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This paper describes our experience in designing, developing and deploying systems for supporting human–robot teams
during disaster response. It is based on R&D performed in the EU-funded project NIFTi. NIFTi aimed at building
intelligent, collaborative robots that could work together with humans in exploring a disaster site, to make a situational
assessment. To achieve this aim, NIFTi addressed key scientific design aspects in building up situation awareness in
a human–robot team, developing systems using a user-centric methodology involving end users throughout the entire
R&D cycle, and regularly deploying implemented systems under real-life circumstances for experimentation and testing.
This has yielded substantial scientific advances in the state-of-the-art in robot mapping, robot autonomy for operating in
harsh terrain, collaborative planning, and human–robot interaction. NIFTi deployed its system in actual disaster response
activities in Northern Italy, in July 2012, aiding in structure damage assessment.

Keywords: robot-assisted disaster response; human–robot team; user-centric design; disaster response

1. Introduction

NIFTi was a large-scale four-year integrated project funded
by the EU Cognitive Systems unit.[1]1 The NIFTi con-
sortium consisted of six academic partners (i.e. the insti-
tutions of the authors of this paper), sharing experience
in human–robot interaction, human factors and cognitive
user modeling, field robotics, spatial and visual modeling of
outdoor environments, and flexible planning and execution;
two end user organizations (the Italian National Firebrigade
Corps and the Firebrigade of the City of Dortmund) and
BLUEBOTICS,2 a company who developed the novel rover
platform Absolem for NIFTi (Figure 3a). NIFTi’s aim was
to investigate cognitive architectures which could mean-
ingfully sense, act, and cooperate with humans in real-life
environments.

Regarding the issue of cooperation in cognitive archi-
tectures, when NIFTi started, it was entering a research
landscape that primarily focused on autonomy, and high-
level communication. Little or no attention was given to
making the cognitive architecture adapt to the human in un-
derstanding the environment, planning and acting, commu-
nicating. In the words of the leading experts on human-robot
teamwork: ‘Whereas early research on teamwork focused
mainly on interaction within groups of autonomous agents

∗Corresponding author. Email: ivana.kruijff@dfki.de

or robots, there is a growing interest in better accounting
for the human dimension. Unlike autonomous systems de-
signed primarily to take humans out of the loop, the future
lies in supporting people, agents, and robots working to-
gether in teams in close and continuous human–robot inter-
action.’ (Sierhuis and Bradshaw, p.c. 2009). NIFTi adopted
the goal to bring the human factor into cognitive architec-
tures while developing robots capable of collaborating with
human team members under the complex outdoor circum-
stances of a disaster response.

To address this aim, NIFTi put strong emphasis on system
integration, embedded within a user-centric approach to
system development. The two fire brigade organizations
included as partners in the NIFTi consortium enabled close
involvement of end users, the ultimate stakeholders in this
game, throughout the entire R&D cycle. They provided
input to system specifications, participated in yearly ex-
ercises and evaluations, and provided feedback for further
iteration cycles of the development process. Emphasis on
system integration required that all developed functionality
be integrated in the NIFTi system, and exposed to evalu-
ation by the end users. To facilitate this across-the-board
integration, NIFTi adopted a scenario-driven roadmap. The
roadmap defined progressively more complex real-life

© 2014 Taylor & Francis and The Robotics Society of Japan
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1548 G.J.M. Kruijff et al.

scenarios: A tunnel accident (years 1 and 2), a chemical
freight train accident (year 3), and an earthquake disaster
response (year 4). These scenarios were all instantiated at
end user training areas, subjecting the NIFTi system to
realistic circumstances.

The roadmap simultaneously drove R&D, and brought
the resulting systems closer to the possibility of real-life
deployment. Needless to say, the lessons we learnt along
the way were hardly ever foreseeable in advance. Experi-
ments and tests each year brought new insights, to which we
continuously adjusted our plans and the direction our R&D
would take from that point on. The result was a convergence
of R&D with real-life needs, real-life possibilities, and a
real-life ability to actually aid in a disaster response. This
ability was put to a test successfully during the summer
of 2012, when NIFTi deployed its then-actual system to
support a human–robot team in the structural damage as-
sessment in Northern Italy during the aftermath of the July
2012 earthquake in the Emilia-Romagna region.

This article describes the experience NIFTi gained in
designing, developing, and deploying human–robot team
systems for robot-assisted disaster response. Section 2 pro-
vides more details on the NIFTi roadmap and scenarios.
In Section 3, we describe the integrated system and its
functional modules. Section 3.1 outlines the system archi-
tecture. Section 3.2 describes novel methods for building
up robot-centric, three-dimensional models of dynamic en-
vironments – integrating various forms of perception (3D
laser, visible range panoramic camera, thermal imaging).
Section 3.3 addresses the functionality needed to bridge
between system- and human-centric situation awareness.
Section 3.4 then describes how we built on that to provide
the robot capabilities for autonomously traversing complex
terrain, including crossing gaps and climbing stairs. Section
3.5 provides an insight into handling human–robot collabo-
ration. Section 3.6 provides more detail on how information
about the situation is made available through various views
in the graphical user interfaces for the human team members
– portable, as well as a ‘static’ setup in a remote command
post. Section 3.7 addresses one crucial aspect of teamwork,
namely, handling cognitive load. Section 4 shows how our
end user experiments reveal that this has a genuine, positive
impact on ability for human team members to build up a
situation awareness ‘through,’ together with, our robots.
Finally, Section 5 recapitulates the experience of the actual
deployment of our system during the earthquake response
in Northern Italy in July 2012. Section 6 provides the con-
clusions.

