
Formal Modelling for Cooking Assistance

Bernd Krieg-Brückner, Serge Autexier, Martin Rink, and Sidoine Ghomsi N.

German Research Center for Artificial Intelligence, DFKI, and
Universität Bremen, Germany

{Bernd.Krieg-Brueckner, Serge.Autexier}@dfki.de,
{mrink, sidoine}@informatik.uni-bremen.de

Abstract. Structured ontologies, with various facets of abstraction, are
used to model food, ingredients, recipes, cookware and workflows. They
form the uniform knowledge base for modular software assistants. Pro-
cesses and monitors supervise the cooking process and advise the user.

1 Introduction

The Objective of this Paper is to show the complexity of Formal Modelling
for an application domain such as cooking, but at the same time to introduce
“Formal Methods Light” step by step and to illustrate their added value:

modelling data in ontologies, analogous to data types, with more
semantic rigor than in relational data bases;

flexibility, extendability of ontologies, easier to maintain than data types;
separation of concerns by structuring into domain ontologies;
abstraction in several ways to conquer complexity;
modelling processes at a high level, in particular for monitoring.

On the side of the application domain, the objective is to propose a uniform
approach for the integration of the many aspects of cooking, as a basis for software
“assistants”, which access the knowledge base and present it appropriately for
user interaction, see Sec. 5.1.

How is our protagonist, Ms. W., going to cook when several guests with all
sorts of health and other constraints are being invited together (cf. Sec. 7)? To
try to solve this and related problems, we shall accompany Ms. W. while she
plans a meal, develops recipes, manages ingredients, goes shopping, prepares for
cooking, and finally gets the cooking done — supported by DFKI’s emerging
technology, explained as we go along.

2 Food, Drink and Health

Food and drink are most likely the most important source of a persons well-being.
Chinese grandfathers and -mothers, when still living at home in the traditional
multi-generation family, supposedly live longer [26], for physical reasons, since
they can expect a very diverse diet, but also for psychological reasons, since they

2 Krieg-Brückner et.al

are pampered with a varying and attractive meal three times a day, and live by
looking forward to the next. Other great cuisines (such as the Italian or French
Cuisine) also thrive on variety, locally grown ingredients — and eating (slowly!)
with the family, friends, or at least colleagues, around a big table.

In modern Western (and increasingly other) societies, people suffer from
health problems due to stress and hectic eating without the soothing effects of
friendly society, but also unhealthy food products provided by an inconsiderate
and greedy food industry, marketing dietary dreams that turn out to deteriorate
health even further (e.g. “low fat”, where fat is substituted by sugar to provide
“taste”). One of the most important (health care political) issues is that food
producers are still not obliged to (and therefore do not) provide complete de-
tails about the composition of their products, and consumers are not sufficiently
informed about the effect of these products on their individual health.

Luckily, there are some (government, non-profit, and commercial) organisa-
tions, which try to provide the missing information about existing products, and
software (apps) to access it [29, 21, 22, 27, 32, 8]. However, information about var-
ious aspects and their interrelation is still widely dispersed, often not directly
accessible to the layman, and not integrated.

We shall try to delineate an approach in the sequel to unify, integrate and
standardise such information to achieve a personalized added value for the user.

2.1 Food Classification and Properties

Ontologies. Let us start by classifying food and drink products such that we can
then add meaningful properties and relationships to other concepts. A hierarchy
of concepts, a taxonomy, becomes an ontology when relations or more semantics
are added. Every concept X at a lower level is subsumed by the parent class C,
the concept at the next higher level; we say X is-a C (a directed acyclic graph).
In Fig. 1, CourgetteVegetable is-a . . . is-a SquashVegetable is-a GourdFruitVegetable
and eventually . . . is-a Vegetable, and so on upwards in the hierarchy.

Abstraction of Properties is a central strength of modelling with ontologies.
In the hierarchy of concepts, each intermittent class concept abstracts away from
more particular, specialised properties of descendants at lower levels, retaining
the properties that hold for all descendants, while some may not hold any more
for ancestors or siblings. Indeed, classes may be declared to be disjoint, such that
(sub)classes (and associated specialised properties) cannot be shared. Unless
stated, hierarchies will be disjoint in the sequel.

Relations. The relation is-a is the standard relation between (sub)classes. The
interrelation between concepts is the core of semantics. As an example, take
fromPlant that relates a subclass of PlantProduct to the biological subclass of
Plant of which it is a part, see Sec. 2.2; isSourceOfPlantProduct is its inverse.

Formal Modelling for Cooking Assistance 3

H GourdFruitVegetable
H PumpkinVegetable

I CucurbitaArgyrospermaPumpkinVegetable
I CucurbitaMaximaPumpkinVegetable
I CucurbitaMoschataPumpkinVegetable

H SquashVegetable
I CucurbitaMaximaSquashVegetable
I CucurbitaMoschataSquashVegetable
H CucurbitaPepoSquashVegetable
• AcornSquashVegetable
• CourgetteVegetable
• DelicataSquashVegetable
• SpaghettiSquashVegetable
• . . .

H Cucurbitaceae
I . . .

H Cucurbita
I CucurbitaArgyrosperma
I CucurbitaMaxima
I CucurbitaMoschata
H CucurbitaPepo
• AcornSquash
• Courgette
• DelicataSquash
• SpaghettiSquash
• . . .
• . . .

Fig. 1. PlantProduct and Plant Ontologies (Excerpts)

Multi-Lingual Ontologies. Ontologies can be made multi-lingual by attaching
names or language terms as labels to a class name, one term for each desired
language (or more if there are synonyms). This helps in a search, but also for
automatic translation, for example of recipes. While there may be many labels,
denoting synonyms in the same language, a class name is always unique.

When we want to look up Zucchini in German, for example, we find the class
CourgetteVegetable, since Zucchini in German, Italian, and American English, is
called Courgette in French, and British English — and we use primarily European
terms for class names, i.e. British over American English.

We also take care of different traditions, e.g. by modelling German, French
and English/American butcher’s cuts of meat, relating them appropriately.

2.2 Where the Food Comes From

Biological Source. In fact, resolving such equivalencies between terms in sev-
eral languages, even synonyms within the same language family such as English,
with dictionaries alone may lead to inaccurate results, since “common names”
for plants or animals are often overlapping, ambiguous, or misleading.1

To be safe, we should resort to relating each food class (and the associated
linguistic labels) with the proper biological class with the relation fromPlant or
fromAnimal , respectively. Biologists have been using taxonomic hierarchies for
centuries (since Linné) to uniquely identify animals and plants (in Latin, the
common language of scientists of the time), and to group them according to
hereditary variations of properties. This way, we also relate breeds of cultivated
plants or domestic animals to the respective “wild forms” of their ancestors.

Squash and pumpkin are examples of “common names”2 distinguishing and
classifying groups of vegetables with certain culinary properties, cf. Sec. 2.1. In

1 Savoy cabbage is confusingly called chou de Milan in French (Wirsing in German);
red cabbage is regionally called Rotkohl or Blaukraut, as cooking changes its colour.

