
Pacific Graphics 2014
J. Keyser, Y. J. Kim, and P. Wonka
(Guest Editors)

Volume 33 (2014), Number 7

shade.js: Adaptive Material Descriptions

Kristian Sons1,2, Felix Klein2, Jan Sutter1 and Philipp Slusallek1,2

1German Research Center for Artificial Intelligence, Germany
2Intel VCI & Saarland University, Germany

Figure 1: A collection of procedural materials written in shade.js and rendered in WebGL using forward shading (upper left),
deferred shading (upper right), Blender Cycles ray-traced (lower left), and with global illumination (lower right). We achieve
conceptually equal materials for all four rendering techniques.

Abstract
In computer graphics a material is a visual concept that is parameterizable and should work for arbitrary 3D
assets and rendering systems. Since provided parameters and attributes as well as the capabilities of rendering
systems vary considerably, a material needs to adapt to its execution environment. In current approaches, the
adaptation logic is ‘baked‘ into the rendering application based on string manipulation, compiler directives, or
metaprogramming facilities. However, in order to achieve application-independent and self-contained material
descriptions, the adaptation logic needs to be part of the material description itself.
In this paper we present shade.js, a novel material description using a dynamic language to achieve the necessary
adaptivity. A shader can inspect its execution environment and adapt to the available parameters and renderer
capabilities at run time. Additionally, shade.js exploits the polymorphism that comes with non-explicit declaration
of types. These two novel features allow for writing adaptable and thus more general material descriptions.
Based on the concrete execution environment at run time, the accompanied compiler generates specialized shader
code that is specifically typed and optimized for the target rendering system and algorithm. We evaluate shade.js
with examples targeting four different rendering approaches (forward and deferred rasterization, ray-tracing, and
global illumination). We show that we can improve convenience and flexibility for specifying materials without
sacrificing performance.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Methodology and
Techniques—Languages; Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—Color, shading,
shadowing, and texture; Programming Languages [D.3.2]: Processors—Compilers;

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

kristian
Schreibmaschine
The definitive version is available at http://diglib.eg.org or http://onlinelibrary.wiley.com

http://diglib.eg.org
http://onlinelibrary.wiley.com/

K. Sons, F. Klein, J. Sutter and P. Slusallek / shade.js: Adaptive Material Descriptions

1. Introduction

In most games a specialized and optimized GPU shader is
closely intertwined with game assets as well as the game en-
gine and renderer. Such a shader will not work on its own
and cannot be applied in other scenes. Most other applica-
tions, however, would benefit strongly from the concept of
more general materials that can easily be reused in different
scenes and with arbitrary rendering systems. Such materials
could be exchanged, refined, verified, organized in reusable
libraries, and shared across the Internet. For this to happen,
a material needs to be self-contained and independent of 3D
scene descriptions and rendering algorithms. The represen-
tation and efficient rendering of such generic material de-
scriptions is still an unsolved issue.

All applications that try to offer such general material con-
cepts require an adaptation logic and a process for generating
shaders specialized for a concrete execution environment.
This includes adapting to available uniform and per-vertex
parameters, supplied textures, the capabilities of the current
renderer, and extended functionality of the GPU. As a simple
example, consider a material that takes its diffuse coefficient
either from a default constant value, a per-object uniform
variable, an interpolated per-vertex attribute, or from a sup-
plied texture map, such as:

kd = Colo r (0 . 8) ;
i f (e x i s t s (d i f f u s e M a p) && i s T e x t u r e (d i f f u s e M a p) &&

e x i s t s (t e x c o o r d s)) {
kd = sample (d i f fuseMap , t e x c o o r d s) ;

}
e l s e i f (e x i s t s (v e r t e x C o l o r)) {
kd = v e r t e x C o l o r ;

}
e l s e i f (e x i s t s (u n i f o r m C o l o r)) {
kd = u n i f o r m C o l o r ;

}

Surprisingly, describing such a logic is not possible in cur-
rent shading languages, because none of them allows intro-
spection, i.e. to query the type and existence of parameters.

Such adaptivity is often implemented in the application
through Übershaders (e.g. [McG05]). Obviously, the fea-
tures of an Übershader are never complete and customizing
the logic requires changing the application itself. The same
restriction applies to approaches exploiting the metapro-
gramming facilities of the host-language [MQP], where the
adaptation logic is still determined at compile time of the
application.

A material can only be portable between applications if
the adaptation logic is part of the material description itself.
Hence, we need to shift this logic from the application to the
material description.

In this paper we present shade.js, a system for specifying
adaptive, self-contained, and portable material descriptions.
We make the following key contributions:

• We propose a novel shading language that offers intro-
spection of its execution environment as an integral part

of the language (Section 4). This enables authors to write
materials that adapt to their current execution environ-
ment independent of the application.

• shade.js is the first shading language to exploit the poly-
morphism of a dynamic language. It deliberately refrains
from declaring types and other qualifiers. As a result,
we achieve generic material descriptions that work for a
wider range of input parameters and renderers.

• We present an accompanying compiler that performs the
required analysis to specialize the generic material de-
scription to a specific execution environment at run time
(Section 5). During this analysis, the compiler infers types
(including type checking), semantics, and compute fre-
quencies. Then it optimizes the shader code accordingly.

• We generate code and present results for four different
rendering algorithms and three renderers: GLSL shaders
for forward and deferred rasterization via WebGL (Sec-
tion 5.5) as well as OSL shaders for Whitted-style ray
tracing and path tracing using Blender’s Cycles render en-
gine (Section 5.5).