2. Scenario-driven R&D

NIFTi organized its R&D around a sequence of scenarios
that gradually increased in complexity, including
operational context complexity (from flat two dimensional,
to semi-unstructured three dimensional) and collaborative

context complexity, such as team size, its composition, and
geographical distribution (from 1 human/1 robot to a geo-
graphically distributed team consisting of multiple humans
and robots). The robots used in NIFTi were an Unmanned
Ground Vehicle (UGV, Figure 20) and an Unmanned Aerial
Vehicle (UAV microcopter, Figure 21).

This scenario roadmap played a key role in providing
an integrated conceptual picture for the project, to strongly
drive integration of the various strands of R&D. Further-
more, by basing the scenarios directly in real-life situations
in disaster response, we could ground R&D in real needs
of Urban Search and Rescue (USAR) teams. The sections
below describe the roadmap and the individual scenarios in
more detail.

2.1. Roadmap

The NIFTi scenarios were designed in close cooperation
between developers, and the USAR teams from the end
user organizations involved in NIFTi as partners (Firebri-
gade Dortmund, Germany and National Firebrigade Corps,
Italy). This was to ensure the scenarios would achieve a
balance between practical relevance and feasibility, and
necessary scientific progress. The result was a staged, it-
erative form of user-centric design cycle that addressed
incrementally more complex situations.

On the one hand, the surroundings became incremen-
tally harder for the robots to operate in. We went from flat,
largely two-dimensional terrain like the road surface in a
tunnel, to semi-unstructured debris-strewn environments of
an earthquake disaster. For robots, this necessitated the de-
velopment of increasingly more observational capabilities
(from two dimensional to three dimensional), and progres-
sively higher degrees of autonomy (three-dimensional path
planning, adaptive morphology).

On the other hand, the organizational structure of the
team become more realistic over the years. In Year 1, the
organizational structure was non-existent, just a UGV and
an operator. After that initial experience, we changed to
a human–robot team setup. Eventually, the team included
humans and robots, both UGV and UAV, working together
in various locations – a genuinely geographically distributed
team. By Year 4, robots were able to operate as team mem-
bers in the sense of having the ability to build up situation
awareness that was not immediately known by the operator
and had to be shared.

2.2. Scenario design

The joint scenarios that guided each year R&D were de-
signed to evaluate all technical and operational require-
ments and to provide insight into the major determinants of
human–robot team performance. To address important op-
erational task demands, the environment provided realistic

D
ow

nl
oa

de
d 

by
 [

D
eu

ts
ch

es
 F

or
sc

hu
ng

sz
en

tr
um

] 
at

 0
4:

08
 2

6 
Ja

nu
ar

y 
20

15
 



Advanced Robotics 1549

challenges, events and stressors like victim screams, and
(simulated) radioactive materials added at certain locations.

During the yearly scenario-based evaluation, the fire-
fighter team members (e.g. the commander, UGV operator,
UAV operator, or in-field rescuer) worked with the robots
according to the role that was specified in the scenario.
All the firefighters had an interface to show them (geo-
graphic) information [2]; the commander could contact both
the UGV operator and the in-field rescuer, and vice-versa.
Figure 2 shows the final setting for the UGV operator,
where he can control the robot, get an overview of the
situation and interact by walkie-talkie to the commander.
Following an incremental R&D-approach, the complex-
ity of the guiding scenario increased on three dimensions
each year: scope of robot roles (i.e. level of autonomy and
breadth of operations), team complexity (i.e. size and dis-
tribution), and terrain’s complexity (i.e. accessibility and
apparentness). Figure 1 shows an impression of each year’s
setup.

The following is a brief chronological overview of how
the NIFTi scenarios evolved and the convergence between
R&D and real-life deployment came about.

The first year scenario comprised a truck accident in a
tunnel, which was dangerous to enter for humans. A single

remotely located operator teleoperated a UGV in the tunnel
to create a two-dimensional map populated with car objects
recognized by the robot. We focused on bringing together
the various pieces of individual robot functionality (control,
mapping, vision) with a basic, end user-oriented graphical
user interface for teleoperating the robot. Admittedly, the
first end user pilot study at the training area of the Firebri-
gade of Dortmund, Germany was less successful than we
would have wished. We faced highly familiar problems such
as network issues (too low bandwidth, bad connectivity),
robot hardware issues (short battery operating time, blowing
a fuse every few minutes), and a wide range of human
factor issues. Consequently, the local firebrigade chief com-
mented, when he was asked whether such robots would ever
play a role in disaster response: ‘No ... At least not in my
lifetime.’ (D. Aschenbrenner, Dortmunder Zeitung, January
14 2011). We concluded that we needed to move from the
‘single robot, single operator’ setup to a full-scale human–
robot team, and to get a better grip on technology.