2 Europeans need help with primarily American breeds of squashes and pumpkins.

4 Krieg-Brückner et.al

DUL	
•  Upper	 Ontology	
•  General	 Concepts	

QUDT	
•  Upper	 Ontology	
•  Quan+ty	
•  Measure	

BIOLOGY	
•  Plant	
•  Animal	

MEDICINE	
•  Impairment	
•  Ability	

PHYSICS	
•  PhysicalQuan+ty	
•  PhysicalAspect	

CHEMISTRY	
•  ChemicalSubstance	
•  AromaCompound	

ECONOMY	
•  Price	

GEOGRAPHY	
•  GeoRegion	

PERSON	
•  Profile	
•  StakeholderRole	

ARTIFACT	
•  PhysicalContainer	
•  CookWare	

FOODANDDRINK	
•  FoodOrBeverage	

AROMA	
•  FlavourFamily	

COOKING	
•  Recipe	
•  RecipeWorkflow	
•  CookingStatus	

SHOPPING	
•  ShoppingList	

Fig. 2. Domain Ontologies and Import Structure

Fig. 1, SquashVegetable and PumpkinVegetable are separate classes from a “veg-
etable/culinary point of view”: SquashVegetables can be cooked and eaten whole,
whereas PumpkinVegetables have a hard shell, only the inside of the pumpkin
shell is edible. However, they are closely related as plants: both are fromPlant
Cucurbita. For example, some kinds of SquashVegetable and some kinds of Pump-
kinVegetable both are fromPlant CucurbitaMoschata, i.e. the same biological class.

Constraints on Relations in OWL. The Ontology Web Language, OWL [6],
is the standard for the formulation of ontologies. Intricate relationships such as

“all SquashVegetables are related with fromPlant to only Cucurbita”
may be axiomatised as a subclass constraint on the relation fromPlant:

SquashVegetable v fromPlant only Cucurbita.

Structuring Ontologies. It is a good idea to structure the multitude of ontolo-
gies into separate domain ontologies, where one ontology imports (classes, rela-
tions, etc.) from other ontologies, cf. Fig. 2, sometimes called “hyper-ontology”
[16, 25]. A language for structuring ontologies by imports and morphisms is now
proposed as a standard for extending OWL [25, 28]. Ontologies defining very gen-
eral concepts are called upper ontologies; we use DUL [3] (derived from DOLCE
[2]) and QUDT [7] (for standardised quantities and measures).

Data Abstraction, Instances. An actual data object, e.g. a particular food
product, is modelled as an instance of a class (i.e. a member of the class regarded

Formal Modelling for Cooking Assistance 5

as a set), and serves as source or target for the relations contained in the data.
Thus the modelling by a ontology abstracts from the particular properties of
tens or hundreds of thousands of products contained in data bases, and provides
additional information by deductions as an “added value”. In fact, with today’s
technology, these data cannot all be held as instances; instead, data base access
from the ontology to several external data bases is provided in a hybrid approach,
such that only some instances are held as local (copies of) objects.

Integration of Sources for Domain Modelling. Notice the large variety of
aspects related to food or beverage products. It is the benefit of our modelling
that we integrate and structure this variety inspired by several sources.

The internet portals WikiFood [8], or Barcoo [1] provide a (rather coarse)
taxonomy and description of food and beverage products likely to be found in
(European, German) food stores. WikiFood is a non-commercial portal focussing
on the composition of food regarding nutrition or substances that might lead to
incompatibilities; a distinctive feature is the personalized filter for food additives
or content substances. WikiFood provides translation into English, German and
French. Barcoo maps directly from the barcode to a variety of product informa-
tion. The up-to-date management of their data bases relies on information from
manufacturers, but also strongly on the community of users providing content.
Challenging problems are the medical relevance and the quality (in particular the
“half-life”) of data regarding content substances (cf. Sec. 3.1, [11, 10]). Compare
also the overview of food standards in [22, 17], in particular the CEN standard.

While we want to access such portals as data bases for actual food products
on the market, we have to do the (integration of the) modelling, and mapping
between possibly different models ourselves. The upper part of the FoodOrBev-
erage taxonomy (not shown here, including PlantProduct in Fig. 1) follows the
hierarchy of the European Food Information Resource, EuroFIR [4, 27, 18], which
is intended as a standard for organisations, industry, and researchers in Europe.

To enable exchange and comparison of data, an approach to indexing of
data bases was established: the multi-lingual Langua aLimentaria Thesaurus,
LanguaL [5, 29, 21]. Langual defines some relations to target domains we are
modelling, but lacks e.g. information about nutrition impairments (cf. Sec. 3.1).

3 Planning a Meal

3.1 Guests and their Peculiarities

Restricted Diets, Nutrition Impairments. When Ms. W. invites guests for
dinner, she may be faced with all sorts of peculiarities: a guest may have a mere
preference for a particular diet, such as a NoFlavorEnhancerDiet, or may insist on
a meatless diet, such as an OvoLactoPescetarianDiet, a religiously restricted diet,
such as a HalalDiet, a culturally restricted diet, such as a NoInnardsDiet, or have
a more or less severe NutritionImpairment requiring a medically restricted diet,
e.g. a PregnancyDietRestriction with specific requiresDiet constraints, cf. the list

6 Krieg-Brückner et.al

H NutritionImpairment
I Nutrition-

ImpairingDisease
H Nutrition-

Incompatibility
• Nutrition-

Allergy
I Nutrition-

Intolerance
• Pregnancy-

DietRestriction

H RestrictedDiet
I ReligiouslyRestrictedDiet
I WholeFoodDiet
I CulturallyRestrictedDiet
I MeatlessDiet
H MedicallyRestrictedDiet

I NoAlcoholDiet
I NoCaffeineDiet
I NoCruditesDiet
I NoHotSpicesDiet
I NoRawFishDiet
I NoRawMeatDiet
I NoMilkDiet
I NoNutDiet
I NoSugarDiet
I NoEggDiet
• . . .

H HotSpiceVegetable
H PepperSpice

H ChiliPepperSpice
• BirdsEyeChili-

PepperSpice
• Cayenne-

PepperSpice
• Jalapeno-

PepperSpice
• . . .

I PepperCornSpice
I Piment-

PepperSpice
H RootOfSpice
• GingerRoot
• HorseradishRoot
• WasabiSpice

NutritionImpairment
requiresDiet

RestrictedDiet
prohibitsFoodOrB

FoodOrBeverage

prohibitsFoodOrBeverage

NutritionImpairment
requiresDiet

RestrictedDiet
prohibitsFoodOrB

FoodOrBeverage

prohibitsFoodOrBeverage

Fig. 3. PregnancyDietRestriction, RestrictedDiets, and Prohibited HotSpiceVegetables

of MedicallyRestrictedDiets marked in italics in Fig. 3. Note that diet restrictions
might be elicited anonymously over a form on the Internet; anyway, a guest may
state a list of RestrictedDiets individually and need not reveal her pregnancy.

Several Guests, Joining Impairments. When Ms. W. plans a meal for sev-
eral such guests, she has to join impairments and associated dietary restrictions,
thus the allowed foods. Similar considerations apply to a group in a restaurant.

3.2 Relating Impairments to Allowed Foods.

Intermediate Abstraction. When relating PregnancyDietRestriction to al-
lowed foods, cf. Fig. 3, it has been convenient to introduce the extra class hierar-
chy RestrictedDiet as an intermediate abstraction. It allows us to relate Nutrition-
Impairment via requiresDiet to RestrictedDiet on the left, and RestrictedDiet via
prohibitsFoodOrB to FoodOrBeverage on the right; otherwise each relationship
between PregnancyDietRestriction and prohibited FoodOrBeverages would have
to be defined individually for an overall relation prohibitsFoodOrBeverage.

On the left, we can focus on all those subclasses of RestrictedDiet that should
be related to PregnancyDietRestriction, and define subclass constraints, e.g.

