
Quality Assessment for Requirements based on
Natural Language Processing

Mathias Soeken1,2, Nabila Abdessaied1, Arman Allahyari-Abhari1,2,
Andi Buzo3, Liana Musat3, Georg Pelz3, and Rolf Drechsler1,2

1 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
2 Department of Mathematics and Computer Science, University of Bremen, Germany

3 Infineon Technologies AG, Neubiberg, Germany
msoeken@cs.uni-bremen.de

Abstract—Recently, many approaches for automatic informa-
tion extraction from technical specifications in the area of elec-
tronic design automation have been proposed. For this purpose,
techniques from natural language processing are used. In order
to lower the bars for designers and customers, some approaches
do not intend to restrict the natural language that is used to
describe the specifications. However, ambiguity and vagueness
in the language often cause wrong or bad results obtained
from the algorithms. This work describes preliminary ideas for
automatic approaches that assist in writing the specification
and aim at increasing the quality of the text. Besides improved
comprehensibility, better written specifications will also enhance
the quality of the automatic extraction approaches in subsequent
steps of the design flow.

I. INTRODUCTION

The quality of requirements in textual specification doc-
uments has a significant impact on the final product. Re-
quirements of a low quality can lead to misunderstandings
and therefore to errors in the design flow that are usually
difficult to detect or detected too late. Consequently, deadlines
must be postponed which results in an overall higher cost
of production. Furthermore, badly written requirements also
impede the application of automatic methods for requirement
formalization. In this paper, we present two approaches that
check the quality of requirements, the first one is based on
static syntactic and semantic analysis whereas the second one
is based on requirement guidelines.

The first approach makes use of syntactic and semantic
properties of the sentence. Basis for the quality measure are
e.g. the possible interpretations of a sentence which corresponds
to the parses of a sentence and the possible meanings of a
word in a sentence which can be determined using dictionaries
such as WordNet [1].

The second approach considers requirement guidelines
of which several exist and aid designers in writing good
requirements. These guidelines are either provided globally
to a large audience e.g. by means of books or they are used
internally as an agreement between employees of a company.
Typical examples for rules defined in such guidelines are the
avoidance of imprecise words such as “should” or “could”,
adjectives such as “high”, “robust”, or “low enough”, or the
use of passive verb forms. If many of those rules have been
defined, it becomes cumbersome to manually check whether all

of them are followed. We present algorithms based on natural
language processing techniques that for a given requirement
can automatically determine whether a rule has been violated.

Besides leading to more comprehensive specifications, the
proposed algorithms are also of significant interest to infor-
mation extraction algorithms that have recently been proposed
in the field of electronic design automation [2], [3], [4].
Algorithms for checking the quality of requirements have been
proposed in the past. As one example, NASA developed the
tool “Requirements Assistant” for internal requirements quality
assurance [5]. It helps to ensure that natural language require-
ments are complete, consistent, feasible, and unambiguous.
Similar tools have been presented in [6], [7], however, non of
them are freely available. Other related work has also previously
discussed metrics to determine the linguistic quality of texts,
sentences, and words [8], [9].

Our algorithms are implemented using techniques from
Natural Language Processing (NLP). To evaluate our approach
we collected and manually annotated requirements that are
used in industrial specifications.

II. PRELIMINARIES

This section describes the NLP techniques that are used
for the implementation of the proposed algorithms. A good
overview on NLP techniques can be found in (e.g. [10], [11]).

A. Phrase Structure Trees

A Phrase Structure Tree (PST) is a tree containing structural
information about a sentence. The root node represents the
whole sentence. The non-terminal nodes represent the syntactic
grammar structure in terms of constituents, while the terminal
nodes are the atomic words of the sentence. The analysis of the
sentence and annotation into a PST is performed by structural
parsers such as the one contained in the Stanford CoreNLP
natural language processing toolkit [12].