In the second year, we continued with the tunnel accident
scenario, but now with a larger human team operating from
a remote command post, and more difficult operational con-
ditions, involving more smoke, flickering light, and more
debris. We introduced the new UGV platform developed in

Figure 1. Year 4 scenario setup.
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1550 G.J.M. Kruijff et al.

Figure 2. Scenario impressions over the years.

close collaboration with the end users involved in NIFTi (cf.
Figure 20). In addition, also a UAV microcopter was added
to the rescue team (cf. Figure 21). Furthermore, we moved to
a human–robot team setup. The human team members took
on various roles, such as a Mission Commander, UGV/UAV
Operator, and/or Mission Specialist.

During a joint exercise at the Firebrigade of Dortmund in
summer 2011, end users and researchers teamed up, sitting
in a real-life (large) command post to remotely operate the
new UGV and to collaborate with an in-field UAV pilot,
to explore a substantially more complex disaster site, a
burning multi-story building. Robot control, vision, and
mapping had significantly improved to move toward build-
ing up a robot-centric three-dimensional understanding of
the environment it was operating in. Human team mem-
bers were provided access to this robot-centric situation
awareness through an integrated user interface setup, fa-
cilitating multiple operational views (camera, map), and
tactical views (team-level operations). All of this was si-
multaneously pushing the state-of-the art and showing how
we were taking on board the lessons learnt from working
with end users. When reporters once again asked the local
firebrigade chief for his opinion on the practical feasibility
of these robots, his response was: ‘The first deployment has
moved to foreseeable future.’ (D. Aschenbrenner, Die Zeit,
August 25 2011)

In the third year, we moved to a scenario of an accident
with a chemical freight train at a large terrain. Whereas the
previous tunnel accident scenario was set in a relatively
confined, enclosed two-dimensional space cluttered with
non-traversable objects, the train accident saw the intro-
duction of large open space, a combination of static (bus,
train, cars) and traversable three-dimensional objects and
structures (stairs, platforms, pallets), which made the terrain
passable with difficulty.An in-field rescuer was added to the
team, increasing team’s size and geographical distribution.
For R&D, this put three-dimensional robot-control and -
mapping into the foreground, as well as the issue of building
up and maintaining distributed situation awareness.

The real field test of that system came during the sum-
mer of 2012: Not in the form of experiments at a train-
ing site, but during an actual deployment in Northern Italy
during the aftermath of the July 2012 earthquakes. NIFTi
deployed its then-actual system to support a human–robot
team in exploring two large sites for structure damage as-
sessment: A church, and a cathedral. During the missions in
the cathedral, the robot was partly operating beyond line-
of-sight. During this deployment, the enormous value of
having worked with end users before became clear once
more. Initial scepticism on the side of local rescue workers
gradually changed into full-scale adoption as they came to
realize what information our robots could really provide
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Advanced Robotics 1551

them with. Furthermore, the difficult circumstances under
which we were operating there (long days, intense heat,
stress) confirmed the need for human–robot teaming:Ateam
can manage operating in these situations, where a single
operator can hardly be expected to endure.

The fourth year built on that experience, moving on the
roadmap to the earthquake scenario with multiple levels to
explore. Specific dynamic areas could only be explored by
an UAV, UGV, or a human rescuer. Continuous team co-
ordination and communication was crucial for an adequate
disaster response. The experiments with this multi-human,
multi-robot team were run at two sites of the Italian fire-
brigade: a USAR training area in Prato and an abandoned,
partly destroyed hospital near Pisa.

3. System description

The NIFTi system constitutes a complex ecology of robots,
network communication infrastructure, and a multitude of
graphical user interfaces (mobile, smart-table, monitor).All
of these components share the same network. We use the
ROS framework [3] as main middleware for communicating
information between these different components.

In summary, for the system & network infrastructure,
we used ROS for running processes on the robot. Data
were streamed over WiFi to one or more operator control
units (OCU), other visualization tools (RViz), and for log-
ging purposes (rosbag’s). Off-board computers were used
for processing three-dimensional laser range data (point
clouds), and for the OCU and visualization. We used a
2.4 GHz WiFi network, with an antenna nearby the en-
trance to the actual deployment area. The antenna was 50 cm
long, had 14 dBi gain, and was extended with a Ubiquiti
high-power bullet enabling a transmission power of maxi-
mally 28 dBm. Each robot (UGV and UAV alike) was also
equipped with a bullet, and an omni-directional rod antenna
with a 9 dBi gain. As we were mostly working in large open
spaces, we did not experience substantial problems with
network coverage.

3.1. Overall system outline

The NIFTi UGV has been developed in close collaboration
between research partners and end users based on the sys-
tem architecture shown in Figure 3. The system uses the
ROS framework [3] for lower level control and the CAST
middleware [4] for higher level processing.

Besides the UGVs, light UAVs are used during USAR
missions in NIFTi to get an overview. Because of their
limited processing power, the UAVs are controlled by a
significantly smaller software system, also based on ROS,
such that they can be used mainly as flying cameras – either
teleoperated or semi-autonomously.