PregnancyDietRestriction v requiresDiet only NoHotSpicesDiet

Formal Modelling for Cooking Assistance 7

(cf. Sec. 2.2) and analogously for NoAlcoholDiet, NoCaffeineDiet, NoRawMeatDiet,
NoRawFishDiet, NoCruditesDiet. Other NutritionImpairments are similarly related
to particular subclasses of MedicallyRestrictedDiet.

On the right, we can limit our attention to each subclass of RestrictedDiet
and its relation to FoodOrBeverage, e.g. for NoHotSpicesDiet to all spicy-hot food

NoHotSpicesDiet v prohibitsFoodOrB only HotSpiceVegetable
and similarly for other hot food. Note that it helps considerably to cluster food
into classes with culinary aspects, but also to define extra (super)classes with
other properties, such as the spicy-hot aspect; then we need to define subclass
constraints only for the clustering superclasses, and they are inherited. In the
case of HotSpiceVegetable, the culinary and the special spicy-hot aspects co-
incide: we distinguish the CayennePepperSpice as a HotSpiceVegetable from the
BellPepperVegetable as a bland PepperFruitVegetable (although CayennePepper-
Spice and BellPepperVegetable are both fromPlant CapsicumAnnuum, cf. Sec. 2.2).
The relation prohibitsFoodOrBeverage is defined as a composite relation

prohibitsFoodOrBeverage v requiresDiet ◦ prohibitsFoodOrB;
any HotSpiceVegetable is deduced to be prohibited for a PregnancyDietRestriction.

Separation of Concerns. The clou of intermediate abstraction is that requires-
Diet and prohibitsFoodOrB can be described independently. Perhaps even more
importantly, it allows us to define subclass constraints (cf. Sec. 2.2) for both
relations separately at a high level of property abstraction, cf. Sec. 2.1.

Relationships established by prohibitsFoodOrB can be reused for other diet
restrictions, e.g. NoHotSpicesDiet for the NutritionImpairment Gastritis.

3.3 Meals, Courses, Dishes

For the planning of a meal, potentially with a number of courses, dishes, side-
dishes, etc. (cf. Sec. 5.3), we have to consider the number of guests and their joint
restrictions, choose from a variety of cuisines, and select among the multitude of
recipes (or invent a new one). What is the culinary secret for the combination of
dishes? for a dish with an accompanying wine? or for the ingredients in a dish?

The secret is the interaction or “interplay” of aromas, their harmony, but also
the contrast, coverage and variety of different flavours in a dish (or a combination
of dishes); moreover, a similar harmony and variety of textures, colours and
shapes matters, which we will disregard here.

Flavour Affinities. Why does caviar taste good with white chocolate? or
Ms. W.’s heavenly Bavarian cream with raspberry sauce?

There has been considerable research in the analysis of aromas and their
chemical composition. “Food pairing” relates two ingredients that have one (or
more) flavour(s) in common: e.g. for caviar and white chocolate the flavour
determining substance trimethylamine. It has become quite popular among food
researchers and technologists, star chefs, sommeliers, even perfumers.

8 Krieg-Brückner et.al

“Pairing” refers to a semantic neighborhood of a flavour (or aroma) that is
shared by two ingredients in harmony.

Caviezel, in a commendably scientific approach, introduces a hierarchy of
flavour levels in [19], starting with the taste level (sweet, sour, salty, bitter,
umami, fat), the flavour created in the mouth by taste buds on the tongue, con-
tinuing with aromas sensed by the nose, ordered in 8 levels according to the
volatility of the corresponding molecules. Thus a flavour at a low level is usually
more prominent and persistent; some herbs or spices may overpower others (e.g.
“spicy hot” from chili). Note that (the stage of) the cooking may significantly
influence or even create a flavour, e.g. when roasting meat. In general, an ingredi-
ent contains several flavours that are more or less salient, and is thus related “in
several directions” to other ingredients. Thus complex and elaborate recipes can
be analysed w.r.t. the harmony and intentional contrast in their composition.

The net of [9] shows 381 regularly used ingredients and 1021 aroma sub-
stances. To conquer such complexity, we hope to achieve a manageable set of
intermediate flavour abstractions (perhaps Caviezel’s flavour level sets), which
allow us to constructively propose compositions of ingredients, or substitutions
of alternative ingredients in existing recipes, for creative cooking.

4 Recipes

4.1 Recipe Structure

Cooking might be defined as the process of performing certain cooking steps on a
defined amount of ingredients in a specific order, utilizing cooking utensils, tools,
etc. A recipe is then a structured workflow for processing such cooking steps,
prescribed by recipe instructions, with corresponding ingredients (cf. Sec. 5.3).

We shall propose a structure for modelling recipes below, which takes care of
a variety of “culinary” semantic relationships; for a running example, see Fig. 4
for an Italian zucchini frittata, a courgette omelette. The rendering in Fig. 4,
ignoring the nested boxes, is similar to what you might expect in a cookbook.

Primary Ingredient(s), Culinary Options. The composition of ingredients
is, quite likely, the most characteristic feature of a recipe. Often, a user will search
for a recipe with one primary ingredient, and choose the others accordingly (cf.
pairing in Sect. 3.3). The recipe author should flag, whether an ingredient is
optional — an important semantic indication providing freedom for the user:

essential : not to be omitted
primary : essential reference ingredient, giving the recipe its name
optional : dispensable for a restricted diet or by personal preference
culinary : optional, intended as a special “culinary kick” by the author that

would be lost if omitted (or dispensable as a fad of that author)?

In a vegetable omelette, eggs are essential; adding anchovies and capers to bland
cauliflowers adds a Mediterranean culinary touch (cf. Sec. 4.2). Deleting an op-
tional Ingredient, e.g. pepper, also deletes the dependent RecipeInstruction(s).

Formal Modelling for Cooking Assistance 9

Balancing Amounts, Intervals. Amounts, for example, are likely to be de-
fined in terms of the amount for a primary ingredient, in particular, if its quantity
cannot be influenced; for example a large rather than a small turkey; for a jam,
fruit (as much as could be collected) matched on-to-one by sugar; in baking, just
so much yeast per flour quantity. This important dependency should be reflected
in the recipe, and tools should calculate dependent measures automatically.

While it is important in such cases to keep amounts and balancing strictly
controlled, the precise definition of amounts is often over-specified. The author of
a recipe should recommend the interval over which the amount of an ingredient
may range based on her/his expertise (and maybe indicate a preference), such
that the user may vary according to her/his personal taste or other constraints.

A recommended interval should also make it easier to achieve proper rounding
of measures when recomputing for a different number of portions. If, for example,
for 4 portions of an omelette, 5-7 (instead of 6) eggs are prescribed, then an
omelette for 3 should have 4-5 (and not 4.5) eggs in it.

Measures. There are various different approaches to measure ingredients, de-
pending on the cultural background in different geographic regions. While flour
is measured in weight (i.e. mass) in Germany, it is measured in volume in the
UK, the US, or Sweden; moreover, measurement units differ. We use the QUDT
ontology [7], providing quantities and measurement units, and their relation to
each other; so standards can be converted to a style preferred by the user, e.g.
0.23 Liters to a LiquidCupUS; the intervals above help rounding off.

Individual Adaptation of ingredients (adjusting amounts, omission, or sub-
stitution) now becomes possible, regarding the variety of dietary constraints, see
Sec. 3.1 — and flavour affinities should help find tasty substitutions, see Sec. 3.3.