2. Related Work

2.1. Specialized Shaders

Common shading languages include the RenderMan Shad-
ing Language (RSL) [HL90, Ups89] and the Open Shading
Language (OSL) [GSKC10]. Both, RSL and OSL are fully
procedural languages inspired by C with additional domain-
specific data types, e.g. for colors and vectors. Both lan-
guages provide means to define values for parameters that
are not available in the execution environment (default val-
ues) and ad hoc polymorphism using function overloading.
However, all parameters and variables are strictly typed and
thus fixed at authoring time. Moreover, there is no possibil-
ity to alter the control flow based on the type or existence
of parameters. Thus the adaptivity of these shaders to new
scenes and renderers remains limited.

GPU languages such as Cg [MGAK03], HLSL [Mic02],
and GLSL [KBR03] are highly specialized. They are specif-
ically designed to run efficiently on the programmable
pipelines of recent graphics cards. Similar to RSL and OSL,
these languages are “little languages” inspired by C. They
come with a static type system and provide no means to in-
trospect their execution environment. Their polymorphism is
restricted to operator overloading and default values. Even
worse, authors have to declare the sources of parameters
(uniform or per-vertex) at authoring time using type quali-
fiers.

Preprocessor directives are a common way to change GPU
shader programs to compile in different execution environ-
ments. Some extensions in GLSL implicitly define macros
for the preprocessor, making it possible to adapt the shader
code based on optional hardware capabilities. However, all
other code changes performed by the preprocessor need to

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

K. Sons, F. Klein, J. Sutter and P. Slusallek / shade.js: Adaptive Material Descriptions

be controlled by the application, which implements the nec-
essary adaptation logic.

HLSL Shader Model 5 adds Dynamic Linking [Mic08] as
a more sophisticated approach to shader permutations. It al-
low for referencing abstract interfaces in the shader at com-
pile time. The application can then choose one of the con-
crete implementations (compiled into the same program) at
run-time. Thus, the adaptation logic remains in the applica-
tion.

2.2. Meta-Systems

A number of approaches have been proposed to solve the
issues present in specialized shading languages. In general,
these describe meta-systems that create code for one or more
specialized languages in the end.

McCool et al. [MQP] propose shader metaprogramming
within the host language. The proposed API allows for using
generic types at authoring time by exploiting C++ templates.
The types are checked and determined at compile time. Ad-
ditionally, the API offers specialization during run time, e.g.
branching based on a query for the type of a parameter. How-
ever, this approach has some disadvantages: The C++ poly-
morphism is only available for those parameters that can be
determined during compile time of the application. Also the
adaptation logic is determined already at application com-
pile time, resulting in predefined specialization similar to
Übershaders. Additionally, shader metaprogramming offers
no means to query the existence of parameters in the execu-
tion environment.

Similarly, Kuck et al. [KW09] specialize shaders at run
time using C++ classes as an abstraction layer. Again, the
adaptation logic is fixed at compile time of the application
and cannot be altered by the shader author.

Vertigo [Ell04] is a metaprogramming system using the
functional language Haskell as host language. It supports
shading and expression rewriting for optimizations, but of-
fers no adaptivity based on the execution environment.

Declarative approaches such as Shade Trees [Coo84,
AW90, MSPK] do not expose the program’s control flow to
the user. As a result, the author cannot adapt the control flow
based on the current execution environment. For instance,
it is not possible to branch a shading program based on the
existence of a specific parameter.

More recent approaches mix declarative and imperative
elements: Material Definition Language (MDL) [Nvi12],
supports the customization of certain aspects procedurally,
MetaSL [Men10] offers authoring of procedural building
blocks with arbitrary input and output parameters. Again, the
procedural parts are inspired by the C language with limited
polymorphism due to fixed types.

In GPU languages, logically related computations are
spread over multiple stages in the rendering pipeline.

RTSL [PMTH01], Renaissance [Aus05] and Spark [FH11]
tackle this issue using compiler technology to partition one
shader description to the stages of a multi-stage pipeline. In
shade.js, we use a similar approach to partition computa-
tion from a single material description to the CPU, vertex
shader, and fragment shader stage. However, the previous
approaches require typed input parameters and provide no
mechanism to introspect their execution environment.

ShaderDSL.js [Ado12] is a compiler from a subset of
JavaScript to GLSL. In contrast to shade.js, it requires
declaring the input parameters explicitly (including types)
and has no interface to the lighting system. As a result,
ShaderDSL.js is mainly a syntax transformation.

Other systems address shader partitioning [CNS∗02,
RLV∗04] and shader simplification [Pel05, SAMWL11].
These techniques are related but orthogonal to shade.js and
could eventually be included.

A type of inverse approach to adaptation is described
in [LS02], where the geometric data is specialized by a com-
piler based on the knowledge of the bound shading program.

3. Our Approach

In order to achieve more adaptive materials, we propose
a new domain-specific language based on a subset of
JavaScript. We have chosen JavaScript mainly for its poly-
morphic features: It is not explicitly typed, an algorithm de-
scribed in JavaScript can be used with any types that pro-
vide the necessary methods used in the algorithm. This al-
lows writing procedures more generically and increases the
expressiveness of the material description.

Additionally, the language offers mechanisms to intro-
spect its execution environment. We provide three different
kinds of introspection: Authors can query the environment
for i) the existence of parameters; ii) the type of parameters;
and iii) the availability of optional functions. The JavaScript
language provides natural ways to query types and the ex-
istence of properties of parameters which we exploit for
shade.js. As a result, material authors can adapt the control
flow of a material description based on information about the
execution environment.

On the practical side, we integrated shade.js into
XML3D [SKR∗10], an open source JavaScript render en-
gine based on WebGL. Thus we are able to describe the
material in the host language. Moreover, shade.js can eas-
ily be ported to other WebGL engines and – with little extra
effort – also to native renderers. Since a shade.js shader is
written in legal JavaScript, it would even be possible to run
it in a dynamically interpreted environment. Although this
feature is interesting for instance for debugging, we aim to
generate specialized shader code for common renderers and
platforms.