The software system according to Figure 3 is distributed
between the on-board PC of the UGV and some stationary

computers at the control center. Because of the message-
passing features of ROS, this distribution can be very flex-
ible and is defined by a set of launch files during run-time.
However, the ROS stacks of the lowest layer, providing the
drivers for the UGV and enabling the platform control, must
definitely run on-board. In the layers above, there are several
ROS stacks implemented to achieve particular capabilities
needed for the USAR domain:

• object detection based on image processing, e.g. to
detect victims automatically;

• creation of metrical maps based on the LIDAR
sensor mounted in front of the UGV;

• two-dimensional and three-dimensional metric path
planning;

• multi-modal (speech, GUI) human–robot interac-
tion based on the RViz package of ROS.

These ROS stacks are connected to the CAST-based com-
ponents by a bridge that transforms ROS messages to the
CAST-shared memory and vice versa. The higher layers,
which are implemented as CAST components, include:

• conceptual and ontological understanding of the
environment based on different kinds of maps (met-
rical, topological, functional);

• communicating the understanding from these con-
cepts about the environment (including areas, ob-
jects and actions to be performed) to other high-
level processes;

• high-level planning and execution for joint explo-
ration.

These high-level components enable the UGV to commu-
nicate with a human through natural dialog and to share its
situation awareness within a mixed human–robot team. The
following sections cover the essential contributions NIFTi
achieved in its final year.

3.2. Robot-centric situation awareness

One of the ways to build robot-centric situation aware-
ness is to design algorithms performing mapping of the
robot sensory data into situation interpretation in the robot
perspective (given for example, by the interfaces of algo-
rithms that the robot exploits). Such interpretation of the
situation awareness vastly differs from the user perspective
since its primary goal is the effectiveness of the used algo-
rithms. In this field, we contributed in two ways: first, we
developed an algorithm for terrain perception—the terrain-
adaptive odometry [5]; second, we implemented a robust
three-dimensional metric mapping algorithm; both contri-
butions improve the robot localization and are described
below.
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1552 G.J.M. Kruijff et al.

Figure 3. (a) NIFTi ground vehicle and (b) system architecture for this single robot considered as a team member.

3.2.1. Terrain-adaptive odometry

In our approach, we exploited the concept of sensing through
body dynamics [6] and combined state estimation tech-
niques with machine learning. By using the same type of
inertial sensors, the Xsens MTi-G unit, we even attempted to
prove our concepts across platforms of vastly different mor-
phologies. Initially, the proof of concept was tested and eval-
uated on a quadrupled robot described in [7]. These results
were then extended by a new methodology described in [8]
and successfully applied to the NIFTi UGV platform.[5,9]
Furthermore, we developed algorithms necessary for pro-
cessing the raw inertial data; see details in [10].

The terrain adaptive odometry algorithm was initially in-
spired by the research in robotic terrain classification
(RTC).[11] Contrary to the standard RTC approaches, we do
not provide discrete terrain categories (usually labeled in the
user perspective as sand, rubble, soil, etc.), but we classify
the terrain directly by the values of coefficients correcting
the robot odometry. These corrections make the odometry
model naturally adaptable to the terrain due to inherent slip
compensation. During experimental evaluation on rough
outdoor terrain, the overall improvement we achieved in
root-mean-square error in position with respect to a state-
of-the-art odometry model was approximately 68%.

3.2.2. Three-dimensional metric mapping

Based on the terrain-adaptive odometry, we assemble indi-
vidual laser scans into full three-dimensional point clouds.
Such a point cloud is a three-dimensional representation of

the contents of the field of view of the scanner at its current
position. With proper calibration between the omnicamera
and the laser, it is possible to add color information to each
individual point (see Figure 4(a)).

In order to reconstruct a consistent representation, we use
libpointmatcher,3 our open-source implementation
of the Iterative Closest Point algorithm.[12,13] With this
implementation, we are able to process all point clouds
online [14] and therefore, to build a metric representation of
the environment during exploration. An example of a result
is shown in Figure 4(b).

This processing also corrects the pose estimate of the
robot which allows for a more precise localization infor-
mation. It can also be used in a more robust localization
framework fusing odometry, inertial measurements, visual
odometry, and this laser odometry.[15]

3.3. Bridging from robot-centric to human-centric situ-
ation awareness

Robots use their various sensors to build up a three-
dimensional structural representation of an environment.
The primary purpose of that representation is to facilitate
robot operations. These include localization, path planning,
and autonomous adaptation and driving.

We have introduced further steps of sensory interpreta-
tion, to facilitate more user-centric forms of situation aware-
ness. Given the scenarios we focused on, these include
object detection including victim detection, and functional
mapping. The sections below describe these in more detail.
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Advanced Robotics 1553

Figure 4. (a) Assembled point cloud with color information. (b) Three-dimensional Point cloud map of a staircase.

Like the structural representations, these interpretations can
be made available to the users in the multi-modal GUIs.

