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Participatory Bluetooth Scans
Serving as Urban Crowd Probes
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Abstract—We describe a system that leverages users vol-
untarily having their smartphones scan the environment for
discoverable Bluetooth devices to analyze crowd conditions in
urban environments. Our method goes beyond mere counting
of discoverable devices towards a set of more complex, robust
features. We also show how to extend the analysis from crowd
density to crowd flow direction. We evaluate our methods on a
data set consisting of nearly 200,000 discoveries from nearly 1000
scanning devices recorded during a three day city-wide festival
in Zurich. The data set also includes as ground truth 23 million
GPS location points from nearly 30,000 users.

Index Terms—Crowd Sensing, Crowd Probing, Participatory
Bluetooth Scanning.

I. INTRODUCTION

CROWDS are an integral component of urban environ-
ments: from city festivals through sports events to rush

hour in busy business or shopping districts. As a consequence
monitoring, managing and planning for crowds is a key
concern of civil protection and city authorities. Today the
main instrument of crowd monitoring are CCTV cameras.
While useful in many situations, they are, however, more
suitable for intensive surveillance of constrained hot spots
during well defined time periods than for long term monitoring
of large areas. Alternatives (see related work) that have been
considered range from airborne cameras through cell tower
information to counting people at access control points (where
possible).

As another alternative our group has been investigating
smartphone based participatory approaches. The core idea is
that smartphone apps are increasingly becoming basic tools
of daily city life. This includes navigation, public transport
(including online tickets), information about services and
opening hours, tourism and special events. In particular, large
events such as city festivals are today unthinkable without
an own App. Our work leverages such apps asking users
to voluntarily contribute data for crowd monitoring. Origi-
nally, we had focused on anonymized location information
estimating crowd density distribution from the distribution of
data points provided by the volunteers (see Figure 1). In a
trivial approach one can simply count the number of people
providing data from a certain location, assuming that they
constitute a fixed percentage of the crowd, and then extrapolate
to the number of people present. In reality, the procedure
is more complex (as the percentage may be neither known
nor constant), however, we have shown that, given enough
participants, a good estimation of the crowd density as well
as other parameters such as speed, flow direction is indeed
possible [1]. A major concern that we have seen during this

Fig. 1. Crowd density heat map snapshot at friday (05.07.2013, 9 p.m.) based
on GPS location data transmitted to the server during 60 minutes. The main
event areas at Züri Fäscht 2013 are shown as polygons with white borders.

work was how to achieve sufficient participation. Thus, for
example, getting a few hundred to a thousand participants
for large scale city events was not a problem (in fact, these
could come from the organizers and civil protection forces).
Getting tens of thousands participants is also possible as we
had around 30,000 participants during a three day city wide
event in Zurich (Switzerland) which is the foundation for this
work. However, it requires an extremely well prepared, very
intensive publicity campaign that is often not feasible.

A. Motivation and Problem Definition

In summary, the question is how participatory crowd mon-
itoring can be extended to situations where the number of
participants is too low to represent the crowd distribution
and motion in a statistically significant way from their GPS
traces alone (in other words the participants are too sparsely
distributed within the crowd to accurately reflect its structure
and motion). The proposed solution is based on the following
observations:

1) Many users leave their smart phone bluetooth subsystem
in discoverable mode ”per default” e.g. for the conve-
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nience of just getting into the car and being automati-
cally connected to the speakerphone (see Figure 2).

2) Scanning for discoverable Bluetooth devices is a stan-
dard functionality in most smartphones so that partici-
pants’ devices can be made to transmit not only their
GPS data but also information on discoverable devices
that are within their reception range.

3) In general Bluetooth range is limited to significantly less
then 100m (often ≤ 10m). This means that adding infor-
mation about discoverable devices in reception range to
participants’ GPS data is equivalent to providing location
information not only about the participant but also about
the owners of the discovered devices. This effectively
increases the size of the sample that can be used for
crowd density and motion estimation.

Initial studies by our group (see related work [2]), with
students as participants carrying scanning smartphones

• at small scale events (thousands of people in an area of
about 200 x 200 m),

• following well defined walking patterns

have confirmed the basic feasibility of using such an approach
to accurately estimate crowd density. However they have also
shown that the actual number of discoverable devices can
vary strongly in space and time for a given crowd density
so that only very rough estimates are possible when using the
absolute number of discovered devices as a feature. Motion
patterns of the scanning devices have significant influence on
the performance. Thus, the core scientific questions addressed
in this paper are defined by the following aspects.

1) How does such an approach perform in unconstrained
city scale environments where participants are not stu-
dents following well defined motion patterns but ”nor-
mal people going about their business”?

2) What does it take to improve the system performance
under such conditions, in particular in terms of choosing
and designing features that go beyond a mere device
count?

3) Is it possible to go beyond density estimation towards
the recognition of motion patterns even through the
owners of the discovered devices (who do not actively
participate in the data collection and do not provide
GPS data) from whose have the approximate location
but have no motion information?

B. Paper Contributions

Towards answering the above questions the paper makes the
following contributions:

1) A large, real life data set with nearly 1000 devices
(subsequently called Bluetooth scanner or scanner) pro-
viding Bluetooth scans (nearly 200,000 discoveries) an-
notated with location information over a period of three
days during a city-wide festival in Zurich. The data set
also contains the ground truth for the density and motion
analysis that is based on around 30,000 users providing
their GPS coordinates.

2) Use of the data set to evaluate the naive crowd density
estimation method (extrapolating from the number of
seen devices) against the GPS based ground truth.

3) A more advanced method that goes beyond absolute
numbers towards relative features that are more robust
against statistical variations of the number of devices
present at a given density. The method is evaluated on
the same data set and compared to the naive method.

