Real-Time Collaborative Scala Development with Clide

Martin Ring
DFKI Bremen
martin.ring@dfki.de

ABSTRACT

We present Clide, a real-time collaborative development en-
vironment. Clide offers a new approach to tool integra-
tion which complements the way resources are shifted to
the cloud today. We achieve this by introducing the novel
concept of universal collaboration, which drops the distinc-
tion between human and non-human participants (so-called
assistants) and enables innovative ways of interaction.

Clide has a highly flexible and distributed architecture
based on Akka. Despite the complexity of the synchroni-
sation of distributed document states, implementing assis-
tants is pleasantly simple. To demonstrate the versatility
and usability of the platform we implement a simple wrap-
per turning the Scala compiler into a collaborator, offering
content assistance to other developers and tools.

Categories and Subject Descriptors

D.2.6 [Programming Environments|: Interactive Envi-
ronments; H.5.3 [Group and Organization Interfaces]:
Computer-supported cooperative work

Keywords

Computer-supported cooperative work, Interactive Program-

ming Environments, Distributed Programming Environments,

Universal Collaboration

1. INTRODUCTION

Social platforms for software development gain in impor-
tance as development gets more distributed, and teams get
more flexible. Popular offerings like GitHub or BitBucket
have vastly improved the way physically distributed devel-
opers communicate and coordinate their work. Most of these
platforms are based on distributed version control systems.
These are asynchronous by design, as developers will often

*Research supported by BMBF grant 01IW13001 (SPE-
GifIC).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

Scala’14, July 28-29, 2014, Uppsala, Sweden

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2868-5/14/07 ...$15.00.
http://dx.doi.org/10.1145/2637647.2637652

63

Christoph Lith
DFKI Bremen, Universitat Bremen

christoph.lueth@dfki.de

prefer to work on their own before sharing with others. How-
ever, the asynchronous work flow prevents the kind of closer
interaction that comes with physical colocation, and dis-
rupts common tasks like code review or pair programming,
resulting in our view in a poorer experience for developers.

Apart from distributed development teams there is a sec-
ond emerging trend of the last years. Resources are shifted
towards the cloud, and computing power is increasingly dis-
tributed. Software developers already take advantage of this
in many areas of the development process (utilising build
servers, online documentations etc.) but the potential has
as of yet not been broadly exploited at the core of the devel-
opment process; development environments are still mainly
running local. We believe that moving code assistance to
the cloud can also bring developers closer together.

With the experimental platform Clide we want to provide
the possibility to explore such new concepts of interaction
in a distributed development environment. Clide offers real-
time collaborative code editing and annotating both for hu-
mans and assistants (Clide’s notion of plug-ins). Assistants
and the user interface connect to the IDE through a uni-
fied TCP interface. In this unified interface, all interaction
is performed by collaborative edit operations, such as text
edits or adding annotations; we call this approach universal
collaboration. We claim that by offering the same possi-
bilities to humans and computers, humans can benefit in
two ways. On one hand interaction between users becomes
richer, while on the other hand interaction with machines
becomes more natural. Apart from these advantages, the
implementation of assistants becomes very easy due to the
document-centric approach. We handle all concurrency is-
sues at the core, allowing assistants to focus on the document
and making their implementation easy.

Our contribution to the Scala community here is twofold.
First, we exhibit a prototype of a collaborative real-time de-
velopment environment for Scala. Second, we show a mod-
ern web application developed in Scala taking advantage of
the Typesafe Reactive Platform, in particular of the Akka
framework. We furthermore use the functional aspect of
Scala for increased confidence in correctness.

This paper is structured as follows. We first introduce
Clide from the user’s perspective. We then outline the sys-
tem architecture to explain the inner workings of Clide, and
show how Clide can be extended to provide a basic imple-
mentation of a Scala assistant. We finish with a discussion,
summarising the possibilities, advantages and shortcomings
of Clide and related and future work.

2] clide 2 - coding

e o [D clide.informatik.uni-bremen.de/martinring/examples

|© % O

HelloWorld:scala x| Other.scala =

Files m *+ 1 object HelloWorld {

- 3

B HelloWorld:scala * : dE;E:SﬁEM%S

K Other.scala 2 i names.filter(_.startsWith("w")).|

Collaboration

3 other collaborators are participating in

this project:

& martinring | online |
@ selaction

& somebody

& sl online |

Chat = Qutput
@ messages

® autocompletion

05/19/2014 12:52:26

M martinfing: do you think this is the best way to do it?