3.3.1. Object detection

Victim detection in disaster sites proved to be very dif-
ficult using only visual information. We, therefore, build a
layered sensory data representation, see Figure 5. Thermal
image (two-dimensional array of temperature) and depth
images (two-dimensional array of distances) are reprojected
(computed) as if they were captured from the same frame
(possibly with some data misses due to occlusions). As the
RGB-D sensor does not work reliably outdoors we construct
a fused depth image, taking inputs from RGB-D and laser
line scans, see Figure 6(a). The present detector uses depth
as a scale estimate for aggregation of temperature and skin
color likelihoods, sample results are shown in Figure 6(b)
and (c), respectively. Distribution of human temperature is
modeled as a mixture of two components - skin and clothes.
The parameters of the clothes’ component are dynamically
adapted according to the temperature of the background.
In order to detect non-victim objects, we developed a very
efficient visual detector.[16] The detector discovers that the
successively evaluated features in a sliding window detec-
tion process contribute not only to the confidence whether
the object is present or not but also contain knowledge about
object deformation. The standard sequential decision about
the confidence is interleaved with feature warping. The
same features are used for confidence and warp estimation.
The interleaving process is an essential part of both learning
and detection phase. A single detector can be thus used for
deformed objects. The visual detections delineate relevant
three-dimensional point cloud data which are then used
for distances and orientation estimation. Detections with
three-dimensional informations are sent to higher levels of
the system. The detector has been applied mainly for car
detection and localization, see Figure 7.

3.3.2. Functional mapping

Robot-centric representations are, by definition, well suited
for robot tasks such as metric localization and navigation.
However, in order to better communicate within the team,
and especially with human operators, different representa-
tions are needed. The first user-centric representation we
build is a topological decomposition of the environment
into zones. We can perform this decomposition without any
supervision [17] but we can also take hints from the users
in order to seed the regions the user is interested.[18]

These representations are also usually more compact and
easier to reason with for high-level planning. Additionally
to the topological representation, we also produce maps
related to different functionalities the robot can perform,
for example, looking inside a car.

3.4. Autonomy and planning

Below we describe various levels of autonomous planning
for different aspects of UGV locomotion. These include
adaptive traversability, three-dimensional metrical planning,
and mixed initiative planning and dynamic control.

3.4.1. Adaptive traversability

We define the adaptive traversability as means of motion
control based on autonomous adaptation of robot morphol-
ogy to traverse unknown complex terrain with obstacles.
The aim is to reduce the degrees of freedom to be controlled
(in our case, the flippers) by the operator, therefore, reducing
the cognitive load. The main advantage of our approach is
that no prior map or motion history is required, as only
the latest incoming sensory data are processed—if some
modalities provide data at lower frequency than others, the
latest measurement epoch is processed.

Input to the algorithm is laser data (expressed as Digital
Elevation Map, DEM), motor torque signals, inertial data,
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1554 G.J.M. Kruijff et al.

Figure 5. The scheme of multiple modalities (color, depth, temperature) represented as a layered array computed from different sensors.
The Lidar swivels from side to side, capturing full 3D.

Figure 6. (a) Semi-dense depth computed from laser line scans, while robot undergoes motion (in this case rotation). (b),(c) Examples of
human detection. In (c), the false detections are caused by concrete blocks being heated by the sun to the temperature around 36◦.

Figure 7. Car detection and localization: Left: colored point cloud map with detected cars denoted by green rectangles. The number with
the rectangle corresponds to the number of detections of one car accumulated over time. Right: Typical view point with car detections.
Blue mesh corresponds to the estimated non-rigid alignment of the bounding box.
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Figure 8. Five flipper modes corresponding to different morphological configurations of varying properties.

Figure 9. Examples of training (leftmost) and testing obstacles used for development of the adaptive traversability algorithm. The testing
obstacles are shown with the corresponding DEM interpretation.

and tracks odometry; the output is a robot control mode
defined by a binary speed decision (stop or go) and a com-
bination of discrete flipper configurations and their stiffness
(hard or soft); see Figure 8.

The control modes are selected automatically to maxi-
mize the expected sum of discounted rewards defined by a
reward function; leading naturally to a reinforcement learn-
ing task. We defined the reward function as the weighted
sum of (i) user denoted reward reflecting robot safety, (ii)
high tilt angles penalty, i.e. negative reward, (iii) exces-
sive flipper mode change penalty, (iv) robot forward speed
reward (for making progress), and (v) motion roughness
penalty.

To train the algorithm, we created artificial obstacles
using EUR pallets. To test the algorithm, we were driv-
ing over natural complex obstacles in a forest environment
and compared the performance to an expert operator using
different criteria. For illustration, a training obstacle and
examples of testing obstacles are shown in Figure 9. More
details can be found in [9].

3.4.2. Three-dimensional metric path planning

Three-dimensional metric path planning for ground robot
presents the difficulty to distinguish obstacles that need to
be avoided from ground support. The standard approach is
to have variants of elevation maps and do planning in two-
dimensional space.[19] This approach is clearly insufficient
in case of multi-layered environments such as encountered
in USAR applications.

Otherwise, planning is done on rich reconstructions of
the environment such as polygon meshes. However, this

requires time-consuming processing and is not compati-
ble with online planning in unknown environment.[20,21]
Instead of separating perception, path planning, and path
execution, we propose to tightly integrate them in order to
reduce latency.

Our algorithm takes a three-dimensional point cloud as
input, that will be processed on-demand with tensor voting
[22] and uses the D*-lite search [23] in order to plan and
replan efficiently during the path. We also select the best
flipper position out of a repertoire allowing the robot to
overcome most obstacles.