Therefore, shade.js comes with a JIT compiler that per-
forms static code analysis based on the concrete execution

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

K. Sons, F. Klein, J. Sutter and P. Slusallek / shade.js: Adaptive Material Descriptions

environment at run time. At this point in time the compiler
can evaluate all queries into the execution environment stat-
ically. Depending on the result of the analysis, the compiler
changes the control flow of the shader and eliminates dead
code. Additionally, the compiler infers all variable types
based on the types of the parameters in the execution en-
vironment. As a result, the cross-compiled code is adapted
and highly specialized to its execution environment, i.e. it
has static types and the resulting control flow only depends
on the values of parameters, not on their types. If the com-
piler fails to do so, we can produce meaningful error mes-
sages based on the results of the code analysis.

In addition to these novel concepts, we cherry-picked the
most useful concepts from existing approaches and inte-
grated them into shade.js. For portability across different
lighting systems we adopt interfaces based on radiance clo-
sures similar to OSL [GSKC10]. The compiler resolves the
radiance closures and generates appropriate code for the tar-
get rendering system. Similar to RTSL [PMTH01] and Re-
naissance [Aus05], our compiler partitions the shader pro-
gram by computation frequencies in order to optimize the
run time performance, i.e. it extracts parts of the code that
can be executed on the CPU or on the vertex shader stage re-
spectively. Similar to AST [MSPK], we have a semantically
rich type system that has additional type properties such as
computation frequency (constant, uniform, or per-vertex),
interpretation (e.g. color, normal, point), and the coordinate
space (e.g. object space, world space etc.) of a vector. In con-
trast to previous approaches, we deliberately refrain the au-
thors from declaring these properties. Instead, the compiler
automatically derives them from the execution environment
and interfaces used in the shader code.

4. Language

Shade.js supports a subset of JavaScript that includes all
arithmetic, logical, and assignment operators, conditional
statements, loops, break, and continue statements (without
labeling). We support the built-in data types undefined, num-
ber, boolean, string, object, and function.

However, we do not support the entire functionality of
JavaScript: Array sizes may not change and array elements
need to have homogeneous types. We support functions as
an abstraction mechanism, but not the JavaScript prototyp-
ing functionality. Also, we support only some predefined ob-
jects such as vectors with two, three, and four components,
and 3×3 and 4×4 matrices.

Since all objects in shade.js are immutable, we circumvent
dynamic memory allocations for all current target languages
which provide vectors and matrices as built-in primitive data
types. All these restrictions are not of a conceptual nature
but we enforce them for now to simplify the mapping to the
target languages.

Figure 2: Example of adaptable shaders using polymor-
phism and introspection. The checkerboard shader used in
the rear works for a uniform color (left), vertex colors (mid-
dle), and a texture (right). The orange teapots in the front
feature normal mapping, using the tangent vertex attribute
if available (left) and otherwise an approximated tangent
based on the derivative of the vertex position (right).

4.1. Polymorphism and Introspection

In shade.js, we exploit the properties of the JavaScript ob-
ject to query the existence of parameters and optional ren-
derer capabilities and the instanceof and typeof operators to
query the type of parameters. Recall the pseudo code from
the introduction. With shade.js one can implement this logic
in straight-forward JavaScript syntax:

f u n c t i o n shade (env) {
var kd = new Vec3 (0 . 8) ;
i f (env . t e x c o o r d s && env . d i f f u s e M a p i n s t a n c e o f T e x t u r e) {

kd = env . d i f f u s e M a p . sample2d (env . t e x c o o r d s) . rgb () ;
} e l s e i f (env . v e r t e x C o l o r) {

kd = env . v e r t e x C o l o r ;
} e l s e i f (env . u n i f o r m C o l o r) {

kd = env . u n i f o r m C o l o r ;
}
. . .

}

The first parameter of the shade function is an object that
provides all parameters of the execution environment as its
properties. If an input parameter does not exist, accessing
the property returns undefined, which evaluates to false in
logical expressions as well as in expressions with the in-
stanceof operator. This mechanism can not only be used to
query for the existence of shader parameters but also for the
availability of optional functions, accessible through the this
keyword:

i f (t h i s . f w i d t h) {
/ / The e x e c u t i o n e n v i r o n m e n t s u p p o r t s d e r i v a t i v e s
var fw = t h i s . f w i d t h (env . t e x c o o r d) ;
. . .

}

Since shade.js uses implicit types and sources for all input
parameters, we can further simplify the logic of the simple
shader by replacing diffuseMap, vertexColor, and uniform-
Color with a single input parameter color:

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

K. Sons, F. Klein, J. Sutter and P. Slusallek / shade.js: Adaptive Material Descriptions

f u n c t i o n shade (env) {
var kd = new Vec3 (0 . 8) ;
i f (env . c o l o r && env . c o l o r . sample2d && env . t e x c o o r d s) {

kd = env . c o l o r . sample2d (env . t e x c o o r d s) . rgb () ;
} e l s e i f (env . c o l o r && env . c o l o r . rgb) {

kd = env . c o l o r . rgb () ;
}
. . .

}

In this code snippet, instead of using the instanceof oper-
ator, we check for available methods of the color parameter
to determine its type: if sample2d is defined, it can be used
as a texture and if rgb is available, it can be converted to a
color. By checking for available methods instead of explicit
types, we further expand the range for supported input pa-
rameters. For instance, both Vec3 and Vec4 implement the
rgb() method and are therefore candidates for a color. Ad-
ditionally, since the source of input parameters is implicitly
determined, color can be provided as both a uniform param-
eter or vertex attribute. In cases where the execution envi-
ronment provides both – a vertex attribute and a uniform pa-
rameter with the same name – the more specific per-vertex
definition is used.