In view of the abundant minced fish in Denmark, BKB substituted bacon by
fish in an Ærø zucchini frittata, suitable for an OvoLactoPescetarianDiet.

Recipe Instructions. RecipeInstructions (see Fig. 5) have been modelled to

set up an environment for cooking, i.e. get the requisite CookWare (see be-
low), add Ingredients, heat the Burner, serve or store
away result Ingredients (temporarily or for preserva-
tion), clean and restore CookWare for further use;

prepare Ingredients e.g. cut in a particular way, mix, or whisk;
cook Ingredients in the present environment, e.g. braise, or fry.

10 Krieg-Brückner et.al

ZucchiniFri)ata	

EggMixture	

Seasoning	

FriedBacon,	 BaconFat	

Fat1	

1-‐1.5 	 	 Tbsp 	 OliveOil	 	

Bacon 	 culinary	

80-‐150 	 	 g 	 Bacon-‐	
	 	 Rasher	

Pa
n	

Heat	 Fat1	 	
to	 low	 temperature	

Fry	 Bacon	 unAl	 crisp	

Crumble	 FriedBacon	

Bo
ar
d	

Fat3	

0.5-‐1 	 	 Tbsp 	 OliveOil	 	
Fry	 EggMixture	 	
unAl	 firm	 at	 boDom	

Heat	 Fat3	 to	 	
medium	 temperature	

Pa
n	

FlipWithLid	 Li
d	

Fry	 FlippedFri8ata	 	
unAl	 firm	 at	 boDom	 Pa

n	

Eggs 	 	

5-‐7 	 piece 	 Egg	

Whisk	 Eggs	 lightly	

Mix	 with	 Seasoning	

Mix	 with	
CookedVegetables	 Bo

w
l	

CookedVegetables	

Fat2 	 	

0.5-‐1	 	 Tbsp 	 Oil	 |	 Fat	

Salt 	 	

0.3-‐0.5 	 tsp 	 Salt	

0.3-‐0.5 	 tsp 	 Pepper	

Pepper 	 op,onal	

Braise	 unAl	 done	

Mix	 with	 Salt	

Heat	 Fat2	 	
to	 medium	 temperature	

Mix	 with	 Pepper	

Pa
n	

Add	 CutVegetables	

CutVegetables	

Vegetables 	 primary	

400-‐600 	 g 	 CourgeDe	 	

Chop	 Vegetables	 	
Bo

ar
d	

serves 	 4	

Cover	 Pan	 with	 Lid	

Flip	 Pan	 and	 Lid	

Store	 Content	 on	 Lid	

Add	 Content	 to	 Pan	

Flip	 Pan	 	

Loosen	 Content	 in	 Pan	

Pa
n,
	 L
id
	

FlipThenTransfer	 Li
d	

implementedAs	

TransferThenFlip	 Li
d	

Cover	 Lid	 with	 Pan	

Store	 Content	 on	 Lid	

Pa
n,
	 L
id
	

Loosen	 Content	 in	 Pan	

Add	 Content	 to	 Pan	

Flip	 Pan	 and	 Lid	

implementedAs	

CookWare	

Pan	

Burner	

CuCngBoard	

Bowl	

Lid	 	

Spatula	

KitchenKnife	

Whisk	

KitchenFork	

H CookingContainer
• Casserole
• Lid
• CookingTin
• CakeTin
H Pan

H FryingPan
• CastIronPan
• NonStickPan
• GrillPan
• SaucePan
• . . .

H CookingDevice
H Burner
• Hob
• Hotplate
• InductionPlate
• . . .

H Cooker
• DeepFatFryer
• . . .

I GrillingDevice
I Microwave
• . . .

H PreparationDevice
• Blender
• FoodProcessor
• Juicer
• Masher
• . . .

H PreparationSurface
• BreadBoard
• ChoppingBlock
• CuttingBoard

H TableEquipment
H Crockery
• Bowl • Cup
I Dish • Mug
• Plate • . . .

H Cutlery
I ServingCutlery
I Spoon
I TableFork
I TableKnife

I ServingContainer

Fig. 4. Zucchini Frittata Recipe and CookWare Ontology (Excerpt)

Formal Modelling for Cooking Assistance 11

H CookingEnvironmentIns
H EstablishEnvironmentIns
• GetCookWareIns

H UpdateEnvironmentIns
• AddIngredientIns
I HeatIns

H ClearEnvironmentIns
H RemoveResultIns
• ServeIns
• StoreResultIns
• . . .

H PreparationIns
H CutIns

I ChopIns
• CrumbleIns
• MinceIns
I SliceIns
• . . .

H FlipWithLidIns
• FlipThenTransferIns
• TransferThenFlipIns
• MixIns
I WhiskIns
• . . .

H CookingIns
I CookInLiquidIns
• DeepFryIns
H PanFryIns
• BraiseIns
H FryIns
• FryBottom-

FirmIns
• FryCrispIns
• SauteIns
• StirFryIns
• . . .

I RoastIns
• SteamIns
• . . .

Fig. 5. RecipeInstruction Ontology (Excerpt; “Instruction” abbreviated as “Ins”)

H associatedWith-Recipe
• derivedFromRecipe
• hasDifficultyLevel
• hasIngredientCollection
• hasrecipeWorkflow
• yieldsResult

H associatedWith-Ingredient
• hasContent
• hasIngredientKind
• hasIngredientStatus
• isIngredientOf
• processedBy
• enablesRecipeInstruction

H associatedWith-RecipeInstruction
• hasCookingDuration
• hasWorkDuration
• isInstructionOf
• producesResult
• requiresCookWare
• requiresIngredient

H associatedWith-CookingStep
• hasAssignedCookWare
• processesIngredient

Fig. 6. Recipe Relations in the Ontology (Excerpt)

H PhysicalAspect
H SizeAspect
• LargeSizeAspect
• MediumSizeAspect
• SmallSizeAspect
• TinySizeAspect

H TemperatureAspect
H BurnerTemperature
• HighBurnerTemperature
• LowBurnerTemperature
• MediumBurnerTemperature

I OvenTemperature

H TextureAspect
I CookingTextureAspect
• GaseousTexture
I LiquidTexture
H SolidTexture
• FirmTexture
H HardTexture
• CrispTexture
• PowderedTexture
• . . .
• SoftTexture

• . . .

Fig. 7. PhysicalAspect Ontology (Excerpt)

12 Krieg-Brückner et.al

CookWare. The environment contains all CookWare required (see Figs. 4, 5):

PreparationSurface e.g. a CuttingBoard;
PreparationDevice e.g. a FoodProcessor;
CookingDevice e.g. a Cooker with a Burner;
CookingContainer e.g. a Pan to put on the Burner;
CookingUtensil e.g. a KitchenKnife as a FoodCutter, a Whisk;
TableEquipment e.g. a Bowl;

PreparationDevices and CookingDevices have their own power supply and control.
CookWare is modeled as Container since it may contain other CookWare (such

as a Pan on a Burner on top of a Cooker), or hold (part of) Ingredients (such as a
Bowl, a KitchenKnife, or a CuttingBoard). Note that the required environment of
CookWare and Ingredients is modelled with each RecipeInstruction (cf. Sec. 4.3).

BKB hardly uses a FoodProcessor, but cannot do without his ChineseChop-
pingKnife that doubles as a little plate for small pieces.

Details in a RecipeInstruction. Depending on the abilities of the cook,
RecipeInstructions should be more or less detailed. An experienced chef might
only need the list of ingredients and apply amounts according to experience,
taste and creativity, while a beginner would need to know the exact amount
(interval), which tools to use when, etc.