As an example, Figure 10 shows a trace of execution of
our ground robot in a rounded staircase.After a teleoperated
exploration of the environment, the robot was asked to
autonomously climb back down.

3.5. Planning, control, and execution for human–robot
collaboration

3.5.1. High-level representation of perception

To understand and reason about unstructured and dynamic
environments, such as the USAR ones, high-level planning
and execution have to primarily address a high-level rep-
resentation of the sensory inputs.[24] This requires to deal
with the following problems: (i) extracting relevant features
from raw data, gathered by the robot sensors; (ii) building
a meaningful, higher level representation of this sensory
information; and (iii) mapping such a representation into a
domain where both reasoning and decision-making can take
place. The above problems are faced by two complementary
processes dealing with the topological and metric represen-
tation of the sensory data. The topological representation
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1556 G.J.M. Kruijff et al.

Figure 10. Autonomous descend of a complex staircase. Green line: the initial path planned by the robot. Red line: the actual robot path.

Figure 11. Graph-based representation of the topology of the firefighter training car accident scenario in Montelibretti (Italy).

is defined by a graph of the environment (see Figure 11).
Nodes of this graph can be either objects, detected in the
scene, by the visual detector system of the robot (see Section
3.3) or regions obtained by an unsupervised topological
segmentation of the metric map (see the paragraph on func-
tional mapping in Section 3.3, and also [17,25]). Nodes
are also annotated with properties related to the detected
objects, wherein connections between nodes determine the
traversability between the corresponding areas. This graph
is directly translated into the domain knowledge supporting
parametric planning.[26]

Autonomous navigation tasks in a USAR environment
demand a precise representation of the environment in terms
of what is traversable and what is not, and in terms of what
can be reached and what cannot, for this reason, the topolog-
ical map for three-dimensional planning is complemented
by a suitable processing of the point cloud. The point cloud
data are segmented and each segment is labeled to provide a
basic categorization of the environment, specifically defined
for navigation purposes, that is, walls, ground, stairs, ramps,
and obstacles that can be overcome (like fences, barriers,

blocks of a specified height). Segmentation and labeling
are made by the following steps: (1) point cloud filtering;
(2) estimation of normals to the surface and curvature and,
finally, (3) clustering and merging of the filtered point cloud.
Clusters are labeled according to the geometrical constraints
applied to the surface normals, to the mean curvature and to
the points three-dimensional coordinates.[27,28] This pro-
cess results in a classification of the point cloud into walls,
stairs, or ramps, and ground and surmountable obstacles
as illustrated in Figure 12(a). The semantic labeling of the
clustered point cloud is then mapped to a suitable logic
representation for inclusion in the knowledge base of the
robot system.

3.5.2. Complementary strategies for planning

The robot system makes use of the above-defined represen-
tation to reason about the environment,[29] more specif-
ically, on what can be reached and what cannot, which
determines the system navigation strategies. Navigation
strategies amount to choosing the best planning method to
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Figure 12. (a) Point cloud segmentation and labeling and (b) weighted graph representation of a fire escape stairs scenario.

execute a task. Indeed, if the robot is currently moving
on a flat terrain, such as the floor of a room, the robot
system can select a two-dimensional path planning algo-
rithm to generate paths toward a temporary goal location,
without resorting to a more complex algorithm, such as the
three-dimensional metric path planning (see Section 3.4).
Another advantage of choosing among alternative planning
strategies is that the system can recover from failures in
the generation of valid plans, due to the high degree of
complexity of the environment.[30]

The robot system, in fact, chooses among three different
path planning strategies, basing the choice on the terrain
surface and topology and on the possible sources of planning
failures. The three strategies are: (1) two-dimensional path
planning; (2) three-dimensional path planning and (3) three-
dimensional graph-based planning.[28] The first strategy
relies on the move_base navigation stack, provided by
ROS.4 The second strategy is based on the three-dimensional
metric path planning, described in Section 3.4.2. The third
strategy is performed on a graph-based representation of
the environment (see Figure 12(b)). This representation is
obtained from the semantic labeling of the point cloud as
follows. Points belonging to clusters, labeled as ground
and stairs or ramps, are connected based on an iterative
procedure taking into account both the model and the kine-
matic constraints of the robot, namely, its morphology as
well as its ability to overcome obstacles. The result of this
procedure is a graph connecting the different regions of
the point cloud, denoting areas accessible by the robot. In
parallel, both boundary and inflated obstacle regions are
estimated by projecting the points labeled as walls onto the
planes tangent to the surfaces approximating ground, stairs,
or ramps. Upon the estimation of the boundary regions, the
edges of the connectivity graph are weighted by a factor
taking into account the distance of the graph vertexes from
these boundaries, the density of the neighborhood of the

vertexes and the arc length of the edge. This traversability
structure is used by the graph-based planning strategy to find
minimum cost feasible paths toward target goals.[27,28]

3.5.3. Complementary strategies for motion control

The robot motion control system is augmented with an
adaptive low-level control module taking care of switch-
ing among three different motion controllers: (1) a rein-
forcement learning (RL) controller, (2) a trajectory tracking
controller, and (3) a flipper position controller.[31] The RL
controller is based on the algorithm described in Section
3.4. The trajectory tracking controller, on the other hand,
implements a control strategy based on input–output lin-
earization via feedback.[31] The controller takes as input
the current pose of the robot, obtained by fusing laser data
with odometry and inertial data, the pose of a virtual ref-
erence frame, on the desired trajectory, a velocity profile,
and generates the linear and angular control commands, in
order to asymptotically stabilize the trajectory error to zero.