4) A method for the estimation of the crowd flow direction,
again with evaluation on the data set against the GPS
based ground truth.

C. Related Work
Our work deals with (1) participative (2) crowd state anal-

ysis estimation using (3) Bluetooth scanning. The relevant
state of the art research in the three areas can be described
as follows.

1) Participatory Sensing: Among others Campbell et al. [3]
and Burke et al. [4] introduced the general concept of people-
centric sensing and participatory sensing. Since then a lot of
work has been done in this area including sound pollution [5],
air pollution [6] or road and traffic conditions [7]. Closest to
our work [8] have studied temporal patterns of crowd behavior
indirectly speculated from a massive number of collected
Twitter messages. In our previous work [1] we demonstrated
how participatory collection of GPS traces can be used to
monitor crowd condition (this is being used as ground truth
for the Bluetooth methods described in this paper).

2) Crowd Monitoring: Video based crowd analysis became
popular in the 1990s with the increased use of CCTV cameras
and availability of sufficient computing power (e.g. [9]). Since
then extensive research has been done and a comprehensive
overview goes beyond the scope of this paper (see. e.g. [10]).
Examples of specific work range from detection of anomalies
in crowd behavior [11], through work related to privacy pre-
serving analysis [12] (not tracking or identifying individuals)
to various multi-camera systems [13]. Significant attention has
also been given to tracking individuals in crowds [14] includ-
ing large area tracking with multiple cameras [15]. Overall
the video monitoring work must be seen as complementary
rather then an alternative to our research of long term large
area participatory analysis being complemented by punctual
video surveillance of specific hotspot. An alternative may be
airborne cameras that can cover large areas [16].

Beyond camera-based crowd monitoring, methods based
on thermal imaging [17], combination of thermal imaging
and cameras, [18], wireless sensor network signal propaga-
tion [19], cell tower information [20], and passive RFID
monitoring [21] were proposed.

3) Bluetooth Scanning: With the proliferation of mobile
Bluetooth enabled devices leveraging the information about
discoverable devices has become an active research field in
Ubiquitous Computing. Early well known work showed [22],
[23] how to recognize social patterns in daily user activity,
infer relationships and identify socially significant locations,
from using Bluetooth scans. Since then Bluetooth has been
widely investigated as an additional source of information for
various activity and lifestyle monitoring systems (e.g. [24]).
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Towards public spaces and crowd related applications Nico-
lai et al. [25] looked at the discovery time of Bluetooth devices
and the relation between the number of people and the number
of discoverable Bluetooth devices. However, unlike in our
approach only the absolute number of discovered Bluetooth
devices was used. Morrison et al. [26] considered the visu-
alization of crowd density in stadium-based sporting events.
In [27] the authors recorded passenger journeys in public
transportation by analyzing Bluetooth fingerprints. O’Neill et
al. [28] presented initial findings in Bluetooth presence and
Bluetooth naming practices. Versichele et al. [29] performed
an experiment during a mass event where they covered an
area with static Bluetooth scanning devices to extract statistics
and visitor profiles. BLIP Systems [30] exploited a stationary
Bluetooth based people tracking system. Based on multiple
Bluetooth zones scenarios like queue length at airports or
travel times by car are indicated.

With respect to large scale applications of mobile Bluetooth
sensing Natarajan et al. [31] have had 12 participants scan a
city for discoverable Bluetooth devices over a period of three
months. A similar study was conducted on larger larger scale
(100 devices, nine months) by Henderson et al. [32]. Finally,
there were different studies with the scope of university cam-
puses and conference locations (e.g. [33]). Overall the work we
present differs from those in this scope (we base our work on
an order of a magnitude more of Bluetooth scanning devices
and discoveries) and we focus on crowd behavior analysis.
In our previous and initial work we have demonstrated the
feasibility of an early version of the features described in this
work at a small scale experiment with instructed students [2].

II. DATA SET

The data set that this work is based on has been recorded
during a three day city-wide festival in Zurich (Switzerland) in
the summer of 2013 (www.zuerifaescht.ch). The festival takes
place every four years and attracts up to 2 million people with
a mixture of shows, concerts, sports events, parades and parties
distributed all over the city (see Figure 1). The recording
had been leveraged by our event management platform devel-
oped during the EU Socionical project (www.socionical.eu)
and tested (mostly at a smaller scale and without Bluetooth
scanning) at a variety of events in London, Zurich, Vienna and
Amsterdam. The platform is build around an event information
App [34] which the attendees can use to plan their visit and
get information on anything: from the location and timing
of events through the background of the festival to public
transport and route planning. The app also includes a variety
of social networking features. In parallel, it integrates a set of
safety/security modules which the users could activate on a
voluntary basis:

1) A monitoring module that records and transmits data of
a set of selected sensors to the server. The sensors are
requested once the app was launched for the first time
and require explicit user consent for every sensor.

2) A location sensitive messaging module that allows the
organizers to send information or instructions to users
at specific locations or at users heading in specific
directions.

3) A privileged module that is activated via special code
when the app is not being used by a visitor but by a
member of the civil protection forces.

Considering the event management the collection of
anonymized GPS traces, their visualization in form of a heat
map (see Figure 1) and the location based messaging capability
were the key. For our experimental purposes described in
this paper, for the first time of this software platform, users
were asked to activate their Bluetooth module if it was not
activated previously and if they agree with scanning for
Bluetooth devices even when the application is currently not
used. Synchronously to collecting the data users were asked
to transmit the Bluetooth discovery information, together with
signal strength, identifier and timestamp. The Bluetooth data
collection procedure has been previously cleared with the
Zurich legal authorities.