Moreover, RecipeInstructions vary according to the CookWare involved (a
RoastInstruction might refine to a GrillInstruction or a RoastInOvenInstruction) or
according to the cooking technique used (e.g. a FlipWithLidInstruction to either a
TransferThenFlipInstruction or a FlipThenTransferInstruction, cf. Fig. 5), choosing
an appropriate one during refinement (cf. Sec. 4.3).

In fact, a RecipeInstruction may be implementedAs a Recipe that is more de-
tailed; in particular, it provides an expanded RecipeWorkflow (e.g. for a Transfer-
ThenFlipInstruction or FlipThenTransferInstruction). Several implementations may
be provided when defining a new RecipeInstruction, giving different amounts of
detail for different user profiles (e.g. for a beginner, cf. Sec. 4.3), which may then
be used for adapting the interface displayed to the user (cf. Sec. 5.2).

We also expect that modelling a RecipeInstruction explicitly, instead of just
having a piece of text, will ease automatic translation of recipes.

Recipe Workflow, Nested Sub-Recipes. A RecipeWorkflow is a sequence of
RecipeInstructions, which relate to Ingredients and CookWare, and finally deliver
a result that is potentially used as an Ingredient later on. Since a Recipe depends
on its Ingredients, and an Ingredient may be the result of another Recipe (e.g.
for a seasoning), we are in fact dealing with sub-Recipes inside a Recipe, see
Fig. 4. Every sub-Recipe has a name on top referring to its result Ingredient(s),
e.g. FriedBacon, BaconFat.

A sub-Recipe may be cut out of a Recipe to become an independent, self-
contained Recipe, e.g. a Recipe for a seasoning such as CrumbledBacon. In the

Formal Modelling for Cooking Assistance 13

example recipe, it is purposely left unspecified whether Fat2, i.e. OilOrFat, should
contain leftover (flavoring) BaconFat ; this will only be possible, if it is scheduled
to be prepared before CookedVegetables, and is anyway a choice of the cook.

The relation Recipe contains Recipe is a partial order, denoting the depen-
dency of a recipe on another, whose result must be available as an ingredient
(cf. also dependent cooking processes in Sec. 5.3). For the ZucchiniFrittata to be
fried, the EggMixture must be ready; for the EggMixture, the CookedVegetables
and the Seasoning. The order, in which the CookedVegetables and the Seasoning
have to be prepared, is unspecified (and Mix is commutative); this leaves room
for choice in the scheduling of CookingSteps later on.

The overall environment of CookWare involved in a RecipeWorkflow can be
deduced from the RecipeInstructions used (cf. Sec. 4.3).

4.2 Generic Recipes, Recipe Development

When trying to find a suitable recipe, the user is faced with an overwhelming
number, distributed over many portals, blogs, or web-pages on the internet.
Being faced with restricted diets (cf. Sec. 3.1) aggravates the issue.

We hope to eventually provide a uniform (and standardised?) modelling and
data base access, not only for information about food (cf. Sec. 2.2), but also
recipes. This requires a standard recipe structure and representation (cf. Sec. 4.1)
to allow an intelligent search and adaptation in the presence of diet constraints.

We are looking for a way to cluster recipe variants together, encouraging
creativity. Ms. W. is famous for Apfel-, Topfen- and Gemüse-Strudel, cf. Sec. 7.

Variables, Parameter Abstraction. One way to make recipes generic (gen-
eralised, schematic) is to introduce a kind of parameter abstraction (compare
CASL generics [12]; not yet available for OWL, cf. Sec. 2.2).

The primary ingredient in the zucchini frittata (cf. Sec. 4.1), courgette/zuc-
chini, is more generally a vegetable, as seasonally available; but is it really? Can
we generalise from CourgetteVegetable to Vegetable, i.e. just navigate upwards
in the class hierarchy? No, not just any vegetable, e.g. no cabbage, but perhaps
Cauliflower3. One proper culinary abstraction would be SquashVegetable, serving
like a variable that can later be substituted by any product in a subclass.

To further generalize, an ingredient can be defined as a set of alternatives as
if an implicit super-class was created (cf. Oil | Fat for OilOrFat), e.g.
CourgetteVegetable | FennelVegetable | SpinachVegetable | RadicchioVegetable

for the classic frittata alla verdura; even more generally,
SquashVegetable | FlowerVegetable | StalkVegetable | PotatoVegetable |
SpinachVegetable | RadicchioVegetable

and so on. StalkVegetable includes fennel; the latter two are special subclasses
of LeafVegetable, which we want to avoid as it includes CabbageVegetable as well.

This abstraction, allowing seasonal variants and substitutions (cf. Sec. 4.1),
and ample room for creativity (cf. Sec. 3.3) with a corresponding abstraction of

3 cauliflower, the German Blumenkohl, is actually not a cabbage, but a FlowerVegetable

14 Krieg-Brückner et.al

culinary seasoning, includes some of Ms. W.’s favourites: the Sicilian frittata di
cavolfiore (CauliflowerVegetable, anchovies and capers) and Umbrian frittata ai
tartufi neri (PotatoVegetable, black truffles), a sister of the Spanish omelette.

4.3 Refinement

Stakeholders, Refinement Stages. When the user of a generic recipe deletes
options or provides substitutions for individual adaptation (cf. Sec. 4.1), chooses
among alternatives, or navigates down to a particular subclass, in fact when
being creative, s/he becomes an editor of a derived recipe variant that is a
refinement of the original one. Refinement for adaptation will happen in stages
at various occasions, and the editors will be different stakeholders (or assume
such roles) with different interests and, more importantly, different profiles:

basic author providing general generic recipes
culinary author creating recipes with individual culinary kicks
host gathering and joining the guests’ requirements
meal planner planning recipes for courses and beverages
recipe planner adapting recipes to the joint guests’ requirements
shopper adapting recipes to (seasonally) available ingredients
kitchen planner adapting recipes to CookWare available in the kitchen
scheduler scheduling cooks and RecipeWorkflows
cook adapting recipes to personal cooking abilities and preferences

Ms. W., as all experienced cooks, will assume all these roles at some time, and
change between them. In particular, she prefers to do the shopping herself; she
might want to change her mind about a recipe, since today’s offer of a fresh sea-
sonal vegetable is so attractive. However, when planning recipes with a derived
shopping list for another person as shopper, she will have to be careful to be
precise about generalizations and appropriate alternatives for ingredients, keep-
ing the personal shopping profile of the shopper in mind (who might be inclined
to choose what he likes, not necessarily in line with her wishes).

Recipe Design. The author of a recipe will be assisted by a special version of
a recipe editor (cf. Sec. 5.1), allowing navigation in the class hierarchy.

Ms. W. will start with the RecipeInstruction for the Ingredient in focus (cf.
Fig. 4). When choosing Bacon as an ingredient, a FryInstruction will be suggested
(modelled via enablesRecipeInstruction), and Ms. W. will choose the FryCrisp-
Instruction as a refinement. The FryCrispInstruction will be related to the Crisp-
TextureAspect, and, as a FryInstruction, require medium hot OilOrFat in a Pan;
this, in turn, will suggest a Burner with a MediumBurnerTemperature, and so on.
RecipeInstructions and Ingredients are modelled with corresponding specialised
attributes, enabling the Recipe Assistant to suggest appropriate choices.

Similarly, the other stakeholders will be able to navigate in the (generalised)
hierarchy of attributes in their refinement process; not only Ingredients, but also
RecipeInstructions and CookWare are generalised.