The flipper position controller locally adapts the position
of the flippers to the surfaces on which the path lies, namely,
to the planes tangent to each point of the path. The controller
computes the position commands of the flippers as follows.
Four points are identified on the surface on which the current
segment of the path lies. These points are representative
of the contact points of the flippers with the surface. The
controller estimates the normals of each of these points
and generates the position commands of the flippers, on the
basis of the orientation of the normals with respect to the
global reference frame of the robot. Note that the estimation
of the normals is not accurate. Moreover, the flippers are
neither endowed with contact sensors nor with proximity
sensors. Therefore, it is quite hard to correct the estimation
as well as to determine the contact between the flippers
and the surface. To face this limitation, the flipper position

D
ow

nl
oa

de
d 

by
 [

D
eu

ts
ch

es
 F

or
sc

hu
ng

sz
en

tr
um

] 
at

 0
4:

08
 2

6 
Ja

nu
ar

y 
20

15
 



1558 G.J.M. Kruijff et al.

Figure 13. Relation between the values of the electrical currents and the directions of the forces applied to the flippers (red arrows).
Relation between the values of the electrical currents and the values of the angles of the flippers (black arrows).

controller relies on a model of contact sensor. This model
is based on a learned function, assessing the touch and the
detach of the flippers from the surface. The parameters of
this function have been learned as follows.

From the measurements of both the actual angles of the
flippers and the electrical currents of the flipper motors,
the following features are extracted: (1) the average of the
absolute values of the electrical currents within a fixed time
window, (2) the average of the absolute values of the angular
velocity of the flippers within the same time window, (3)
the sign resulting from the product between the average
of the electrical currents and the average of the angular
velocity of the flippers and, finally, (4) the average of the
absolute values of the electrical current, filtered according to
the Transposed-Direct-Form-II digital filter (see Figure 13).
The filter has been applied to reduce the oscillations of
the signal current, during transient conditions of the servo
motor, actuating the flippers. These features have been man-
ually labeled to denote either the touch or the detach of the
flippers from the surface. This data-set has been used to train
a non-linear classifier, based on Support Vector Machine
(SVM). A degree-d polynomial kernel has been chosen due
to the non-linear separability of the data-set. The flipper
position controller activate this contact sensor to correct
the estimation of the position commands. The adaptive low-
level control module can decide whether to activates the tra-
jectory tracking and the flipper position controller on the
basis of the values of the slip ratio of the tracks, to allow the
robot to track a given three-dimensional path and to ensure
that the robot has a better traction on the harsh terrain.[28]

3.5.4. Autonomous planning and mixed initiative

The design of an autonomous planner taking into account
Mixed initiative requires: (1) task sharing between the robot

and the operator, (2) to provide the operator with a clear
explanation of the robot behaviors, (3) to allow the operator
to choose the level of autonomy of the robot during deploy-
ment, on the fly and, finally, (4) to generate goal strategies
for information maximization. According to these require-
ments, we developed a control system for the UGV, with
dynamic adjustment of the level of autonomy.[26,30] The
control system coordinates the interventions of the human
operator and the low-level robot activities, under a mixed-
initiative planning perspective. More precisely, the control
system is based on a declarative model of the activities of the
robot, specified in the Temporal Flexible Situation Calculus
(TFSC).[32–35] The model explicitly represents the main
components and activities of the robot, the cause-effect
relationships as well as the temporal constraints between
the activities. Further, the model integrates a representation
of the activities of the human operator, enabling the control
system to supervise his/her operations. A flexible planning
engine (i) monitors the consistency of the robot and opera-
tor activities, with respect to the model, managing failures
and (ii) incrementally generates plans, allowing the oper-
ator to locally assess the robot operations. Both the TFSC
model and the flexible planning engine are implemented in
ECLIPSE Prolog [36] which optimally combines the power
of a constraint solver with logical inference, in order to gen-
erate plans. The model also ensures the continuous update
of the system knowledge with incoming new information.A
hybrid CAST subarchitecture has been designed to embed
the TFSC model and the flexible planning engine, as well
as the ROS nodes driving the communication tasks with the
ROS layers (see Figure 14). The choice of designing the
hybrid CAST subarchitecture, effectively linking the ROS
functionalities with the TFSC model is to overcome two
main limitations of ROS: (1) the lack of a native mechanism
for sub-typing and polymorphism to manage the data and
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1560 G.J.M. Kruijff et al.

(2) the lack of a structure to store the data, for planning and
reasoning.

The core of the planning subarchitecture is implemented
by the Execution-Monitoring (EM) component which plays
a crucial role in orchestrating the other components of the
subarchitecture. The EM both manages the communication
with the human interfaces and maps the logical part of
the control into the CAST subarchitecture. Furthermore,
the EM manages the communication among all the com-
ponents of the CAST subarchitectures, forming the robot
system, and with the ROS modules implementing the sen-
sory modalities of the UGV robot. The information gathered
by the system is stored into the Working Memories (see
Figure 14), and mapped to the domain knowledge of the
flexible planning engine. The EM sends task activation sig-
nals to the actuator components of the subarchitecture that
finally execute the actions generated by the planning engine.