A. Experiment Advertising Campaign and Distribution

We endeavored to achieve a very high quantity of partic-
ipators acting as urban crowd probes. There are primarily
three goals to achieve. Getting the users to download the
application and acquire the permission from the user to collect
the sensor data in compliance with the privacy policy (see
sub-section II-C for details). The first goal was successfully
achieved (55,000 app downloads) by collaborating with the
event management, local media featuring the scientific crowd
sensing aspects of the event application. Substantive function-
ality such as the schedule and site information of the festival
were of high interest by the users. Once the potential users
were aware of the application the users downloaded via the
Apple and Google app stores. Most importantly, collecting
sensor data (GPS localization and Bluetooth scans) while in
the event area in the background must happen with clear
communication with the user i.e. why, when and in which
area sensor data is collected. To let users easily participate
in collecting sensor data no explicit registration was neces-
sary. As a result of the advertising campaign 55,000 people
downloaded the application and a total of 30,000 people
(approximately 54% of the app downloads) uploaded sensor
data to the server. Users not participating either opted-out,
deactivated their data uplink, or never initially launched the
application after downloading. Application support was built
into the application giving hints on how to use the app, the
privacy policy, and the possibility how to opt-out regarding
the data collection and transmission process.

B. Privacy Policy and Anonymization Approach

Most importantly, data protection officers made clear to
precisely communicate that data is used and how it is used.
Through press releases the public has been completely aware
of this experiment. While the user initially launched the
application an indication about scientific and safety rationales
behind the data collection and data transfer to the server was
shown along with a guide how to opt-out. This had to be
confirmed by the user prior to any usage of the application,
data collection or data transfer. No information was transmitted
to the server which would infer to an identity of a participant.
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We emphasized not to annotate data transfers to the server
with any permanent user name or smartphone identifier (device
MAC address, device UUID, etc.). The GPS localization
mechanism additionally had to be accepted due to operating
system requirements for newly installed applications (on iOS
at the first launch of the app, on Android requested device
permissions are displayed prior to the download of the app).
After the confirmation a temporary random event device id
was generated which was sent together with the GPS and
Bluetooth data packets to the server. The random event device
id cannot be mapped to a user identity and has the life time
of the special purpose event application. Any conclusion of
anonymous traces of event device ids is not possible since
location recording and transmission is limited to the 1.5km2

event area and prominent user locations like the beginning and
end of a trace (i.e. location of residence, location of work, etc.)
were not collected. The IP address of the device (incoming
data packet sender) was not stored. Next to the anonymization
of the participator we considered the anonymization of Blue-
tooth discoveries. Each Bluetooth discovery contains a MAC
address which is uniquely assigned during the manufacturing
of the Bluetooth chipset. We uploaded the MAC address to
the server where we used a random salt which was used as
an additional input to a one-way hashing function (SHA) to
encrypt the MAC addresses irreversibly.

C. Experiment Procedure and Data Collection Process

As we wanted collect data from event visitors, staff mem-
bers of the event were not instructed to use the application
on their smartphone and did not explicitly take part in the
experiment. However, the distribution to a wide audience is
more complex than to a small set of persons. As we had
to distribute the app through the official app stores, certain
technical and regulatory requirements had to be met. The team
responsible for the app, its release consisted of three persons.
According to the app store carrier Apple, the regulations of
a background process accessing the GPS location was not
allowed without any direct benefit to the user. For this reason a
location-based feature called ’friend finder’ was integrated into
the application for getting Apple’s app store approval. After
the app download, the initial launch and the privacy policy
acknowledgement the application configured itself to start
recording experimental data for scientific research in the morn-
ing of the first event day. A data packet was sent every two
minutes (or buffered in case of 3G network congestion) to the
server (4 Amazon AWS server instances) running MongoDB
data base instances. When exiting the event zone the GPS
localization was switched off. In the night of the last event
day the data collection module was deactivated automatically
to prevent collecting and uploading of unintended data in case
the user kept the application on his device. The experiment
logic was integrated into the application. The operating sys-
tem function called ’geo-fencing’ (coarse but power efficient
location method based on cell tower locations) automatically
activated the data recording process in the background if the
user was present in the event area which covered 1.5km2.
When data recording was activated GPS data was acquired at

1 Hz, and Bluetooth scans were obtaining every minute. The
core part of the experiment was the collection of Bluetooth
scan information. Bluetooth scanning is defined as the process
of recognizing surrounding Bluetooth devices. Each Bluetooth
scan can result in n ≥ 0 Bluetooth discoveries. Each discovery
contains information of the device name (ignored), device
profile (ignored), supported services (ignored), unique MAC
address, timestamp and signal strength. The duration of a
Bluetooth scan (as of current Bluetooth chipset and operating
system cooperation) is dynamically controlled depending on
whether new devices (within the scan period) are detected.
This is motivated by energy saving of the Bluetooth module
when no devices are discovered. The data was stored on the
server for offline analysis.

D. Data Characteristics

Some key statistics of the collected ground truth data and
Bluetooth discovery data are shown in Tables I and II. From
the about 2 million visitors 55,000 had downloaded our App
and 30,000 of those have been actively transmitting GPS data.
Of those 971 have also provided Bluetooth scans. This is due
to the fact that users had to explicitly activate the Bluetooth
module and many were worrying about power consumption
issues or simply shunning the effort. Over the course of the
event this gave us nearly 200,000 discoveries that belonged to
around 20,000 unique devices.

