our

B
a
s
is

s
iz

e
(
n
) 758 4.11

99 4.88 0.28
80 5.01 0.35
60 5.26 0.43
40 6.43 0.67
20 7.54 1.22
10 10.29 2.68

20.0

0.0

Table 3. The measures indicate that the expected fitting error of our method in relation
to n can be predicted as εn

Perceptual Error

Measured Predicted

B
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e
(
n
) 99 0.28 0.28

80 0.35 0.35
60 0.43 0.47
40 0.67 0.70
20 1.22 1.41
10 2.68 2.82
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Basis size (n)

Measured

Predicted

error [2] for varying values of n is provided in Table 2. Note that our algorithm
together with bases of sizes n = 10 still provides solutions with a 2 times lower
perceptual error than LC with n = 99 or RBF with n = 758 basis functions.

The measurements also indicate (see Table 3) that the expected fitting error
of our method in relation to n can be predicted as

εn = ε
99

n
, (4)

where ε corresponds to the original CIELAB error using the original bases
with n = 99 Mi and Ci. This means if only half of the basis functions are used,
the fitting error of our algorithm can be expected to be twice as high. To the
contrary, using our algorithm together with a basis having double the amount
of functions can be expected to have a two times lower perceptual error for an
estimated solution.
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0.37 0.31 0.00 0.19

0.53 0.47 0.00 0.23

Sparse LC RBF PP Our
Input [4, 6, 5, 1] [7, 6] [4, 3]

Fig. 2. Visual evaluation for measured material 1 and 3 (see caption of Figure 1 for
explanation)
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0.58 0.29 0.00 0.19

0.54 0.41 0.00 0.19

Sparse LC RBF PP Our
Input [4, 6, 5, 1] [7, 6] [4, 3]

Fig. 3. Visual evaluation for measured material 5 and 6 (see caption of Figure 1 for
explanation)
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0.45 0.38 0.00 0.19

0.56 0.40 0.00 0.18

Sparse LC RBF PP Our
Input [4, 6, 5, 1] [7, 6] [4, 3]

Fig. 4. Visual evaluation for measured material 8 and 12 (see caption of Figure 1 for
explanation)
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0.61 0.44 0.00 0.19

0.49 0.31 0.00 0.15

Sparse LC RBF PP Our
Input [4, 6, 5, 1] [7, 6] [4, 3]

Fig. 5. Visual evaluation for measured material 15 and 16 (see caption of Figure 1 for
explanation)



The final publication is available at link.springer.com
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Fig. 6. Synthesized images of the measured object under novel viewing and illumination
conditions (1st row – Grace Cathedral, 2nd row – St. Peter’s Basilica, 3rd row – Uffizi
Gallery)
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Fig. 7. The HDR environment maps that define the natural illumination environment
(courtesy of Paul Debevec) for the sythesized sphere images in the main paper and in
this supplementary material:
- Grace Cathedral (left, used for the Benchmark section (3.1) of the main paper and
for all sphere images in this supplementary material)
- St. Peter’s Basilica (middle, used for Figure 2 of the main paper)
- Uffizi Gallery (right, used for Figure 4 and 5 of the main paper)