Another step towards a more adaptable shader is the sup-
port of multiple, semantically equivalent input parameters of
different names. The following example shader accepts the
diffuse color according to the naming conventions of Wave-
front OBJ (Kd), COLLADA (diffuse) and XML3D (diffuse-
Color):
f u n c t i o n shade (env) {

var kd = env . d i f f u s e | | env . d i f f u s e C o l o r | | env . Kd ;
var f i n a l K d = new Vec3 (0) ;
i f (kd && kd . sample2d && env . t e x c o o r d) {

f i n a l K d = kd . sample2d (env . t e x c o o r d) . rgb () ;
} e l s e i f (kd && kd . rgb) {

f i n a l K d = kd . rgb () ;
}
. . .

}

Again we interpret all input parameters either as texture or
color, which is required e.g. to properly support the COL-
LADA convention. Although the same specialization can be
achieved using auto-generated macro definitions, converting
this 8-line code snippet to an equivalent GLSL shader using
preprocessor directives to accept input arguments for the dif-
fuse color with different names and varying types, results in
over 40 lines of code (see supplemental material).

Similarly, we can handle input arguments with slightly
varying semantics. For example, the following code accepts
both transparency (with 1 being fully transparent) and opac-
ity (with 1 being fully opaque):
f u n c t i o n shade (env) {

var a l p h a = 1 ;
i f (env . t r a n s p a r e n c y != u n d e f i n e d)

a l p h a = 1 − env . t r a n s p a r e n c y ;
e l s e i f (env . o p a c i t y != u n d e f i n e d)

a l p h a = env . o p a c i t y ;
. . .

}

In shade.js, functions are generic templates that can be
used with multiple types. A specialization of the function

based on the types of parameters can be done using the intro-
spection mechanisms. This concept replaces function over-
loading in typed languages.

See Figure 2 for a number of adaptable shaders based on
shade.js. For more complex materials refer to the supple-
mental material.

4.2. Radiance Closures

Similar to OSL, we provide a set of radiance closures to in-
terface with the lighting system. A radiance closure enables
the evaluation of interactions between lights and the material
surface without providing an explicit viewing direction. Ra-
diance closures are parameterizable. The return value of the
shade procedure is either a radiance closure, a linear combi-
nation of radiance closures, or undefined. The latter discards
the current fragment.

We implemented a set of radiance closures for shade.js,
including the Oren-Nayar, Phong, Cook Torrance, and
Ward reflection models, mirror-like reflection, and others. A
checkered material that discards half of the squares and the
resulting shader applied to a cube and ray-traced using the
Cycles renderer is shown in Figure 3.

f u n c t i o n shade (env) {
var smod = (env . t e x c o o r d . x () ∗ env . f r e q u e n c y) % 1 . 0 ,

tmod = (env . t e x c o o r d . y () ∗ env . f r e q u e n c y) % 1 . 0 ;

i f ((smod < 0 . 5 && tmod < 0 . 5) | |
(smod >= 0 . 5 && tmod >= 0 . 5)) {
re turn ; / / D i s c a r d s t h i s f r a g m e n t

}

re turn new Shade () . d i f f u s e (env . kd , env . normal)
. phong (env . ks , env . normal ,

env . s h i n i n e s s) ;
}

Figure 3: A checkered material in shade.js compiled to OSL
and rendered with Cycles in Blender.

5. Compiler & Architecture

As a key concept of shader.js, the compiler specializes the
material description at a late stage when the implementation
and the bound geometry have been determined. To achieve

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

K. Sons, F. Klein, J. Sutter and P. Slusallek / shade.js: Adaptive Material Descriptions

Specialization
Space Transformation Extraction

Parameter Evaluation

VS Generation
Program Compilation

Bind Parameters

Shader source, Platform

List of possible parameters and functions

List of actual parameters and functions

GLSL FS code, VS config, Uniform Setter

Compiler WebGL Renderer

Light Integrator Injection

Uniform Expression Extraction
Validation

Code Generation

Parameter Extraction

Figure 4: Two-step Communication between the shade.js
compiler and a WebGL based renderer.

this, we have chosen a two-step communication process be-
tween renderer and compiler, which is shown for WebGL in
Figure 5.

After passing the material description to the compiler, the
compiler injects the light integrators for all used radiance
closures. We integrate the light integrators in this early step
in order to exploit the specialization also for the lighting part.
Then, the compiler determines all potentially used shader pa-
rameters and optional functions in the code.

In the second step, the renderer examines the available
subset of the potentially shader parameters and annotates
their type and source. It also annotates, which of the optional
functions are available, e.g. based on available extensions.
Note that the two-way approach allows the renderer to take
further actions to make shader parameters available, e.g. re-
questing tangents from the server if it could be used by the
material.

With the annotations available, the compiler

• performs type inference and dead code elimination based
on the input types in order to specialize the shader by re-
moving polymorphism and resolving introspection,

• computes all type qualifiers that are required for the target
language. This includes the source (e.g. uniform or vertex
attribute) and the semantic (e.g. vector, color or normal)
of parameters,

• validates the code to ensure that no references to unavail-
able input parameters or functions remain,

• performs optimizations usually done manually by the
shader author, and

• generates code for the target shading language.

Back on the renderer side, we use the information returned
by the compiler to properly integrate the shader code. In case
of a WebGL-based forward renderer, we generate a match-
ing vertex shader based on a configuration that defines the

coordinate spaces for each used vertex attribute. The ren-
derer creates the shader program and uses a collection of
Uniform Setters to bind parameters and evaluate extracted
uniform expressions on the CPU (see Section 5.4).

5.1. Specialization

As part of the compiler-based specialization, we have to de-
rive the concrete types of all used variables. This is necessary
because the target languages require explicit types.

JavaScript provides the built-in data types undefined,
number, boolean, string, object, and function. The compiler
can infer all types based on the literals in the program and
the type information of the parameters received from the
renderer. In the current system, we do not support dynamic
types and report an error if they occur. Without dynamic
types, the type inference is sound and no ambiguities occur.