Formal Modelling for Cooking Assistance 15

INVENTORY	 ASSISTANT	
•  Price	 PERSON	 ASSISTANT	

•  Profile	

STORAGE	 ASSISTANT	
•  Container	
•  Loca;on	

PRODUCT	 ASSISTANT	
•  Food	 or	 Beverage	

Products	

RECIPE	 ASSISTANT	
•  Recipe	
•  Recipe	 Editor	

SHOPPING	 ASSISTANT	
•  ShoppingList	 COOKING	 ASSISTANT	

•  Cooking	 Workflow	
•  CookTop	

Fig. 8. Software Assistants and Use Relationship

The Recipe Assistant, as a “kitchen planner” prior to the actual cooking,
will advise Ms. W. to use a NonStickPan for a Pan, since it knows, which Cook-
Ware is preferred and available from her profile as a cook and the profile of the
kitchen environment. BKB will get his beloved ChineseChoppingKnife.

Version and Change Management. It is important to record the whole
development, a sequence of refinements, for future reference. Thus a new version
is placed among a cluster of variants, sharing similar culinary properties.

Ms. W. may wish to revise previous decisions when re-using a recipe next
time, omitting a particular dietary constraint, or cooking in a different kitchen.
Her recipe variants are kept in a local, private repository.

5 Cooking Assistance

5.1 Software Assistants

Based on the modelling, several modular software assistants are presently under
development to help Ms. W. in her tasks, cf. Fig. 8. The Person Assistant
manages profiles of stakeholders (cf. Sec. 4.3); the Recipe Assistant helps
in the development of recipes, using the Product Assistant and Person
Assistant; it generates a shopping list for the Shopping Assistant, which, in
turn, uses the Product Assistant for information about food products, the
Inventory Assistant about their availability at home or in a shop, and the
Storage Assistant about their location.

When Ms. W. goes shopping and changes her mind about a recipe, the Shop-
ping Assistant will be able to trace back to the recipe, Ms. W. can adapt or
change it, the shopping list is adjusted accordingly, and the Inventory Assis-
tant bears the availability of food products at home in mind; the Product
Assistant will help her choose alternatives or substitutions.

Consistency of Data Updates. The assistants (cf. Fig. 8) correspond to soft-
ware modules linked to a central controller, which takes care of communication,

16 Krieg-Brückner et.al

CutVegetables	

Vegetables 	 	

400-‐600 	 g 	 Courge,e	 	

Chop	 Vegetables	 	

Bo
ar
d	

FriedBacon,	 BaconFat	

Bacon 	 	

80-‐150 	 	 g 	 Bacon-‐	
	 	 Rasher	

Pa
n	

Fry	 Bacon	 un:l	 crisp	

EggMixture	

Eggs 	 	

5-‐7 	 piece 	 Egg	

Whisk	 Eggs	 lightly	

Mix	 with	 Seasoning	

Mix	 with	
CookedVegetables	 Bo

w
l	

Pan	

Burner	

Cu8ngBoard	

Bowl	

Spatula	

KitchenKnife	

Whisk	

Fig. 9. CookTop View

e.g. interface modules responsible for user interaction, or utility modules for data
base access. Assistant modules access data in the ontology (or associated data
bases) via the controller; the controller, triggered by an interface module request,
distributes the request to appropriate assistants, and forwards answers back to
the interface module. The ontology is managed by the SHIP-Tool [13, 15], which,
apart from deductions with a standard reasoner, guarantees consistency of data
updates generated by the processing, a unique feature. The ontology hides and
abstracts from associated data bases. Since all the knowledge is represented in
the ontology, the assistants only need a minimal data representation internally.

5.2 The CookTop, the Cooking Desktop

The CookTop is the touch-screen via which the cooking assistance processes
communicate with the user, see Fig. 9. “Active” (sub)Recipes and CookingSteps,
currently being processed, are displayed together with the required Ingredients
and CookWare; already completed ones are not displayed any more, neither are
those that are not enabled yet, for instance, because the required Ingredients are
not yet ready as the result of other processes, or the CookWare is still in use.
Once a CookingStep has been completed, the user touches the CookingStep box
(or by clicking, voice interaction, etc.). This acknowledgement is recorded by the
assistance processes and other possible CookingSteps become enabled. Enabled
Recipes (and subsequent CookingSteps in a list) are displayed as gray; they are
activated by a user’s touch. Depending on the user’s abilities and preferences,
more or less information (e.g. associated CookWare or durations) is displayed.

5.3 Cooking Workflows, Processes

The RecipeWorkflow of a structured Recipe corresponds to a (partially ordered)
tree of sequences of RecipeInstructions for the (sub)Recipes, cf. Sec. 4.1 and Fig. 4.
The resulting CookingWorkflows prescribing the order of processing the Recipe-
Instructions, may be completely sequential, e.g. for an inexperienced cook, to do
all preparation work first, and then cook strictly sequentially. However, there is

Formal Modelling for Cooking Assistance 17

a potential for parallel work by one cook (or more than one); the scheduling has
to take different abilities and resulting prospective durations of workloads, pre-
liminary preparation, actual cooking, settling and cooling phases, into account.

Process Abstractions. The assistance processes control the execution of the
CookingWorkflow and can be described as processes in the SHIP-Tool at a high
level of abstraction. The SHIP-Tool is based on a logical state representation
modelling data as well as the state of the real world. States are modelled in
Description Logics, which provides the semantic foundation for OWL used to
model the recipes. A state consists of the defined classes and relations, and in-
stances (individuals) modelling the state. Considering our running example (cf.
Fig. 4): each Ingredient, CookWare, etc. is modelled as an instance of the respec-
tive class with relations to other instances as imposed by the class declarations
and (constraint) definitions. In SHIP notation, this is expressed as follows

courgette: CourgetteVegetable, (courgette, cquant): hasIngredientQuantity

which represents that the instance courgette belongs to the class CourgetteVe-
getable, and courgette hasIngredientQuantity cquant. If relations are functional
relations, then courgette.hasIngredientQuantity denotes the associated instance.

As modelling discipline we impose that all existential quantifiers have a wit-
nessing instance in the ontology. For instance, CookingSteps always have at
least one assigned CookWare, which is expressed by the subclass declaration
CookingStep v ∃hasAssignedCookware . CookWare; if fry1 is a CookingStep, this im-
poses that there exists an instance in the ontology which is the assigned CookWare

(cf. [13]). Available CookWare, the Recipe and instances of the specific Ingredients
and quantities (fitting a specific number of persons) are modelled this way.

The assistance processes need to track the status of CookingSteps. To this
end, we model the CookingStepStatus as StartedStatus or CompletedStatus. Ingre-
dients necessary for the different CookingSteps and resulting from other Cooking-
Steps create the dependencies between the CookingSteps, cf. Sec. 4.1; active
CookingSteps depend on the availability of CookWare; all this information is
encoded in an active CookingStep.

Based on the ontological state model, basic computation steps in SHIP are
ontology updates which result in a new ontological state. The updates are re-
stricted to instances, the definitions of classes and relations cannot be changed.
Updates may result from the real world, such as, for instance, the user ac-
knowledging that a specific CookingStep is completed. But updates can also be
computing actions of the assistance processes, for instance to enable or initialise
a new CookingStep, or to delete a completed cooking step. In SHIP, actions can
be defined, which have ontological preconditions, checked on the current onto-
logical state, and effects describing the update. Based on the actions as basic
steps, named, recursive, parallel processes can be defined, used to describe the
cooking assistance processes.