1) Distribution of Bluetooth Discoveries: The vast majority
of scans has turned up relatively few devices. Figure 2 shows
a comparison of the statistics from Zurich to five other events:
two football games (at ”Wembley” stadium in London and at
the ”Allianz Arena” in Munich) , the Munich October Fest, a
festival in the city center of Valetta in Malta (very small area
compared to Zurich) and a public viewing soccer event in
the German city of Kaiserslautern. What all the other events
have in common is that a small number (10) of Bluetooth
scanners were moving around a constrained, very crowded
area. Thus the majority of Bluetooth scanning periods (we
defined a consistent period of 15 seconds) turned up a value
corresponding to the typical number of discoverable devices
in a dense crowd which was somewhere between 5 and 20
depending on the crowd and the location. It is also interesting
to note the similarity in the shape of the distribution of the
Zurich event, the Malta festival and the Allianz Arena data.
The three had a comparatively larger area going beyond a
single crowded location (in the Allianz Arena experiment the
data was collected around rather than inside the stadium).
However, the Zurich distribution is much more distinct, due
to the much larger area.

2) Proportion of Relevant Bluetooth Scanning Devices: The
vast majority of Bluetooth discoveries comes from a relatively
small number of devices. This is illustrated in Figure 3.
Exactly 329 devices were accountable for 90% of the total
number of discovered Bluetooth devices. Figure 4 visualizes
those devices as large blue circles. Again the nature of the
event explains the data. Many people would visit the event
briefly or stroll through the city streets rather then spending
more of their time at crowded locations. Additionally, a num-
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TABLE I
EXPERIMENT STATISTICS AND GROUND TRUTH MAGNITUDE

Event duration Three consecutive days
Scope 1.5 km2 event area
Estimated number of visi-
tors during the event (ac-
cording to event organiz-
ers)

2 million

Ground truth entities (total
number of GPS locations
collected and uploaded)

23 million

Number of app downloads 39,300 (iOS) + 15,600 (Android
OS)

Devices collecting and up-
loading GPS traces

23,400 (iOS) + 6400 (Android OS)

Average number of loca-
tion samples per device

Friday: 586, Saturday: 643, Sun-
day:703

Average time collecting
GPS locations (including
pauses)

Friday: 12,840 seconds, Saturday:
14,378 seconds, Sunday: 10,145
seconds

TABLE II
BLUETOOTH SCAN DATA SET STATISTICS

Devices participating in collecting and
uploading Bluetooth scan data

971 (Android OS)

Total Bluetooth discoveries 190.600

Distinct Bluetooth discoveries 18.900

ber of participants had the Bluetooth scanning functionality
turned on only briefly.

3) Uniform Event Area: Of the nearly 1000 scanning
devices only 13 have seen each other over the course of
the festival. Given the large temporal and spatial extent of
the festival and the fact that the scanners were a random
selection of the participants this is not surprising. People were
at different places at different times. What is surprising is the
fact that over 700 scanners shared at least one device that they
have both discovered over the course of the festival. In fact
more than half of the scanners shared at least 20 devices. This
implies that the festival did not strongly separate into distinct
events with little shared spectators.

The above points illustrate that participatory Bluetooth
sensing is not only suitable for assessing crowd density (as is
the focus of this paper) and flow directions but that it contains
information about more complex aspects of an event and may
be used to recognize different types of events taking place in
a city.

III. CROWD DENSITY ESTIMATION

A. General Principle

An obvious way to estimate the crowd density is to perform
a scan for discoverable devices and assume that the number
is an indication of the number of people in the vicinity
defined by the Bluetooth range (typically around 10 meters).
Unfortunately, this simple approach contains a number of
problems. Firstly, there is the issue of sufficient statistics. With
the scan limited to a radius of about 10 meters (approximately
a circle with an area of 300 m2) anything between a few and
a few hundred people can be within range. While in a dense
crowd with a few hundred people we may get a representative
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Fig. 2. Visualization of Bluetooth discoveries in relation to a consistent
15 second time windows. The x-axis of each sub-plot represents the number
of Bluetooth discoveries and the y-axis represents the proportion (percentage)
of time windows with a certain number of Bluetooth discoveries. The time
windows are based on the whole experiment duration and on all experiment
participants. Each sub-plot represents one experiment. Shown on the top left:
the largest scale and lasting several day festival in Zurich (Switzerland) (nearly
1000 participants, 72 hours, 1.5 km2 area), which is presented in this paper.
For comparison we added visualizations of multiple previous small scale and
short time experiments in no specific order: An experiments at a soccer public
viewing event in Kaiserslautern (Germany) (10 participants, 4 hours, 1600 m2

area), an experiment at the Octoberfest in Munich (Germany) (2 participants,
3 hours, 7500 m2 area), an experiment around the soccer stadium ”Allianz
Arena” in Munich (Germany) before and after a soccer match (8 participants,
2 hours, 14,000 m2 area), an experiment at a street festival in Valetta (Malta)
(10 participants, 2 hours, 57,000 m2 area), and an experiment in and around
the soccer stadium ”Wembley” in London (Great Britain) before and after a
soccer match (10 participants, 2 hours, 18,000 m2 area).

Fig. 3. Distribution showing the proportion of Bluetooth scanning devices
to be accounted for Bluetooth discoveries. The bar chart shows the index
of the Bluetooth scanning devices in sorted order (x-axis) with respect to
the number of individual Bluetooth discoveries (y-axis). The y-axis is shown
in log scale to visualize the wide range of discoveries from one to 7964
Bluetooth discoveries per Bluetooth scanner. Apparently broad bars are not
to be confused with a single bar but multiple bars close to each other.

sample, in less crowded areas we are likely to see very strong
variations between samples. Assuming the probability of any
single user having a discoverable Bluetooth device to be
averagely 10% and 20 people are within range the average
number of discovered Bluetooth devices will be only two.
While meeting in a space with exactly two technophile friends
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Fig. 4. The aggregated Bluetooth topology of the whole event duration
visualized as a graph. The circular layout is caused by the spring-embedder
based ForceAtlas2 (gravity and repulsion based) graph visualization algorithm.
Due to the large number of edges (an edge equals a distinct Bluetooth
discovery) these appear as bluish blur in the background. Blue dots represent
Bluetooth scanners. The larger a blue circle (and proportionally more blue)
is the more discoveries were made by a certain device. Small white circles
represent discoveries.