In JavaScript, the number type does not distinguish be-
tween integers and doubles. Our type inference tries to rep-
resent numbers as integers wherever possible. This is a com-
mon approach in commercial JavaScript compilers [HG12]
and necessary, for instance, for loops and dynamic array ac-
cess in GLSL and OSL.

Introspection is only available in shade.js and must not ap-
pear in the target languages. In contrast to GPU shader com-
pilers, which may perform constant propagation and dead
code elimination up to an arbitrary extent in order to op-
timize the performance of a shader, a thorough analysis is
essential in shade.js to guarantee all introspection features
(including branches that depend on the result of the intro-
spection) are removed. See Figure 5 for an example.

It is not sufficient to only evaluate constant expressions
(constant folding). The compiler has to perform an analy-
sis to substitute variables by a constant value if the vari-
able holds this constant whenever execution reaches a pro-

Removed code Input Types:
env.Kd: Vec3

Input Types:
env.diffuse: Texture
env.texcoord: Vec2

var kd = env.diffuse || env.diffuseColor || env.Kd;
var finalKd = new Vec3(0);
if(kd && kd.sample2d && env.texcoord) {
finalKd = kd.sample2d(env.texcoord).rgb();

} else if(kd && kd.rgb) {
finalKd = kd.rgb()

}

Figure 5: Example on how dead code elimination is ap-
plied to remove the use of introspection features. All code
marked red is removed regardless of execution environment.
The blueish and greenish marked code represent two ver-
sions of the resulting shader depending on passed input pa-
rameters (described at the bottom).

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

K. Sons, F. Klein, J. Sutter and P. Slusallek / shade.js: Adaptive Material Descriptions

gram point (constant propagation). We eliminate unreach-
able branches in the same analysis. Since we allow loops and
conditional branching, we have to formulate all our program
analyses as monotone data flow frameworks [NNH99].

Note that the result of the specialization does not depend
on the values of input parameters, but only on types and
computation frequency. Thus, setting uniforms and attributes
does not invoke recompilation.

5.2. Error Reporting

JavaScript reports basic syntax errors immediately but type
related errors only at run time. In addition the error report-
ing of JavaScript is very relaxed. For instance, it tolerates
the use of undefined variables as long as no property is ac-
cessed. This becomes especially confusing when undefined
variables are used in arithmetic expressions: this produces
NaN (Not a number) values that will be propagated through-
out the code.

Despite being a valid subset of JavaScript, shade.js has
stricter error checking. Once the type inference and dead
code elimination have been performed, the types of all vari-
ables need to be determined. Consequently, the use of un-
defined values or invalid types is not supported and will be
reported immediately, prior to execution. These errors usu-
ally relate directly to missing or incorrect input arguments,
thus the compiler can create descriptive error messages, e.g.:
NotANumberError : env . r o u g h n e s s i s u n d e f i n e d : env . r o u g h n e s s

∗ 2 (Line 4)

5.3. Semantics

The built-in vector data types of shade.js come without se-
mantics such as normal or color and we omit a mechanism to
annotate these semantics. However, some shading languages
(e.g. OSL) define colors and normals as basic data types that
do not cast to each other implicitly. Also, knowing the se-
mantics of input parameters is useful, for instance, to popu-
late user interfaces in the application.

We annotate the arguments of the predefined radiance clo-
sures with their semantics. Based on this information, the
compiler can derive the semantics of the input parameters
by doing a data flow analysis along the reversed control flow
graph. The analysis supports generic vectors, colors, and
normals. Since a parameter could be used as color and nor-
mal (e.g. for debugging) the analysis detects this ambiguity
and delivers both semantics as the result.

5.4. Optimizations

Uniform Expressions The idea of extracting uniform ex-
pressions to compute them only per-geometry patch was first
introduced in [HL90]. In shade.js, the compiler does not only
identify single uniform expressions in the shader program,

but propagates these expressions to find more complex uni-
form expressions within the control flow. To avoid the ex-
traction of expressions that are essentially free on graphics
hardware (e.g. swizzling of components) we additionally in-
troduced a cost estimation. The same estimation can be used
to extract only the most expensive expressions when we are
at risk of exceeding the maximum number of uniform values
supported by the hardware.

A uniform expression gets replaced by a new uniform pa-
rameter whose value is computed by the application. In case
of the WebGL-based renderer that is written in JavaScript,
the extracted expression can be evaluated in the application
as is. If the compiler extracts interdependent expressions it
provides a method to set the original uniforms, transparently
handling the update of all generated uniforms.

Coordinate Space Transformations Similarly, expres-
sions that depend on vertex attributes only can be moved
to the vertex shader stage. Additionally, linear operations
can be factored out to the vertex shader. A major use case
for this is the transformation of vertex attributes into dif-
ferent coordinate spaces. Our type system stores informa-
tion on requested coordinate spaces for vectors and points.
Some parameters of the radiance closures (e.g. normals) are
requested in a predefined space; which space is renderer de-
pendent. Additionally, the material author can request trans-
formations explicitly via provided functions, e.g.:
var P = Space . t r a n s f o r m P o s i t i o n (Space . VIEW, env . pos) ;
var N = Space . t r a n s f o r m D i r e c t i o n (Space .WORLD, env . normal) ;

Based on this information we can propagate requested
spaces along the reversed control flow. If a non-linear opera-
tion takes place, the compiler injects the transformation into
the fragment shader. If only linear operations get applied up
to the entry point of the shader, it is safe to move the transfor-
mation into the vertex shader. This is sufficient, for instance,
to shift the coordinate space transformation through a regu-
lar normal mapping algorithm.