Due to ambiguities of natural language, there are in fact
many possible PSTs for one given sentence. How the PSTs are
generated depends on the structural grammar the parser uses.
The parser of our choice uses a Probabilistic Context-Free
Grammar (PCFG, [10]) as back-end grammar for the parse
tree computation. Any possible PST of a sentence is assigned
a score indicating the probability to be the correct parse. The



S

VP

ADJP

PP

NP

NN

start-up

IN

at

JJ

reset

VBZ

is

NP

NN

system

DT

The

(a) Phrase structure tree

system is at

The start-up

reset

nsubj cop

det

prep

pobj

(b) Dependency graph

Fig. 1. Common data structures in natural language processing

PST with the highest PCFG score is the one which is most
likely to be correct.

Example 1: A phrase structure tree for the sentence “The
system is reset at start-up.” is depicted in Fig. 1(a).

B. Dependency Graphs

In order to represent dependencies between individual words,
NLP techniques make use of dependency parses [13]. For this
purpose, binary relations describing syntax and semantic are
extracted from a sentence. A dependency is given as r(g, d)
with a relation r, a governor g, and a dependent d. As an
example the relation nsubj binds a verb to its subject. Other
relations are nn that groups compound nouns or det that assigns
a noun to its determiner. In [13], altogether 48 relations have
been arranged in a grammatical relation hierarchy. Given a
sentence s, a dependency graph is an edge-labeled directed
graph in which vertices represent words of s. There is an
edge g

r−→ d between two different words g and d if and only
if r(g, d) is a dependency in s.

Example 2: The dependency graph for the sentence “The
system is reset at start-up.” is depicted in Fig. 1(b).

C. WordNet

WordNet [1], developed by linguists and computer scientists
at Princeton University, is a large lexical database of English
that is designed for use under program control. It groups nouns,
verbs, adjectives, and adverbs into sets of cognitive synonyms
called synsets, each representing a lexicalized concept. Each
word in the database can have several senses that describe
different meanings of the word. In total, WordNet consists of
more than 90,000 different word senses, and more than 166,000
pairs that connect different senses with a semantic meaning.

Further, each sense is assigned a short description text
which makes the precise meaning of the word in that context
obvious. Frequency counts provide an indication of how often
the word is used in common practice. The database does not
only distinguish between the word forms noun, verb, adjective,
and adverb, but further categorizes each word into sub-domains.
Those categories are e.g. artifact, person, or quantity for a
noun.

III. STATIC SENTENCE ANALYSIS

This section describes a static algorithm, which determines
a single quality measure to a given sentence. For this purpose,
we make use of established syntactic and semantic analysis
methods from NLP. More precisely, we are trying to solve the
following problem:

Problem 1 (Sentence quality): Given an English sentence, the
sentence quality problem asks to determine a quality measure
indicating whether the sentence is good, medium, or bad in
terms of comprehension.

The approach is not domain-specific and is designed to handle
any English sentence. The syntactic and semantic quality
measures of a sentence are determined separately. Therefore,
first both computations are briefly described. Subsequently,
the outcome is consolidated into a single value indicating the
overall quality of the input sentence.

A. Syntactic Quality

In this work the syntactic quality of a sentence is considered
directly ambivalent to the number of structural ambiguities.
Therefore, the smaller the number of structural ambiguities
is, the better is the syntactic quality. There are lots of ways
to analyze the structure of a sentence. The basic underlying
data structure for the computations are phrase structure trees.
As a basis for the computation of the syntactic ambiguities
we use the PST with the highest PCFG score and compare
the structural differences to the next best 100 parses. Based
on these PSTs, the computation of the syntactic quality is
computed by the following steps:

1) Isomorphic subtrees: The most likely parse tree is
compared to each of the next best 100 parse trees. The
algorithm computes the difference of any parse tree to
the best parse tree in terms of its subtrees. The average
of these subtree matchings over all 100 next best parses
referred to as Isomorphic Subtree Ratio (ISR) and can be
assigned a value between 0 and 1. The lower this ratio
is, the more structural ambiguities the sentence contains.
This is the main indicator for syntactic quality.