having Bluetooth switched on will also result in two Bluetooth
discoveries. Thus we may sometimes be in a group of people
who do not even have activated mobile phones while at other
times we may be surrounded by a group where everyone has
an active Bluetooth device. Secondly, there is the question
of signal attenuation. At 2.4 GHz (which is the transmission
frequency of Bluetooth) the human body has a high absorption
coefficient. This means that in a dense crowd (where we
would expect to have good statistics) the effective scan range
is reduced and therefore ”falsifying” the results. Finally, we
have to consider cultural factors. This means that the average
number of people carrying a discoverable Bluetooth device
may significantly vary depending on who the persons in the
crowd are. For the same crowd density at a student party of
a technical university a different number of devices may be
present than at a fifth division soccer game in a poor rural
area.

In our previous work [2] we investigated a collaborative
Bluetooth based crowd density measurement approach. How-
ever, the methodology of the previous experiment was different
and served as an initial study on the feasibility of Bluetooth
based crowd density. In the previous work we performed
an experiment in a controlled environment during a public
viewing event during the european soccer championship (see
Figure 2, a soccer public viewing event in Kaiserslautern
(Germany)). The experiment persisted of 4 hours (1 hour
during arrival, 2 hours during and 1 hour during departure).
The experiment took place in a 1600 m2 rectangularly fenced
area with just a single entry and exit point while most of

the event visitors stood on the spot without moving after
the arrival. During the experiment we instructed students in
five groups of each two people to move consistently along
a pre-defined imaginary path within the fenced area during
the three periods of the experiment. A walk along the path
was finished in less than three minutes and then repeated
in reverse. In the previous approach we developed features
and built the method on Bluetooth discovery of constantly
two nearby scanning devices (one device per person, two per
group) where we analyzed variations of Bluetooth discoveries
between both participants with a fixed spatial connection.

In the work described in this paper we have not set any
requirements to the participants behavior. Nearly 1000 partici-
pants moved freely at any desired speed and direction without
any influences from us. Neither we applied methods from
previous work or analyzed continuous groups of participants
since time periods of two constant close-by Bluetooth scanning
participants was insignificant. The covered experiment area is
heterogenous consisting of many streets, footways, pedestrian
zones, parks, stages and food courts which are divided by
buildings, bridges, a river and a lake. Visitors either stood
statically at one point (i.e. at a music stage, at the water-front
spectator zone, etc.) or move in the same (before beginnings
of mass events) or move in different directions while strolling
around or spreading out (from train stations, etc.).

B. Advanced Method

The proposed advanced method builds on features which
go beyond of just counting Bluetooth discoveries. Our main
contribution lies within the new features presented in para-
graph III-B1. Bluetooth scan information is the main com-
ponent of the feature set but also GPS sensor information is
taken into account. Our approach was to aggregate sensor data
from multiple participants to obtain a statistical validity which
had the aim to achieve a higher robustness regarding noise
and estimation accuracy compared to the trivial approach by
just counting the Bluetooth discoveries. This aggregation was
applied to twelve different event zones defined by us according
to the event schedule and event map. Secondly, we aggregated
the sensor data by time, either with a time window of ten or
30 minutes. As a result of the spatio-temporal aggregation we
obtained one 12-dimensional feature vector per time window
and event area. All in all we obtained 5184 (for a 10 minute
time window) respectively 1728 (for a 30 minute time window)
feature vectors. For our regression analysis we built on top
of established methods. We applied a feature selection using
M5’s method (step through the features removing the one with
the smallest standardized coefficient until no improvement
is observed in the estimate of the error given by Akaihe
information criterion) and eliminated collinear features. After
we obtained the set of feature vectors we built a regression
model based on the feature vectors and computed the ground
truth value for each feature vector (see section III-B2). This
crowd density estimation method was then applied on the
feature set for evaluation in section III-C.

1) Feature Definition: We introduce 12 features which were
computed based on the Bluetooth discoveries and the GPS
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location information of the nearly 1000 Bluetooth scanning
participants. The data was stored in the MongoDB database
and features were developed later after the end of the event.
Information from other participants which served as a source
of ground-truth was intended not to be involved in computing
the features. Following, the proposed features are described.
(1) The average speed of the scanning devices (sensors)
indicates different crowd states: If the speed is low either
the scanner is stationary and crowd is stationary (due to high
crowd density or on-going event) or the scanner is stationary
(spending time at food or drink stand) and crowd is passing
by. We calculated the average speed by averaging the speed
values of all sensors during discovering Bluetooth devices. We
did not take the speed of other non-Bluetooth scanning devices
into account. (2) The average Bluetooth signal strength (RSSI
value) reflects a rough statement about the average distance
and signal attenuation between the scanning device and dis-
covered devices. We calculated the average signal strength of
all Bluetooth identifiers including multiple discoveries of the
same Bluetooth identifier by oner or multiple scanners and
then averaged the value. (3) The variance of the Bluetooth sig-
nal strengths indicate the deviation (due to different distances
and signal attenuation) of signal strengths. We calculated the
variance of the signal strength of all Bluetooth discoveries
including multiple discoveries of the same Bluetooth identifier.
(4) The variance of subsequently measured Bluetooth signal
strengths for a specific Bluetooth identifier is influenced by the
crowd behavior. Are two devices in same distance to each other
and does the crowd not move in between the signal link, the
variance is lower than in a moving crowd. We calculated the
variance of the signal strength of Bluetooth discoveries with
the same Bluetooth identifier detected by the same sensor. We
then averaged the values of all discoveries and sensors. (5) The
feature is defined as the average value of re-discoveries of
each Bluetooth identifier address by all sensors represents the
overall crowd motion in an event area. We calculated this by
counting the re-discoveries of the same Bluetooth identifier
by any sensor. All sensor act as an aggregated sensor, as
if the discoveries were coming from one sensor. If a re-
discovery was made by the same sensor or another sensor
is irrelevant. We then average the number of re-discoveries
over all current Bluetooth identifiers. (6) By analyzing the
average number of scanners discovering a certain Bluetooth
identifier per time window we can make an assumption of
the coverage and scanner distribution in the event area. We
calculated this feature by the sum of sensors which discovered
a unique Bluetooth identifier and then averaged this over all
current Bluetooth identifiers. (7) The diversity of individual
sensors is defined by the overall average of the relation
of uniquely discovered devices to the sum of non-unique
devices discovered. This feature was calculated by the sum
of Bluetooth identifiers which were only discovered by one
sensor, divided by the sum of Bluetooth identifiers discovered
by two or more sensors. (8) We define the duration of device
visibility periods in a given time window as the maximum
timespan a Bluetooth identifier was recognized by all sensors.
Averaged over all scanners the length of the stay depicts
the potential to be discovered by any sensor in the area.