5.5. Code Generation

GLSL Due to the design of the shade.js data types, the code
generation for GLSL is fairly straight forward. However, we
have to explicitly add the code for lighting calculations. This
code is not part of the material description but comes from
the renderer and is written in JavaScript as well. It is in-
tegrated at the beginning of the compilation process, thus
the specialization and optimizations are not only applied to
the material description provided by the user but also to the
renderer-specific light calculations.

Each exit point of the shade routine that results in a (linear
combination of) radiance closure is replaced with a function
call that internally iterates over all available light sources.
This function is specifically generated to reverse the looping:
Each light is only evaluated once before the light material
interaction described by the radiance closure is applied.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

K. Sons, F. Klein, J. Sutter and P. Slusallek / shade.js: Adaptive Material Descriptions

G-buffer StructureG-buffer Structure

RT0 RT1 RT2

1 0

id color normal specular shin

id color normal1 r

2 0

normal2

return new Shade()
.diffuse(color, normal, 0)
.phong(specular, normal, shin);

return new Shade()
.diffuse(color, normal1, r)
.phong(color, normal2, 0);

Radiance Closure Signature ARadiance Closure Signature A

Radiance Closure Signature BRadiance Closure Signature B

Figure 6: Example on how different combinations of radi-
ance closure invocations are stored inside the G-buffers. An
id is assigned for each unique combination of radiance clo-
sure invocations and used in the light pass to correctly inter-
pret the parameters.

From a shade.js material description we can generate code
for a forward renderer as well as for a deferred renderer. As
a result, switching between and combining both rendering
techniques is simple and does not require having multiple
shader versions for the same material. This is very useful,
for instance, if one wants to solve the limitations of deferred
shading with respect to semi-transparent objects by render-
ing those objects using forward shading.

For the deferred shading pipeline the compiler generates
two types of shaders: An object shader that writes the pa-
rameters into the geometry buffer (G-buffer), and a light pass
shader that reads the properties of the G-buffer and performs
the lighting. The object shader includes all code of the orig-
inal shade.js program, but instead of invoking the radiance
closures, it writes their parameters into the G-buffers. To
handle different combinations of radiance closures (which
we call radiance closure signatures) across all object shaders
using one global G-buffers, the compiler assigns a unique id
to each radiance closure signature which is stored in the G-
buffer in addition to all parameters (see Figure 6). This id is
then read by the light pass shader in order to properly extract
all parameters and perform the lighting with the selected ra-
diance closures.

Since we know the semantic of the radiance closure’s ar-
guments, we can easily apply compression techniques to the
arguments, e.g. quantize normals, in order to automatically
minimize the number of required G-buffers. The light pass
shader is generated from the list of all used radiance closures
and reuses the light integrators of the forward shading algo-
rithm to implement the lighting.

Open Shading Language Our third compiler back-end
generates Open Shading Language code from the shade.js
material. We can omit the step to inject code for the lighting,
because in OSL the light integration is not implemented in
the shader but in the renderer. We map the shade.js radiance
closures to the closures defined for the Cycles renderer pro-
vided by Blender. In addition to the common specialization

we have to compute the semantics of the generic vectors, be-
cause OSL requires different types for colors and normals.

6. System Experience

The compiler framework itself is written entirely in
JavaScript as well. This allows the easy integration of
shade.js into the WebGL-based rendering system XML3D,
which in turn can run in any WebGL-capable browser on
many platforms including smart phones and tablet comput-
ers. Additionally, we implemented a HTML5 shader editor
that allows for interactive authoring of shade.js shaders (Fig-
ure 7). Outside the browser, we can use the compiler frame-
work to generate OSL shaders via the command line.

Figure 1 (the teaser image) shows a scene we created to
evaluate and demonstrate the capabilities of shade.js. The
scene consists of 9 non-trivial shaders, ported from RSL,
OSL, and other sources. This includes shaders with procedu-
ral textures, fractals, layered BRDFs, reflections, and normal
mapping. We generate shaders for forward and deferred ras-
terization in WebGL, as well as OSL shaders for ray-tracing
and global illumination in Blender’s Cycle renderer. As the
figure shows, we achieve conceptually equal materials for all
four rendering techniques. The resulting images differ only
with respect to the incoming light and differences in the ren-
derers.

We measured the performance of shade.js in terms of the
generated GLSL shaders and the impact of optimizations.
To do this, we translated nine GLSL shaders to shade.js and
compared the results. Since we designed our data types to
map very well to GLSL data types, there was no significant
difference between the original shaders and the shaders gen-
erated by our compiler. For instance, translating the “Beat-
ing Circles” shader from ShaderToy (www.shadertoy.
com/view/4d23Ww), results in 65 instructions versus 64
instructions for the original version.

In addition, we translated the predefined Phong material

Figure 7: Screenshot of an interactive editor for shade.js
running in the browser with immediate feedback and review
of the generated GLSL shaders.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

www.shadertoy.com/view/4d23Ww
www.shadertoy.com/view/4d23Ww

K. Sons, F. Klein, J. Sutter and P. Slusallek / shade.js: Adaptive Material Descriptions

Tablet fps Laptop fps Desktop fps Instructions
Uniform Extraction off on ∆ off on ∆ off on ∆ off on ∆

Glowing dots shader 6.9 17.0 2.4x 27.4 53.2 1.9x 222 366 1.6x 83 24 29%
Beating Circles Shader 15.6 19.7 1.3x 37.1 48.5 1.3x 270 359 1.3x 37 31 84%

BPM shader 12.4 20.7 1.7x 34.2 56.9 1.7x 271 371 1.4x 69 27 39%

Table 1: Performance gain achieved by uniform expression extraction. We tested uniform extraction on a Tablet (Qualcomm
Adreno 330), a Laptop (Nvidia NVS 5400M), and a Desktop computer (Nvidia GeForce GTX 660 Ti). All shaders were applied
in a WebGL-based rendering system, running in Google Chrome in Full HD resolution. In order to increase the shader workload
and reduce other overhead, each shader was drawn 20 times over the whole screen. All 3 example shader include procedural
animations based on a uniform time value. The Glowing dots shader was created by us, while Beating Circles and BMP are
shaders from shadertoy.com translated to shade.js. The extracted uniform expressions were executed exactly once per
frame in JavaScript, which had no measurable impact on the performance.

from the XML3D render library [SKR∗10]. This shader is
an Übershader that is specialized by the library using pre-
processor macros. Using the same execution context, our
compiler generates GLSL code that results in 52 instruc-
tions whereas the specialized shader of XML3D results in
58 instructions with negligible differences in rendering per-
formance.