2) Sentence length penalty: The longer a sentence, the
more likely it is that there are less structural ambiguities.
Therefore, in a last step the syntactic quality, computed
over the ISR and the score, is decreased afterwards by a
value according to the amount of words in the sentence.

B. Semantic Quality

The semantic quality of a sentence is determined by its
amount of semantic ambiguities. WordNet is used to determine
these. We consider a word ambiguous if it has more than
one synset in the WordNet dictionary. The computation of the
semantic quality is simple enough for an exact description. It
is done in the following way:

Let n be the number of nonambiguous words and m the
number of ambiguous words of a given sentence. Then, a =
n/(n+m) describes the distinct portion and b = m/(n+m)
the ambiguous portion of the sentence. Note that a + b = 1,



TABLE I
COMPARISON OF THE ALGORITHM AND A SUBJECTIVE OPINION

Quality Algo. Subj. Matches Misses Misses Matching
predicate dist. 1 dist. 2 percentage
good 32 26 20 8 4 62.5 %
medium 53 41 29 24 × 54.7 %
bad 37 55 31 4 2 83.8 %
total 122 122 80 36 6 65.6 %

and therefore the sentence is free of ambiguities if a = 1. In
order to formalize a semantic quality measure we further want
to take the number of meanings for each ambiguous word into
account. Let ki be the number of different synsets of the i-th
ambiguous word, then the basic semantic quality is given by
the formula

qsem = a+ b · m∑m
i=1 ki

. (1)

After the computation over ambiguous words, we need to
consider compounds, which are usually nominal compounds
such as “header file”. If a compound is detected, so if any word
chain in the ambiguous portion of the sentence has at least one
meaning in WordNet, the semantic quality is modified. The
sum of the meanings of every single word in the compound
is simply substracted from the overall sum of meanings and
then replaced by the number of meanings of the compound
covering these words. Therefore, detecting nominal compounds
in a sentence usually reduces the overall number of ambiguities
and thus increases the semantic quality.

C. Experimental Evaluation

Experiments showed that a 40:60 ratio of syntax to semantics
seems to be a good general configuration for the overall
sentence quality of the algorithm. To be able to compare
the result to a human’s subjective opinion, the measured
sentence quality is transfered into an according quality predicate
good, medium, or bad. We applied the algorithm to a test
set of requirements that have been extracted from various
specifications [14], [15], [16]. The test set contains 103 different
requirements given by a total of 122 sentences. For comparison
the requirements were split into their single sentences. Table I
provides a comparison of the quality evaluation of the algorithm
and a subjective opinion. Note that in average the algorithm
assigned a better quality predicate than the subjective opinion.
The numbers of matches and misses between both evaluations
are depicted in the next columns, while the number of misses
is distinguished by the distance of the quality predicates of
subjective opinion and algorithm (the distance between good
and bad is 2, whereas their distance to medium is 1). The last
column gives an overview of the matching percentages for
every quality predicate with an overall matching of 65.6 %.

IV. GUIDELINE VALIDATION

Several guidelines exist which aid designers in writing good
requirements. These guidelines are either provided globally
to a large audience e.g. by means of books or they are used
internally as an agreement between employees of a company

runs

processor

The

det

nsubj

kernel

the

det

dobj

(a) Active voice

run

kernel

The

det

nsubjpass

is

auxpass
processor

the

det

agent

(b) Passive voice

Fig. 2. Active and passive voice

and their customers. We aim at providing solutions to the
following problem:

Problem 2 (Guideline checking): Given a set of rules from
guidelines how to write requirements and a natural language
requirement R, the guideline checking problem asks whether
R adheres to the rules.