= invite a collaborator...

val names = List("World", "Scala", "Nobody")

OremoveDuplicates: List[String] - List -
O foreach[B](f: A => B): Unit - List

O toStream: scala.collection.immutable.Stream[String] -

List

QO stringPrefix: String - List

Q foldRight[B](z: B)(op: (A, B) => B): B - List
reverse: List[String] - List
Ospan(p: A => Boolean): (List[String], List[String]) -
List
OdropWhile(p: A => Boolean): List[String] - List
O takeWwhile(p: A => Boolean): List[String] - List
OsplitAt(n: Int): (List[String], List[String]) - List
OtakeRight(n: Int): List[String] - List |4

Figure 1: The IDE of the Clide web interface.

selected the text "who:
presentation compiler.

2. WORKING WITH CLIDE

From the user’s perspective, Clide appears as a web ap-
plication divided into three layers: The public interface, the
backstage area and the actual IDE. The public interface al-
lows new users to sign up, and existing users to log in. The
backstage area is the entry point after logging in. From here,
users can manage their projects and start the IDE on any of
the projects they own or collaborate in. (User and project
management are deliberately kept simple to focus on real-
time interaction, the central aspect of Clide.) The IDE is
divided into a tabbed editor at the centre, a sidebar on the
left and a chat and output area at the bottom. Both the
sidebar as well as the bottom area may be hidden (Fig. [1).

The file management and most of the options in the side-
bar should be familiar to users of other IDEs, apart from
one unique feature: the collaboration panel allows to invite
other users into the project. A notable characteristic is that
inviting collaborators is not restricted to humans, but is the
way all of the IDE functionality is provided. When work-
ing with Scala, the user should invite the Scala presentation
compiler (see Sect. @ which can provide the user with se-
mantic information about the code.

When an assistant is connected to the system and invited
into a project it can augment the files with additional se-
mantic information through annotations. These may include
syntax highlighting, type information, error and warning
messages, evaluation results as well as more advanced an-
notations. The annotations are distributed to all connected
collaborators, such that both humans and other assistants
may use the information provided by one single assistant.

When users move their cursor around or select text, they
implicitly create annotations which can be observed by all
other collaborators. That way, users can highlight text about
which they can talk in the chat, or get information about
specific parts of the documents from a machine assistant.
Users can also create more advanced annotations, e.g. the
help request activated by pressing Ctrl+Space. This triggers

64

The sidebar on the left and the chat area at the bottom
are extended. The collaboration panel is located at the the second section of the sidebar.
String". There is an an active help request, which has been answered by the Scala

A collaborator

clide-core

~
- ! ~
- | ~

’ clide—scballa ‘ ’ clid;—web ‘ oth\gr assistants

Client A Client B Client C

Figure 2: Example setup of the clide infrastruc-
ture: Dashed lines represent TCP Connections via
Akka remoting, solid lines are WebSocket connec-
tions. There are three web clients connected to
clide-web where their requests are converted into
internal messages and passed on to clide-core. As-
sistants, here clide-scala, connect to the core in the
same way

the in-line display of a little drop down box filled with pos-
sible completions at the current context, but in the collabo-
rative context all collaborating users can see the completion
box and contribute completions.

3. SYSTEM ARCHITECTURE

Clide has a highly flexible modular architecture built on
top of the Typesafe Stack. We use Slick for data persistence
and the Play Framework for the web interface. However,
the most influential design decision was to use the Akka
middleware. The actor paradigm is a natural fit for our dis-
tributed collaborative application, and Akka remoting al-
lowed us to elegantly abstract over the TCP connections
established between the modules. Additionally, the Web-
Sockets used for fast bidirectional communication between
the web server and the browsers fit smoothly into the actor
model as they have queued message passing semantics. The
infrastructure is modular (Fig. [2). The modules are very
loosely coupled and only communicate via message passing.

Thanks to the loose coupling, modules do not have to be
started in any particular order, and failures of individual
modules do not propagate.

Operational Transformation.

Internally the synchronisation of distributed, concurrently
edited and annotated documents is achieved by an opera-
tional transformation algorithm inspired by the Google Wave
approach [3]. In operational transformation, all conflicts
are resolved automatically. This is achieved by considering
operations instead of the documents, thereby gaining more
information about the users’ intentions. Operations are se-
quences of basic actions, and traverse a document sequen-
tially, thereby transforming it. The basic actions include
retaining, inserting, or deleting a character.