This feature was calculated by retrieving the first and last
occurrence of a Bluetooth identifier which was discovered
by any sensor in the time window. We then averaged the
duration of all Bluetooth identifiers. (9) The average time of
Bluetooth sensors in the area measures the ”scan-ability” of
an area and takes time spans into account where no or few
Bluetooth devices were found. We averaged the duration of
active sensors in the given time window and of course the
given area. We include three basic features in our feature set.
(10) The total number bluetooth discoveries reflects the sum of
all Bluetooth discoveries including re-discoveries of the same
Bluetooth identifier by any sensor. (11) The unique Bluetooth
device discoveries reflects the sum of all Bluetooth discoveries
excluding re-discoveries of the same Bluetooth identifier by
any sensor. (12) The number of active scanners is another
measure of the ”scan-ability” of a certain time window and
event area. This is calculated by the sum of all active sensors
in the given time window and of course the given area.

2) Ground Truth Definition: To evaluate our proposed
Bluetooth based crowd density estimation method we had to
consider a comparison with the actual number of people in
a certain area. Manual methods for obtaining ground truth
information with a granularity of 10 minutes for each of the
12 event areas were not feasible. First, we did not have the
resources to deploy multiple persons all day long for multiple
days at the wide spread event areas manually noting the
number of people around. Even having the man-power it would
be impossible to continuously count the number of constantly
moving people in a complex area with multiple entry and
exit points. For this reason we designed our experiment
to collect additional ground truth information. While nearly
1000 participants were obtaining Bluetooth discoveries, nearly
30,000 participants (23,400 iOS and 6400 Android OS) ob-
tained ground truth information with an average daily duration
of 3.5 hours on Friday, 4.0 hours on Saturday, 2.8 hours on
Sunday with potential pauses in between (we defined an event
day from from 4 a.m. to 4 a.m.). The average number of
samples per GPS trace was 586 samples on Friday, 643 on
Saturday, and 703 on Sunday (see Table I). We extracted the
ground truth values from the collected data set by counting the
unique event device identifiers in a certain time window and
event area. While we are aware that our ground truth value is
a value smaller than the real number of people (not all people
present participate in the experiment with the provided apps)
we assumed a constant factor to be multiplied with our ground
truth values to achieve the real number of people. Since we
are interested to evaluate our approach as a method to obtain
the crowd density based on a small sample (971 participants
vs 2 million event visitors) compared to a larger sample we
consider calculating the calibration factor in future work.

C. Evaluation and Results

We applied a feature selection using M5’s method and
eliminated collinear features. We identified features (feature
identifiers (2), (4), and (9) defined in previous section) which
did not contribute to information content of the feature vectors.
We then evaluated our crowd density estimation method in
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TABLE III
RESULTS BY EVALUATING THE MODEL WITH DATA SUBSETS REGARDING
DIFFERENT EVENT AREAS. FOR GENERATING THE MODEL ALL FEATURE
VECTORS OF ALL EVENT AREAS WERE SELECTED, WHILE EACH SET OF

FEATURE VECTORS OF EVENT AREAS WAS USED AS A TEST SET. A
10 MINUTES TIME WINDOW WAS USED FOR DATA AGGREGATION. A

PREVIOUS METHODOLOGY (basic2) FOR CROWD DENSITY ESTIMATION
WAS COMPARED AGAINST OUR NEWLY PROPOSED METHODOLOGY

(advanced).

Event Area 1 2 3 4 5 6
Relative absolute error
...basic2 75.6% 80.0% 77.2% 92.3% 61.4% 95.0%
...advanced 67.4% 47.1% 78.9% 88.3% 47.7% 71.8%
Event Area 7 8 9 10 11 12
Relative absolute error
...basic2 79.8% 80.4% 87.8% 62.8% 99.2% 80.1%
...advanced 69.7% 70.6% 80.0% 69.3% 52.5% 97.4%

TABLE IV
LINEAR REGRESSION RESULTS WITH DATA SUBSETS. SHOWING THE

IMPACT OF THE NUMBER OF SCANNERS (x) INVOLVED TO THE CROWD
DENSITY ESTIMATION BOTH ON THE CORRELATION COEFFICIENT AND

RELATIVE ABSOLUTE ERROR.