We propose to solve the problem using natural language
processing techniques. For our experimental evaluation we
have composed a set of such rules that we extracted from
several guideline documents [17], [18], [19]:
R1. Define one requirement at a time.
R2. Avoid conjunctions (and, or, with, also) that make

multiple requirements.
R3. Use simple direct sentences.
R4. Each requirement must contain a subject and a predicate.
R5. Avoid let-out clauses (unless, except, if necessary, but,

when, unless, although).
R6. Avoid expressing suggestions or possibilities (might, may,

could, ought, should, could, perhaps, probably).
R7. Avoid weak phrases and undefined terms (adequate, as a

minimum, as applicable, easy, as appropriate, be able to,
be capable, but not limited to, capability of, capability
to, effective, if practical, normal, provide for, timely, tbd,
user-friendly, versatile, robust, approximately, minimal
impact, etc., and so on, flexible, to the maximum extent,
as much as possible, minimal impact, in one whack,
different, various, many, some of, diverse)

R8. Do not speculate (usually, generally, often, normally,
typically).

R9. Avoid wishful thinking (100% reliable, safe, handle all
failures, fully upgradeable, run on all platforms).

R10. Define verifiable criteria.
We have taken the rules as they were written in the original

documents. It is debatable whether all these rules make sense
in each context, but it can clearly be seen, that most of the
rules were not postulated with having automatic approaches in
mind. As an example rule R10 “Define verifiable criteria.” is
very difficult to be checked automatically.

In order to handle this vagueness, the decision of the
algorithms is given in terms of a tri-state value. This value
distinguishes the cases of whether a rule is clearly violated or
not, or whether no confident result could be computed.

Consider e.g. R3 “Use simple direct sentences.” One heuristic
to use is to check for active and passive voice in sentence.



TABLE II
EXPERIMENTAL RESULTS

Rules Manual Class. Auto. Class. Classifier Evaluation
T F T F SA TP TN FP FN Acc.

R1 62 41 20 83 51 15 84 47 5 49.51%
R2 88 15 98 5 85 84 2 4 14 82.52%
R3 84 19 103 0 84 84 0 0 19 81.55%
R4 90 13 95 8 84 83 2 7 12 81.55%
R5 102 1 96 7 97 96 8 6 0 94.17%
R6 94 9 96 7 101 94 8 0 2 98.06%
R7 92 11 88 15 95 86 13 6 2 92.23%
R8 102 1 103 0 102 102 0 0 1 99.03%
R9 103 0 103 0 103 103 0 0 0 100.00%
R10 9 7 6 10 13 6 11 3 0 81.25%
Total 826 117 808 135 815 753 128 73 55 86.43%

If the sentence is given in passive voice, we can determine
that the rule has been violated. Note that the contrary is not
necessarily true. By making use of typed dependencies it
can easily be checked whether a sentence is given in active
or passive voice, since different relations are found in the
corresponding typed dependency graphs. While the subject is
indicated as the dependent of an ‘nsubj’ relation in a sentence in
active voice, the relation will be ‘nsubjpass’ when using passive
voice (cf. Fig. 2). But it cannot only be checked rather easy
whether the rule is violated by inspecting if such dependency
relations occur in the sentence; passive sentences can also be
translated automatically using NLP techniques.1

A. Experimental Evaluation

The proposed approach has been implemented in Scala based
on the Stanford CoreNLP library. We evaluated our approach
using the same set of requirements as for the static approach in
the previous section and manually annotated them according to
the given rules. The manual annotations were then compared
to the results of the classifier.

Table II summarizes the obtained results for the conducted
experiments. The first column gives the rules as defined in this
section. In the following columns, the respective annotations
for the manual classification (Manual Class.), the results for
the automated classification (Auto. Class.), and the concluded
results for the classifier evaluation are presented. T, F, SA, TP,
FP, TN, and FN refer to the number of true annotated, false
annotated, same annotated, true positives, false positives, true
negatives, and false negatives, respectively. The last column
represents the accuracy (Acc.) computed by TP+TN

TP+TN+FP+FN .
The accuracy of each rule (except R1) is higher than 80%

and reaches 99% and 100% for R8 and R9, respectively. Our
rule based tool has a significant performance in general since
it has an average accuracy of 86.43%.