In cases where the compiler can extract uniform expres-
sions out of the fragment shader we are able to measure sig-
nificant speed-ups in rendering performance. Table 6 shows
that the performance impact is especially apparent for plat-
forms with less powerful GPUs such as laptops and tablets.

The interface to the lighting system based on radiance clo-
sures is less flexible when compared to approaches such as
RSL [HL90], which allow for actively shooting rays and for
implementing custom shading models. On the other hand,
the higher abstraction level of radiance closures gives the
renderer more freedom of choice in the approximations and
light integration algorithms to solve the rendering equation,
e.g. importance sampling. In particular for GPU-based ren-
derers with their limited access to scene information, we
found it useful to be able to hide all the necessary “tricks” be-
hind the predefined shading models. For instance, it is possi-
ble to apply screen-space ambient occlusion (SSAO) as part
of the diffuse radiance closure. For the reflection closure, the
renderer can generate dynamic reflection maps. The compu-
tational effort and the techniques used to approximate these
effects do not require changes in the material description.
Even more importantly, such approximations can be turned
on and off, either by user request or as a result of insufficient
hardware or software capabilities, again without rewriting
existing shaders. Overall, the radiance closure based inter-
face greatly increases the portability of our material shaders.

6.1. Limitations

When creating adaptive shaders, there is a natural trade-off
that type errors can only be determined once all input types
are known. In contrast, specialized languages with static
types and fixed input signature allow type errors to be de-

tected independent of run time input values. However, if an
application specializes shaders e.g. via preprocessors, it runs
into the same issues. One approach is to generate and vali-
date all possible permutations in a preprocess (which would
be possible for shade.js shaders as well). Otherwise, the cor-
rectness of a permutation is only guaranteed at run time and
it is left to the application to analyze and report errors that
might come with a specific input signature.

Specialization in general can result in a combinatorial in-
crease in the number of generated shaders. shade.js gener-
ates one shader per unique signature given by name, type
and source of input parameters. Using a signature cache, the
system keeps the number of compilation passes to a min-
imum. However, many different signatures can potentially
increase the number of generated shaders. It would be possi-
ble to specify parameters to be excluded from the specializa-
tion. In that case the compiler could introduce an additional
uniform variable that is automatically set within the shader’s
setter method and which is dynamically tested in the shader.

7. Discussion and Future Work

In this paper we presented shade.js, a system for writ-
ing adaptive material descriptions that are portable between
different scenes, hardware architectures, and rendering ap-
proaches.

A key element of shade.js is its ability to describe all as-
pects of materials in a single place and the ability to auto-
matically adapt and specialize the shader to the specific exe-
cution environment being used.

Directly porting a significant number of non-trivial
shaders showed that shade.js can achieve essentially the
same performance despite the much higher level of abstrac-
tion. Exploiting some of the high-level features of shade.js
allows for improving the performance even further via opti-
mizations made possible by code analyses and transforma-
tions in the shade.js compiler. The provided optimizations
proved particularly valuable for mobile devices.

Any implicitly typed programming language would be

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

shadertoy.com

K. Sons, F. Klein, J. Sutter and P. Slusallek / shade.js: Adaptive Material Descriptions

suitable to implement the shade.js concepts. However, us-
ing JavaScript for shading, compilation, and as the host lan-
guage, allows it to be used directly in web-based 3D applica-
tions. And though JavaScript’s syntax may seem unfamiliar
to professional GPU programmers, it is the lingua franca of
the web and hence known by all web developers.

The approach presented here can be applied with only
minor changes to programmable light descriptions, portable
specifications of atmospheric and volume effects, image-
space effects like post-processing and tone-mapping, and
others.

Radiance closures provide a good abstraction and decou-
ple the material description from the system’s lighting ca-
pabilities. Other system capabilities on the other hand are
tested and used without further abstraction. For future work,
it would be favorable to find suitable abstractions for other
system capabilities as well.

Currently, the set of available radiance closures is fixed
by the renderer. In future work we plan to explore ways to
also specify the closures in a portable way, in particular with
respect for sample-based BRDFs, e.g. BTFs from measured
materials.

Acknowledgements

We would like to thank Stefan Herhut, Sebastian Hack and
the anonymous reviewers for their valuable comments and
suggestions. The research presented in this paper has been
generously supported by the Intel Visual Computing In-
stitute and the EU projects VERVE, FI-CONTENT, and
Dreamspace.