10 min window 30 min window
Corr.Coeff. Error Corr.Coeff. Error

x ≥ 2 0.76 65.44% 0.87 49.73%

x ≥ 3 0.75 66.44% 0.86 50.88%

x ≥ 4 0.75 59.77% 0.85 49.41%

x ≥ 5 0.75 52.46% 0.84 45.71%

x ≥ 6 0.74 44.89% 0.86 38.54%

x ≥ 7 0.76 39.79% 0.80 33.03%

x ≥ 8 0.64 34.47% 0.83 29.44%

x ≥ 9 0.67 35.71% 0.83 27.47%

x ≥ 10 0.54 28.89% 0.80 26.11%

multiple ways. First, by comparing our new crowd density
method (advanced) to two kinds of basic methods previously
used in literature. One basic method is defined by sim-
ply counting discoverable Bluetooth devices (basic1), which
counts multiple discoveries with the same Bluetooth identifier
multiple times. Another basic method is defined by simply
counting unique Bluetooth device discoveries (basic2), which
counts multiple discoveries of the same Bluetooth identifier
only once. For each method we generated an individual regres-
sion model which is based on all event areas and a temporal
aggregation of ten minutes. As described before we have 5184
feature vectors, while they either have a dimensionality of one
(basic methods) or twelve (our method).

As the evaluation metric we selected the the relative absolute
error, expressed as the percentage of our calculated value devi-
ates from the absolute ground truth value. As a result, method
basic1 results in a high relative absolute error of 75%, while
basic2 results to a slightly better relative absolute error of of
57%. Our advanced method leads to a relative absolute error
of 47%. This was a decrease of 28% regarding the relative
absolute error compared to basic1, which denotes a significant
improvement of our method. We visualized the individual error
values of 5184 feature vectors with the basic2 method in
Figure 5 and the error values of the advanced method in
Figure 6 which show the deviations between actual value (x-
axis, ground truth) and predicted value (y-axis, estimation)

with a temporal aggregation of ten minutes. As visualized in
the scatter plots the approach basic2 tends to exaggerate lower
crowd density values to higher crowd density values, while
our advanced method tends to concentrate values near to the
diagonal line (0% relative absolute error).

Secondly, we evaluated the method of simply counting
unique Bluetooth devices (basic2) and our new crowd density
method (advanced) on individual event areas. With this
evaluation we wanted to see whether the regression model
generated on n − 1 event areas fits to the nth event area.
We generated a regression model for all n − 1 combinations
while the set of feature vectors of the nth event areas was
used as a test set. A 10 minutes time window was used for
data aggregation. The results are shown in Table III. While
our method outperforms the basic2 method in nine of twelve
event areas, our method has a higher relative absolute error at
two event areas and approximately the same relative absolute
error at one event area.

Last, we analyzed the impact of the number of Bluetooth
scanners involved in the crowd density estimation with the
advanced method. For each method we generated an individ-
ual regression model which is based on all event areas and
a temporal aggregation of ten and 30 minutes. The raw data
was not reduced by selecting a range of Bluetooth scanners
on the data set but by selecting subsets of the feature vectors
(each feature vector corresponds to a time-window and an
event area) which complied to the given criteria. We filtered
the feature vectors by the number (x) of Bluetooth scanners
actively scanning (not to be confused with the number of
Bluetooth discoveries). Multiple subsets of the feature vectors
with the attribute of x ≥ 2 up to x ≥ 10 Bluetooth scanners
were selected. For evaluation we used 10-fold cross-validation.
The resulting relative absolute errors are shown in Table IV,
which are ranging from 65% (x ≥ 2) to 28% (x ≥ 10), and
respectively regarding a time window of 30 minutes ranging
from 49% (x ≥ 2) to 26% (x ≥ 10). If the minimization
of the relative absolute error is considered, each additional
Bluetooth scanner decreases the error in average by 5% (ten
or 30 minutes time window). If the time window duration
is considered, the relative absolute error decreases by 9%
in average while choosing a window size of 10 minutes
respectively 30 minutes with the same number of Bluetooth
scanners available. The error decrease is more significant when
x ≥ 2 (16%) as if x ≥ 10 (3%) is considered.

IV. CROWD MOTION CHARACTERISTICS

We evaluate the general feasibility to detect crowd flows
in relying on mobile Bluetooth scanning devices and present
qualitatively results by matching the extracted information
to event schedule ground truth. The motivation of Bluetooth
based crowd flow sensing is based on the assumption that just
a few actively participating Bluetooth scanners are needed.
Other surrounding people contribute indirectly just with their
enabled Bluetooth radio module without the need of an ex-
plicitly installed application. For example if a single Bluetooth
scanner senses five surrounding devices the statistical validity
id higher than if a single sensor is measuring only its own
movement.
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Fig. 5. The scatter plot shows the result of the linear regression evaluation
with basic crowd density features. Each ”+” symbol denotes a 10-minute
snapshots from one of the 12 event areas. The x-axis shows the resulting
linearly combined value of the feature vector, and the y-axis is defined by
the ground truth value. The blue diagonal line denotes the 0% relative error
value. The coloring visualizes the relative error of the predicted value (x-axis)
regarding the actual value (y-axis). The range of the color scale is limited from
0.0 (0%) to 1.0 (100%) and values with a relative error larger than 1.0 are
also colored red.
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Fig. 6. The scatter plot shows the result of the linear regression evaluation
with advanced crowd density features. Each ”+” symbol denotes a 10-minute
snapshots from one of the 12 event areas. The x-axis shows the resulting
linearly combined value of the feature vector, and the y-axis is defined by
the ground truth value. The blue diagonal line denotes the 0% relative error
value. The coloring visualizes the relative error of the predicted value (x-axis)
regarding the actual value (y-axis). The range of the color scale is limited from
0.0 (0%) to 1.0 (100%) and values with a relative error larger than 1.0 are
also colored red.