V. CONCLUSIONS

We have presented two automatic approaches that assist the
designer in writing better requirements in specifications by (i)
checking syntactic and semantic properties of the requirement,
and (ii) validating the requirement with respect to rules from a

1This is e.g. being illustrated using the Voice Conjugator widget at
www.contextors.com.

guideline specification. For a selected set of typical rules it has
been shown that our methods work effectively. For future work
a thorough case study should further evaluate the practicability
of our approaches. Also, it should be investigated which rules
are suitable for automatic fixing.

ACKNOWLEDGMENTS

This work was supported by the German Federal Ministry of
Education and Research (BMBF) within the project SPECifIC
under grant no. 01IW13001 as well as by the German Research
Foundation (DFG) within a Reinhart Koselleck project under
grant no. DR 287/23-1.

REFERENCES

[1] G. A. Miller, “WordNet: a lexical database for English,” Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[2] I. G. Harris, “Extracting design information from natural language
specifications,” in DAC, 2012, pp. 1256–1257.

[3] M. Soeken, R. Wille, and R. Drechsler, “Assisted behavior driven
development using natural language processing,” in TOOLS, 2012, pp.
269–287.

[4] M. Soeken, C. B. Harris, N. Abdessaied, I. G. Harris, and R. Drechsler,
“Automating the translation of assertions using natural language processing
techniques,” in Forum on Specification & Design Languages, 2014.

[5] S. H. Consultancy. Requirements assistant. Available at
http://www.requirementsassistant.nl/.

[6] G. Lami, “Quars: A tool for analyzing requirements,” DTIC Document,
Tech. Rep., 2005.

[7] ClearSpecs. Tekchecker. Available at http://clearspecs.com.
[8] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, “Requirements for

tools for ambiguity identification and measurement in natural language
requirements specifications,” Requirements Engineering, vol. 13, no. 3,
pp. 207–239, 2008.

[9] A. C. Graesser, D. S. Mcnamara, and J. M. Kulikowich, “Coh-metrix:
Providing multilevel analysis of text characteristics,” in Educational
Researcher, vol. 40, no. 5, 2011, pp. 223–234.

[10] D. Jurafsky and J. H. Martin, Speech and Language Processing. Pearson
Prentice Hall, 2008.

[11] N. Indurkhya and F. J. Damerau, Handbook of Natural Language
Processing, 2nd ed. Chapman & Hall/CRC, 2010.

[12] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in ACL: System Demonstrations, 2014, pp. 55–60.

[13] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Generating
typed dependency parses from phrase structure parses,” in Conf. on
Language Resources and Evaluation, 2006, pp. 449–454.

[14] P. R. Harvey. (2010) (NASA) flight software requirements. Available at
ftp://apollo.ssl.berkeley.edu/pub/RBSP/1.1.%20Management/5%20
Meetings/PhaseB_080902_IPDR/Documents/
RBSP_EFW_FSW_002_Requirements.pdf.

[15] Intel. (2010) Intel R© active management technology (Intel R© AMT) 7.0
release : Fw & sw product requirements document (PRD). Available
at http://www.intel.de/content/dam/www/public/us/en/documents/product-
specifications/amt-7-0-release-fw-sw-prd.pdf.

[16] T. Morgan. (2003) Requirements and functional spec-
ification : Evla correlator backend. Taken from Na-
tional Radio Astronomy Observatory, available at
http://www.aoc.nrao.edu/evla/techdocs/computer/workdocs/BE_rfs_1.pdf.

[17] I. F. Alexander and R. Stevens, Writing better requirements. Pearson
Education, 2002.

[18] IBM. (2009) Get it right the first time:
Writing better requirements. Available at
http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/topic/com.ibm.help
.download.doors.doc/pdf92/get_it_right_the_first_time.pdf.

[19] W. Wilson, “Writing effective requirements specifications,”
in Software Technology Conference, 1997, available at
NASA Software Assurance Technology Center (SATC)
http://www.csc.kth.se/utbildning/kth/kurser/DD1363/NASARequirements
.html.