The core algorithm is the function transform which for any
two operations f, g applicable to the same document gives
two operations g’, f’. When the transformed operations g’
and f’ are applied after f and g respectively, we get the
same document again. The operations can be represented
as case classes, and transform can be given as a functional
program. We have formalised the algorithm in this way in
the theorem prover Isabelle, proven the correctness, and gen-
erated functional Scala code using Isabelle’s code generation
facility [5] (see [2] for a full exposition). We have optimised
the code by adding a simple compression which replaces se-
quences of contiguous retain, insert or delete actions by a
single, parameterised action. The clide core server acts as
an arbiter which integrates the concurrent operations from
all clients and decides on their ordering. The operations are
transformed accordingly and distributed to all clients. Any
client can only send one operation at a time and will have
to wait for an acknowledgement from the server, indicat-
ing that the edit has been integrated. During that time all
concurrent operations from other clients have to be trans-
formed against the pending edit as well as possible buffered
operations. Further, since Clide is a web application, we
additionally have to reimplement the client side part of the
algorithm in JavaScript. To increase our confidence in the
system, the scala.js compiler [4] could be used in future to
run the same implementation on all clients and the server.

Annotations.

An annotation is an arbitrary markup for a given text
span; how it is rendered depends on the front-end (e.g. the
web-frontend uses style sheets). Annotations are not deleted
explicitly; they have a unique identifier, and remain until
they are overridden by a subsequent annotation with the
same identifier. Further, annotations behave like retain-only
operations with side effects, which eases the integration into
the operational transformation algorithm.

4. EXTENDING CLIDE

The concept of universal collaboration allows rich plug-ins
as assistants that can augment the document with annota-
tions, contribute content, and communicate with users and
other assistants through a unified interface. Assistants can
pick a specific state of the document to analyse and anno-
tate; the transformation of the annotations takes place on
the core server and is distributed to other clients. Implemen-
tors of assistants need not concern themselves with delayed
computation results, network delay or concurrent editing op-

65

erations by other users. The integration is optimistic in the
sense that assistants may report back their results which
in the meantime have been rendered meaningless, if for ex-
ample other users keep on editing the document. This may
result in inconsistent annotations being displayed. However,
this consideration has to be made for any asynchronous de-
velopment environment. The resulting behaviour is well-
known from IDEs, thus conforming to users’ expectations.
In practice, many assistants wait for a certain amount of
time with no activity before they start processing the docu-
ment.

We have implemented a lightweight interface for assistants
which abstracts away some of the more low level aspects of
the communication. When developing a plug- in all we have
to do is to implement a couple of callback methods. If a
computation takes longer, a simple back pressure mecha-
nism will automatically conflate subsequent messages in the
background to prevent overwhelming the assistants. This
is made possible by the compositional nature of operations
and annotations.

The Scala Presentation Compiler as a Collaborator.

As a proof of concept we implemented basic Scala assis-
tance to demonstrate how Clide assistants work. For this
purpose we wrote a tiny wrapper around the Scala presen-
tation compiler that reports all compiler messages back to
the server as annotations on the documents. The entry point
for the implementation of new assistants is the abstract class
AssistantServer which takes a constructor as an argument
that creates an instance of AssistBehavior from a passed
AssistantControl (Fig. [3).

The AssistBehavior has a number of abstract callback
methods, which can be implemented to be informed about
events in the project. AssistantControl on the other hand
offers an interface of thread safe methods that can be called
to annotate or edit documents, set the status or chat with
users. Document states are identified via unique revision
numbers and must be provided to all document related meth-
ods of the AssistantControl. This way, Clide always knows
about which state of the document the assistant is talking
and can then transform all actions accordingly to match the
current server state of the document. The client side trans-
formations necessary at the assistant are abstracted away
from the interface. The AssistBehavior is local to a specific
project. That means, AssistantServer takes care of joining
projects to which the assistant has been invited. All other
aspects of the assistant may be configured in the applica-
tion.conf file.

To interface with the Scala presentation compiler, we cre-
ate an instance of an interactive compiler (scala.tools-
.nsc.interactive.Global) per project. When we get the
indication that a file is watched by a collaborator (file-
Activated) we trigger the compiler to look into that file
and save the state of the document for further reference.
We have implemented a custom instance of scala.tools-
.nsc.reporters.Reporter, that passes compiler messages
as annotations to the server. When files are edited we pass
this information on to the compiler.

To enable code completion we need to track help requests
from the users. These are reported back to the assistant
through the callback method helpRequested in the Assist-
Behavior. When a user requests help, that method is trig-
gered. We can then use the provided code position to deter-

object Scala extends
AssistantServer (ScalaBehavior)

case class ScalaBehavior(
control: AssistantControl) extends
AssistBehavior {
val mimeTypes = Set(”text/x—scala”)
def start(project: ProjectInfo) = {...}

def fileOpened(file: OpenedFile) = {}

def fileActivated (file: OpenedFile) = {...}

def collaboratorJoined (who: SessionInfo) =
(..}

def fileChanged (file: OpenedFile,

delta: Operation,
cursors: Seq[Cursor]) = {.

def receiveChatMessage (from: SessionInfo ,

msg: String) = {...}
def annotationsRequested(file: OpenedFile,
name: String) = { ...
def helpRequested (from: SessionInfo ,
file: OpenedFile,
pos: Int, id: String,
request: String) = {...}

def cursorMoved (cursor: Cursor) = {...}

Figure 3: Implementing Scala Assistance for Clide.
All methods in AssistBehavior are of type Fu-
ture[Unit] to implement back pressure.

mine the available completions in the current scope and pass
these as so called response annotations on to the server.
Another useful feature to implement is to provide type
information. For that purpose we watch the cursors of the
users (callback cursorMoved) and then annotate the docu-
ment at the entity under the cursor with type information.