Bluetooth scanners might be static or moving. Those can be
selected dynamically by their current association (which might
change) to a certain area. The crowd flow can be measured
between two areas. An area acts as a virtual checkpoint
where Bluetooth devices are discovered. If a Bluetooth device
identifier is discovered at another checkpoint a transition from
area A to area B can be determined. Each transition detec-
tion is attributed with the duration of the transition. Virtual
checkpoints can cover corridors (i.e. bridges, underpasses,
streets) or any other places (larger and more distant areas)
with numerous paths between two locations. While the latter
might be interesting for analyzing patterns in visitor flows for
marketing reasons, the former is most interesting for real-time
analysis of emergencies in crowded areas. The tragic example
of the Love Parade 2010 in Duisburg (Germany) demonstrated
that such bottle necks can lead to fatal accidents.

We demonstrate the general feasibility to detect crowd flows
in relying on mobile Bluetooth scanning devices by Figure 7
which visualizes all Bluetooth device identifiers compared
to the number of Bluetooth scanners discovered a Bluetooth
identifier. In total 12933 discovery identifiers are involved.

Around 3700 Bluetooth identifiers were discovered by just one
scanner. In contrast some Bluetooth identifiers were discovered
by up to 67 scanners. Figure 8 visualizes all Bluetooth device
identifiers compared to the number of locations they were re-
discovered. Locations are defined individually for a Bluetooth
identifiers. A new location is represented by a discovery which
is at least 10 meters away from any other discovery of the same
Bluetooth identifier. Nearly 6000 Bluetooth discovery identi-
fiers were not re-discovered at another location. In contrast
around 7000 were re-discovered at another location at least
once, with a maximum number of 75 locations.
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Fig. 7. Bar chart visualizing the Bluetooth discovery identifiers (x-axis, sum:
12933 discovery identifiers) which were discovered by different Bluetooth
scanners (y-axis, log scale). The values are sorted by the ascending number
of Bluetooth scanners. Wide bars are not to be confused with a single bar,
but many contiguous equally high bars. 3700 Bluetooth discovery identifiers
were discovered by just one scanner, while the remainder was discovered by
at least two different Bluetooth scanners (maximum 67 Bluetooth scanners
discovered the same Bluetooth discovery identifier).
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Fig. 8. Bar chart visualizing the Bluetooth discovery identifiers (x-axis, sum:
12933 discovery identifiers) which reappeared (by proof of discovery) at
least once and the respective number of different locations (y-axis, log scale)
defined by a minimum distance of 10 meters to any previous discovery of the
same identifier. The values are sorted by the ascending number of locations.
Wide bars are not to be confused with a single bar, but many contiguous
equally high bars. Nearly 6000 Bluetooth discovery identifiers were not re-
discovered at another location, while around 7000 were re-discovered at least
once (maximum location of re-discoveries: 75 locations).

We studied the crowd flow on the Quaibridge which acted
as a corridor between the western and eastern part of the city
and as a spectator area at the same time. Figure 9 shows
a satellite view with marked zones we used for transition
monitoring. We aggregated all available scanners in each
zone and time window. The extracted transition information
on the Quaibridge during two days is shown in Figure 10
where separate time series show the crowd flow from the
west to the east and the other way around. The time series
simply represent the count of consecutive Bluetooth identifier
observations within a 30 minute time window. Figure 10
qualitatively reveals a matching between the time series and
the event schedule ground truth. A strong connection between
events times where spectators were stationary or walking
around could be determined with the event calendar ground
truth information. During three major events on lake Zurich
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the crowd flow on the monitored region quickly declined. At
time (A) fireworks with music were presented (ground truth
event calendar entry: Friday 10:30 p.m. to 11 p.m.), at time (B)
a skydiver show was performed (ground truth event calendar
entry: Saturday 4 p.m. to 4:30 p.m.), and at time (C) an
acrobatic show was performed (ground truth event calendar
entry: Saturday 10 p.m. to 10:15 p.m.).

This underlines our hypothesis that besides Bluetooth based
crowd sensing we can also achieve Bluetooth based crowd flow
monitoring with mobile Bluetooth scanners. This observation
is new compared to previous literature where stationary Blue-
tooth scanners were used.

676
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484
491

559

Fig. 9. Diagram showing Bluetooth re-discoveries on the Quaibridge. The
numbers towards the end of a line section represent the number of Bluetooth
devices re-appearing afterwards at the target zone. The blue colored regions
represent the detection area.

Fig. 10. Time series of the crowd flow from the west (left blue area in figure 9)
to the east (right blue area in figure 9). (A) fireworks (ground truth event
calendar entry: Friday 22:30 to 23:00), (B) skydiver show (Saturday 16:00 to
16:30), and (C) acrobatic show. The maximum time lag between consecutive
observations of the same device at different locations are 30 minutes. A strong
peak can be detected on Friday during the arrival time between 6 p.m. and 9
p.m. and at around 11 p.m. during the departure time.

V. CONCLUSION

The work presented in this paper clearly shows the potential
of using Bluetooth scanning as means of monitoring crowds in
urban environment. The accuracy of our density estimation is
well within needs of typical crowd management applications.
The analysis of the data set (section II) has demonstrated that
the analysis strongly depends on a relatively small number

of highly mobile nodes. This means that, for more spatially
constrained events just equipping the security personnel with
scanners may be enough. Similarly the technique could support
urban crowd monitoring outside specific events. To this end
one would need to recruiting volunteers who regularly move
around the city a lot. How many people need to be recruited
and what mobility patterns would be needed is something that
would have to be studied empirically in a real life experiment.

Building on insights from section II in future work we
will investigate which types of users contribute to the result
better, whether different different patterns can be extracted at
different time periods, and to what degree aspects such as the
distribution of the number of found devices per scan and the
temporal and spatial distribution of the reoccurrence of devices
in the scans can be used to reason about the character of events
on a more complex level.
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