Consider the FryBacon step in Fig. 4. The corresponding cooking step as-
sistance process is described in Fig. 10. While the process is presently written
manually, we aim at automatic generation from the RecipeWorkflow, cf. Sect. 5.3.

18 Krieg-Brückner et.al

1 process fryBacon (fat,bacon) = {
2 init F(fat.currentIngredientStatus:PreparedStatus and

bacon.currentIngredientStatus:PreparedStatus);
3 fix pan:CookingContainer and pan:UnassignedCookWare and burner:Burner and

burner:UnassignedCookWare;
4 createHeatupActivity(fat,pan,burner,:lowBurnerTemperature);
5 let d = fat.inv(rawIngredient)
6 prod = d.producedIngredient in
7 init F((fat,pan):at and (fat,:lowBurnerTemperature):hasTemperature and
8 (pan,:lowBurnerTemperature):hasTemperature and
9 prod.currentIngredientStatus:PreparedStatus);

10 closeActivity(d);
11 createFryActivity(bacon,pan,burner,:lowBurnerTemperature,:crisp);
12 let f = bacon.inv(rawIngredient)
13 crispbacon = f.producedIngredient in
14 init F((crispbacon,pan):containedIn and crispbacon.currentIngredientStatus:

PreparedStatus);
15 closeActivity(f);
16 createRemovalActivity(crispbacon,pan);
17 let doRemove = crispbacon.inv(rawIngredient)
18 storage = doRemove.requiredCookWare in
19 init F((crispbacon,storage):containedIn);
20 closeActivity(doremove) }

Fig. 10. Assistance Process for FryBacon

The assistance process is parameterized over the specific ingredients fat and
bacon of the cooking step. It then first waits until these are available, i.e. have
PreparedStatus. To this end the SHIP language allows to specify linear temporal
logic formulas over ontology expressions, which are monitored over the evolution
of the ontological state. We use the standard temporal connectives4 that allow to
start a monitor (line 2) waiting for an ontological state, where both ingredients
have PreparedStatus. Once this holds, the process execution continues and we
query the current ontological state for unassigned pan and burner (line 3) and
execute the action initialising the first subactivity, i.e. heating up the fat in the
pan on the burner (line 4).

Now the information is in the ontology and can be presented to the user on the
CookTop interface. We collect the instance d encoding the activity, but querying
the ontological state for the instance, of which fat is the rawIngredient (line 5),
as well as the instance prod introduced to denote the product of the heatup step.
Next we wait until the fat is in the pan and has the right temperature, which
the user or some sensing device has indicated, and the product is prepared. The
activity is now closed by the action closeActivity, which removes the instance
d from the ontological state. Subsequently the next subactivity is started, which

4 F = Eventually (Future), G = Globally, U = Until

Formal Modelling for Cooking Assistance 19

1 monitor controlCooking () =
2 G(all s:CookingStep . ((s,r):fromRecipeInstruction and r:CookingInstruction and
3 (s,p):requiresCookWare and p:CookingDevice and
4 (p,ct):currentCookingTemperature and (p,rt):hasCookingTemperature)
5 => (ct =rt U s.yieldsResult.currentIngredientStatus:PreparedStatus))
6
7 process monitorCooking () = {
8 try { init controlCooking }
9 catch {

10 forall s:CookingStep and (s,r):fromRecipeInstruction and r:CookingInstruction and
11 (r,p):requiresCookWare and p:CookingDevice and
12 (p,ct):currentCookingTemperature and (p,rt):hasCookingTemperature and
13 r.yieldsResult.currentIngredientStatus:UnpreparedStatus and
14 ct != rt => if (ct < rt) signalHeatUp(s,p)
15 else signalCoolDown(s,p);
16 init F(ct =rt 〈‖〉 not(!s))
17 }; monitorCooking}

Fig. 11. Monitor and Monitor Process

consists of actually frying the bacon until it is crisp and finally the subactivity
to remove it from the pan. Again, these subactivities follow the same patterns
of (i) initializing the sub-activity possibly preceding a monitor waiting for the
availability of Ingredients and CookWare, (ii) a monitor waiting for the user or
a sensor in the real world to acknowledge completion of the subactivity, and
(iii) closing the subactivity.

For each CookingStep of the Recipe we have respective actions and assistance
processes, i.e., cutVegetables, fryBacon and eggMixture. The dependencies
between these are managed by the Ingredients and CookWare when they have
been produced or become available. Hence the overall assistance process is the
parallel composition of these three processes

cutVegetables(courgettes) 〈‖〉 fryBacon(fat,bacon) 〈‖〉 eggMixture(eggs)

The parallel composition is an interleaving of the basic actions of the different
processes, as they all operate over the same ontological state.

Monitoring Processes. The SHIP-Tool provides the possibility to define mon-
itors tracking ontological state evolutions, to be used alongside processes to ob-
serve the environment and react accordingly. An update violating a running
monitor causes a failure in the process semantics, which can be caught like an
exception, and processes can be defined to react. Furthermore, it is possible
to specify general properties not tied to a specific process, but rather global
invariants (in fact, the “common sense of cooking”).

As an example consider the monitor controlCooking in Fig. 11. It specifies that
in each state, whenever there is an active CookingStep s derived from a RecipeIn-
struction r that is a CookingInstruction (in particular, a FryInstruction), then the

20 Krieg-Brückner et.al

required CookingDevice p keeps the required temperature (its current tempera-
ture ct is equal to the required temperature rt associated with the CookingDevice
in the CookingInstruction) until the resulting Ingredient is prepared.

This monitor can be used in a monitorCooking process, running in parallel to
all other assistance processes, that monitors the invariant, signals the respective
action to take in case of a violation (heatUp or coolDown) to the user, and, once
the invariant is restored, recurses and resumes monitoring.

6 Conclusion

Status of the Modelling and Implementation. Structuring and modelling
an intricately interwoven domain such as Cooking is indeed a formidable task.
Presently, we do not aim for completeness, but for a very substantial coverage
that allows the demonstration of nontrivial examples. As the ontology is going
to be published in the public domain, we hope for community contributions.

At the same time, we plan to cooperate with other groups. The proper mod-
elling of nutrition impairing diseases or nutrition intolerances (allergies, incom-
patibilities), cf. Sec. 3.1, requires medical expertise and will be a challenge in
itself (see also [31, 10, 11]); we have only made a first attempt so far.

Supporting the CookTop and the actual cooking process by intelligent tools
and an intelligent monitoring environment is another direction, where we want to
bring in our expertise connected with DFKI’s Bremen Ambient Assisted Living
Lab, BAALL, and SHIP [14], and combine it with that of the sister Lab at DFKI
Saarbrücken, focussed on smart kitchen objects and appliances.

Several Master’s and Diploma’s theses [20, 23, 24, 30] are under way to com-
plete the modelling, the deduction apparatus, and to develop prototype imple-
mentations for the corresponding assistants, to be available as web-apps online.

Cooking with Robots. While the instruction of an experienced cook should be
quite terse, a beginner, or an elderly person with slight dementia, needs detailed
instruction and detailed sequencing, see Sec. 4.1. It is interesting to note that
a cooking robot needs a very similar, if not the same, level of detail to model
cooking. We expect to share and combine our modelling with that for robots,
e.g. those at Michael Beetz’s lab at Universität Bremen.

7 Dedication to Martin Wirsing’s Health and Well-Being

How can Formal Modelling for Cooking Assistance contribute to Martin Wirs-
ing’s health and well-being?