Other Instances.

An early instance of Clide provides a web interface for
the Isabelle theorem prover [1}|2]; the Isabelle assistant pro-
vides slightly more functionality than the Scala assistant,
such as mathematical notation. We have also implemented
a simple Haskell assistant, which is essentially just a wrapper
around the Glasgow Haskell compiler; it is more of a proof-
of-concept, showing how programming languages with fast
batch compilers (e.g. C) can be integrated into Clide easily.

As an example for some more complex interaction be-
tween collaborators, the Isabelle assistant can be used to
generate Scala files which in turn will be considered by the
Scala assistant. In practice that means, if one collabora-
tor is working on the formalisation while another uses it in
some other Scala file, any (valid) change to the formalisation
will instantly propagate. This might for example result in
additional completion options for the other collaborators.

5. DISCUSSION

While Clide is not quite ready for production use, it demon-
strates that the web is ready for rich, distributed develop-
ment environments without sacrifice in user experience and
productivity. Our thesis is that closer interaction of humans
and machines in the appropriate situations can enhance the
productivity of developers and increase quality of resulting
software, e.g. by enabling pair programming or real-time

66

code reviews in physically distributed development teams,
and our prototype will allow us to validate that thesis. We
do not suggest that Clide replaces collaborative tools like
GitHub, but instead complements them.

The system architecture of Clide shows that Scala and the
Typesafe Reactive Platform are well suited to implement
novel web-based applications. Moreover, the functional as-
pect of Scala allowed us to derive our core algorithm, namely
the operational transformation, from a machine-proven for-
malisation, which increases confidence in the correctness of
the implementation (in particular, converging documents
across all clients).

Related and Future Work.

While there are other examples of social WebIDEs like
Koding.com or Cloud9 (the latter of which even provides
real-time collaboration), none of these are truly distributed.
Users are provided with workspaces located on a single vir-
tual machine, essentially just moving their local way of de-
velopment onto that server. Clide takes a very different
approach by moving the collaborative aspect at the centre
of the architecture. Plug-ins and tools can run on multiple
servers and are synchronised by the system, with the added
advantage that they no longer have to be installed locally.

We have concentrated our efforts on the Clide core to make
it as stable and easy to implement assistants for as pos-
sible. To turn the prototype Scala instantiation presented
here into a production IDE, several improvements are re-
quired. First, it has to be integrated with some version
control system. Second, the Scala assistant currently lacks
project and build management; the user has no influence on
the libraries available in the classpath of the presentation
compiler, which is an essential requirement for production
use.

Conclusion.

The concept of universal collaboration turns out to be
very powerful and opens an endless amount of possibili-
ties to developers of IDE plug-ins. We see a strong po-
tential in Clide as a heterogeneous social coding platform.
As Clide is implemented in Scala, we believe that the Scala
community can particularly benefit as the implementation
of assistants happens in a familiar environment. We have
a public demo instance of clide running at http://clide.
informatik.uni-bremen.de, and invite you to give it a try!

6. REFERENCES

[1] Ring, M., Liith C.: Collaborative Interactive Theorem
Proving with Clide. Interactive Theorem Proving ITP
2014, LNAI 8588 Springer (2014) 467— 482.

[2] Liith, C., Ring, M.: A web interface for Isabelle: The
next generation. Conf. Intelligent Computer
Mathematics 2013. LNAI 7961 Springer (2013) 326— 329

[3] Wang, D., Mah, A., Lassen, S.: Google Wave
operational transformation.
http://tinyurl.com/q6xwdu7| (Accessed: 30.01.2014).

[4] Doeraene, S.: Scala.js website.
http://www.scala-js.org (Accessed: 14.05.2014).

[5] Haftmann, F., Nipkow, T.: A code generator framework
for Isabelle/HOL. Theorem Proving in Higher Order
Logics (TPHOLs 2007), Emerging Trends Proceedings.
Dept. of Comp. Sci, U Kaiserslautern (2007) 128- 143

http://clide.informatik.uni-bremen.de
http://clide.informatik.uni-bremen.de
http://tinyurl.com/q6xwdu7
http://www.scala-js.org