References
[Ado12] ADOBE: ShaderDSL.js, 2012. https://github.
com/adobe-webplatform/shaderdsl/. 3

[Aus05] AUSTIN C. A.: Renaissance: A Functional Shading
Language. Master’s thesis, Iowa State University, 2005. URL:
http://chadaustin.me/hci_portfolio/thesis.
pdf. 3, 4

[AW90] ABRAM G. D., WHITTED T.: Building block shaders.
SIGGRAPH Comput. Graph. 24, 4 (Sept. 1990), 283–288. 3

[CNS∗02] CHAN E., NG R., SEN P., PROUDFOOT K., HANRA-
HAN P.: Efficient Partitioning of Fragment Shaders for Multipass
Rendering on Programmable Graphics Hardware. In Proceedings
of HWWS (2002), Eurographics, pp. 69–78. 3

[Coo84] COOK R. L.: Shade Trees. SIGGRAPH Comput. Graph.
18 (1984), 223–231. 3

[Ell04] ELLIOTT C.: Programming graphics processors function-
ally. In Proceedings of the 2004 Haskell Workshop (2004), ACM
Press. URL: http://conal.net/papers/Vertigo/. 3

[FH11] FOLEY T., HANRAHAN P.: Spark: Modular, Composable
Shaders for Graphics Hardware. ACM Trans. Graph. 30 (2011),
107:1–107:12. 3

[GSKC10] GRITZ L., STEIN C., KULLA C., CONTY A.: Open
Shading Language. In ACM SIGGRAPH 2010 Talks (2010), SIG-
GRAPH ’10, ACM, pp. 33:1–33:1. 2, 4

[HG12] HACKETT B., GUO S.-Y.: Fast and Precise Hybrid Type
Inference for JavaScript. In Proceedings of PLDI 2012 (2012),
ACM, pp. 239–250. 6

[HL90] HANRAHAN P., LAWSON J.: A Language for Shad-
ing and Lighting Calculations. SIGGRAPH Comput. Graph. 24
(1990), 289–298. 2, 7, 9

[KBR03] KESSENICH J., BALDWIN D., ROST R.: The
OpenGL R© Shading Language, 2003. http://www.
opengl.org/documentation/glsl/. 2

[KW09] KUCK R., WESCHE G.: A Framework for Object-
Oriented Shader Design. In Proceedings of ISVC 2009 (2009),
Springer-Verlag, pp. 1019–1030. 3

[LS02] LALONDE P., SCHENK E.: Shader-driven compilation of
rendering assets. ACM Trans. Graph. 21, 3 (2002), 713–720. 3

[McG05] MCGUIRE M.: The SuperShader. 2005, ch. 8.1,
pp. 485–498. URL: http://www.cs.brown.edu/
research/graphics/games/SuperShader/index.
html. 2

[Men10] MENTAL IMAGES: Design Specification for MetaSL R©
1.1, 2010. http://www.nvidia-arc.com/fileadmin/
user_upload/PDF/MetaSL_spec_1.1.6.pdf. 3

[MGAK03] MARK W. R., GLANVILLE R. S., AKELEY K., KIL-
GARD M. J.: Cg: A System for Programming Graphics Hardware
in a C-like Language. ACM Trans. Graph. 22 (2003), 896–907.
2

[Mic02] MICROSOFT: DirectX HLSL Shader Model 1, 2002.
http://msdn.microsoft.com/. 2

[Mic08] MICROSOFT: DirectX HLSL Shader Model 5, 2008.
http://msdn.microsoft.com/. 3

[MQP] MCCOOL M. D., QIN Z., POPA T. S.: Shader Metapro-
gramming. In Proceedings of HWWS. 2, 3

[MSPK] MCGUIRE M., STATHIS G., PFISTER H., KRISHNA-
MURTHI S.: Abstract shade trees. In Proceedings of the 2006
Symposium on Interactive 3D Graphics and Games. 3, 4

[NNH99] NIELSON F., NIELSON H. R., HANKIN C.: Principles
of Program Analysis. Springer, 1999. 7

[Nvi12] NVIDIA: Nvidia Material Definition Language, 2012.
http://www.nvidia-arc.com/products/iray/
mdl.html. 3

[Pel05] PELLACINI F.: User-configurable Automatic Shader Sim-
plification. ACM Trans. Graph. 24 (2005), 445–452. 3

[PMTH01] PROUDFOOT K., MARK W. R., TZVETKOV S.,
HANRAHAN P.: A Real-time Procedural Shading System for
Programmable Graphics Hardware. In Proceedings of SIG-
GRAPH 2001 (2001), ACM, pp. 159–170. 3, 4

[RLV∗04] RIFFEL A., LEFOHN A. E., VIDIMCE K., LEONE M.,
OWENS J. D.: Mio: Fast Multipass Partitioning via Priority-
based Instruction Scheduling. In Proceedings of HWWS (2004),
ACM, pp. 35–44. 3

[SAMWL11] SITTHI-AMORN P., MODLY N., WEIMER W.,
LAWRENCE J.: Genetic Programming for Shader Simplification.
ACM Trans. Graph. 30 (2011), 152:1–152:12. 3

[SKR∗10] SONS K., KLEIN F., RUBINSTEIN D., BYELOZY-
OROV S., SLUSALLEK P.: XML3D: Interactive 3D Graphics for
the Web. In Proceedings of Web3D 2010 (2010), ACM, pp. 175–
184. 3, 9

[Ups89] UPSTILL S.: RenderMan Companion: A Programmer’s
Guide to Realistic Computer Graphics. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1989. 2

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/adobe-webplatform/shaderdsl/
https://github.com/adobe-webplatform/shaderdsl/
http://chadaustin.me/hci_portfolio/thesis.pdf
http://chadaustin.me/hci_portfolio/thesis.pdf
http://conal.net/papers/Vertigo/
http://www.opengl.org/documentation/glsl/
http://www.opengl.org/documentation/glsl/
http://www.cs.brown.edu/research/graphics/games/SuperShader/index.html
http://www.cs.brown.edu/research/graphics/games/SuperShader/index.html
http://www.cs.brown.edu/research/graphics/games/SuperShader/index.html
http://www.nvidia-arc.com/fileadmin/user_upload/PDF/MetaSL_spec_1.1.6.pdf
http://www.nvidia-arc.com/fileadmin/user_upload/PDF/MetaSL_spec_1.1.6.pdf
http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://www.nvidia-arc.com/products/iray/mdl.html
http://www.nvidia-arc.com/products/iray/mdl.html