The modelling and methodology described above cite many notions and con-
cepts that have been in the focus of Martin’s research on Formal Methods: loose
(under)specification, abstraction and refinement, processes, temporal logic, etc.
He has also always appreciated interesting application domains; now Formal
Methods and Cooking come together!

Formal Modelling for Cooking Assistance 21

It is, no doubt, primarily his wife Sabine’s, i.e. Ms. W.’s, excellent cooking
that is responsible for Martin’s good health and well-being. We, as friends, have
had the pleasure of sampling it in jolly company; definitely a source of well-being
for us, presumably also for Martin, and hopefully for Sabine as well.5 However,
we are getting older and have all sorts of health and other constraints6 of what
we can or wish to eat — so how is Sabine going to cook when a group of us is
being invited together?7

We hope that Sabine, and others, will eventually get some assistance from
the CookTop based on the modelling — and that Martin’s good health and
well-being will last for many more years to come!

References

1. Barcoo. www.barcoo.com.
2. DOLCE - Descriptive Ontology for Linguistic and Cognitive Engineering.

www.loa.istc.cnr.it/old/DOLCE.html.
3. DUL - DOLCE+DnS Ultralite ontology - Ontology Design Patterns (ODP).

www.ontologydesignpatterns.org/ont/dul/.
4. EuroFIR AISBL. www.eurofir.org.
5. LanguaL — the International Framework for Food Description. www.langual.org.
6. OWL Web Ontology Language - Use Cases and Requirements - W3C Recommen-

dation 10 February 2004. www.w3.org/TR/2004/REC-webont-req-20040210/.
7. QUDT - Quantities, Units, Dimensions and Data Types Ontologies.

www.qudt.org/.
8. WikiFood – Knowing what’s inside. www.wikifood.eu/wikifood/struts/welcome.do.
9. Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L. Barabási. Flavor network and

the principles of food pairing. Scientific reports, 1:196, Jan. 2011.
10. A. Arens, S. Schnadt, F. Feidert, R. Mösges, N. Roesch, and R. Herbst. Preferences

and satisfaction of food allergy sufferers using internet resources. Clinical and
Translational Allergy, 3:3:126, 2013.

11. A. Arens-Volland, N. Roesch, F. Feidert, P. Harpes, and R. Mösges. Change fre-
quency of ingredient descriptions and free-of labels of food items concern food
allergy sufferers. Allergy (European Journal of Allergy and Clinical Immunology),
65:92, 2010.

12. E. Astesiano, M. Bidoit, B. Krieg-Brückner, H. Kirchner, P. D. Mosses, D. San-
nella, and A. Tarlecki. CASL - the Common Algebraic Specification Language.
Theoretical Computer Science, 286:153–196, 2002.

13. S. Autexier and D. Hutter. Constructive DL update and reasoning for modeling
and executing the orchestration of heterogenous processes. In T. Eiter, B. Glimm,
Y. Kazakov, and M. Krötzsch, editors, Informal Proceedings of the 26th Interna-
tional Workshop on Description Logics, volume 1014, pages 501–512, Ulm, Ger-
many, July 2013. Technical University of Aachen (RWTH).

5 With the generic vegetable omelette abstraction of Sec. 4.2, will Sabine get new ideas
for her famous vegetable strudel, so much appreciated by their friends?

6 Martin, Sabine and family of course excluded
7 Many of us friends can appreciate such problems as enthusiastic amateur cooks

22 Krieg-Brückner et.al

14. S. Autexier, D. Hutter, C. Mandel, and C. Stahl. SHIP-Tool Live: Orchestrating
the Activities in the Bremen Ambient Assisted Living Lab (Demo). In J. C. Au-
gusto and R. Wichert, editors, Fourth International Joint Conference on Ambient
Intelligence, LNCS, Dublin, Ireland, December 2013. Springer.

15. S. Autexier, D. Hutter, and C. Stahl. An Implementation, Execution and Sim-
ulation Platform for Processes in Heterogeneous Smart Environments. In J. C.
Augusto and R. Wichert, editors, Fourth International Joint Conference on Am-
bient Intelligence, LNCS, Dublin, Ireland, December 2013. Springer.

16. J. A. Bateman, A. Castro, I. Normann, O. Pera, L. Garcia, and J.-M. Villaveces.
OASIS Common hyper-ontological framework (COF). EU FP7 Project OASIS –
Open architecture for Accessible Services Integration and Standardization Deliv-
erable D1.2.1, Bremen University, Bremen, Germany, January 2010.

17. W. Becker. Towards a CEN Standard on Food Data. European journal of clinical
nutrition, 64:S49–S52, 2010.

18. M. Burgos, I. Mart́ınez-Victoria, R. Milá, A. Farrán, R. Farré, G. Ros, M. Yago,
N. Audi, C. Santana, L. Millán, et al. Building a unified Spanish food database
according to EuroFIR specifications. Food Chemistry, 113(3):784–788, 2009.

19. R. Caviezel and T. A. Vilgis. Foodpairing — Harmonie und Kontrast. FONA,
2012.

20. S. Ghomsi Nokam. A Food Ontology for the Assistance of Shopping and Cooking.
Master’s thesis, Universität Bremen, in preparation. (in German).

21. J. Ireland and A. Møller. What’s new in LanguaL? Procedia Food Science, 2:117–
121, 2013.

22. J. D. Ireland and A. Møller. Review of international food classification and de-
scription. Journal of food composition and analysis, 13(4):529–538, 2000.

23. P. Kolloge. Modelling Dietary Restrictions. Master’s thesis, Universität Bremen,
in preparation. (in German).

24. D. Kozha. Shopping Assistance from the Kitchen Cabinet to the Supermarket
Shelf. Master’s thesis, Universität Bremen, in preparation. (in German).

25. O. Kutz, T. Mossakowski, and D. Lücke. Carnap, Goguen, and the Hyperontolo-
gies: Logical Pluralism and Heterogeneous Structuring in Ontology Design. Logica
Universalis, 4(2):255–333, 2010. Special Issue on ‘Is Logic Universal?’.

26. K. Lo. Chinese Cooking and Eating for Health. Mayflower Granada Publ., 1979.
27. A. Møller, I. Unwin, W. Becker, and J. Ireland. EuroFIR’s food databank systems

for nutrients and bioactives. Trends in food science & technology, 18(8):428–433,
2007.

28. T. Mossakowski, O. Kutz, M. Codescu, and C. Lange. The distributed ontology,
modeling and specification language. In C. D. Vescovo, T. Hahmann, D. Pearce,
and D. Walther, editors, WoMo 2013, volume 1081 of CEUR-WS online proceed-
ings, 2013.

29. J. A. Pennington and R. R. Butrum. Food descriptions using taxonomy and the
LanguaL system. Trends in Food Science & Technology, 2:285–288, 1991.

30. M. Rink. Ontology Based Product Configuration Based on User Requirements.
Master’s thesis, Universität Bremen, in preparation.

31. N. Roesch, A. Arens, F. Feidert, R. Herbst, and R. Mösges. Computerised identi-
fication of allergens in food ingredient descriptions. Allergy: European Journal of
Allergy and Clinical Immunology, 64:363–364, 2009.

32. C. Snae and M. Bruckner. Foods: a food-oriented ontology-driven system. In
Digital Ecosystems and Technologies, 2008. DEST 2008. 2nd IEEE International
Conference on, pages 168–176. IEEE, 2008.