The overall control schema (see Figure 14) implements
several hybrid operative modalities ranging between au-
tonomous and teleoperated modes, available during the ex-
ecution of a task. The human operator can manually control
some functional activities of the robot, scheduled by the
flexible planning engine. For example, the operator can take
control of the motion to explore an interesting location or
escape from difficult environments, by suspending the robot
autonomous navigation task. The operator can also modify
the control sequence produced by the flexible planning en-
gine, by skipping some tasks or inserting new operations.
One of the most sought after operative modalities in nav-
igation is to suggest exploration strategies for the rescue
operators, based on information maximization. This modal-
ity requires to determine candidate poses, to be reached
by the robot, from which most of the unknown space can
potentially be observed by both the robot and the operator.
Under this perspective, the problem of generating the next
best observation positions of the robot can be formulated as
a Next Best View problem [37–39] where candidate poses
are weighted by an utility function.

The utility function maximizes the information returned
by a pose in space by estimating the volume of unknown
space, falling into the viewing volume of the laser sensor
or the robot. More concretely, this value is implemented as
follows. For each of the rays cast from the origin of the laser
reference frame toward all the possible directions, a local
utility is computed. The local utility takes into account the
amount of free, occupied, and unknown cells of the three-
dimensional occupancy map of the environment, hit by the
ray.

Then the global utility associated with a pose is computed
by integrating the local ones on the view cone domain. To
speed up the computation of the utility of a pose, rays are
sampled within a solid angle, bounded by the limit angles
of the laser sensor. Moreover, candidate poses are sampled
from the connected component of the traversability graph
(see Figure 12(b)), on which the robot is moving, according

to a Gaussian distribution, conditioned by the current posi-
tion of the robot and the past position history. The next best
view is the pose, among the sampled candidate poses, which
maximizes the defined utility function. Figure 15 shows
how the robot infers a subset of next best views, on the
basis of such exploration strategy.

The flexible planner, when in exploration modality, uses
this strategy to generate goals and infer the adequate path
to reach them, and evaluate with the EM the feasibility of
the plan.

3.6. User-centric/adaptive interaction and situation
awareness

Key to effective human robot teaming is proper communi-
cation of information between the different team members,
to build up shared situation awareness. The human team
members are ultimately the main stakeholders in this pro-
cess. In keeping with the overall design methodology, we
have also here adopted a strong (human) user-centric devel-
opment. Below, we describe the development of our interac-
tion setup, and provide more details about two aspects that
help bridging the gap between robot-centric environment
models and human understanding.

We initially started by investigating and supporting multi-
modal one-to-one communication between a robot and an
operator. After the experience of our initial pilot studies, we
gradually shifted our focus to team-level communication.
As the team was gradually extended, sharing and managing
situation awareness became a crucial issue. To facilitate this,
we designed and implemented ever more advanced multi-
modal user interfaces.

We initially focused on communication to support
human-guided exploration by the robot. The human
operator was remotely located, outside of visible range of
the robot operating in the hotzone. We designed and im-
plemented an operator control unit (OCU) that facilitated
multi-modal interaction (GUI, spoken dialogue) between
a human and a robot. Based on the experience from the
pilot study, we formulated a first approach to modeling
the dynamics of the interdependent roles in a human–robot
team. We focused primarily on determining how commu-
nication between roles in a team is affected when the team
performs under varying stressful circumstances, so that a
robot can adapt its multi-modal communication strategies
given online human performance. This provided the setup
for developing communication to support human-assisted
exploration in the context of a human–robot team. This went
beyond the originally envisioned setup of a single operator.

The physical setting for the interaction remained such
that most of the human team is located at a remote com-
mand post, outside of visible range of the robot operating
in the hotzone. We developed a multi-view user interface
to facilitate different views on information in the human–
robot team, to help support different roles in the team. The
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Figure 15. Next Best Pose generation: (a) the candidate poses (red arrows) suggest the robot to pass through a doorway of the corridor;
(b) the candidate poses (cyan arrows) favor the acquisition of new information within the explored rescue area.

interface provides multiple modes of communication, in-
cluding touch and spoken dialogue. Views (possibly shown
on multiple monitors) include the visualization of infor-
mation from the various robots (UGV, UAV), and team
situation awareness.

Beyond the remote command, we have extended the
human–robot team setup to include an in-field human res-
cuer. This resulted in a further geographic distribution of
both robot and human team members. We developed and
investigated different versions of mobile interfaces to
facilitate multi-modal communication between the in-field
human rescuer, and the rest of the remotely located hu-
man team members. We followed the approach to support
different team roles with different views and functional-
ity for human–robot team interaction. In this context, we
also developed a novel method for content adaptation, i.e.
presenting the ‘right material at the right time, in the right
modality’.[40,41] As information from an in-field rescuer
typically comes ‘asynchronously’ relative to when a robot
is in the observed area, we have developed new means of
storing and presenting such (geo-referenced) information at
the operational and tactical levels of communication in the
human–robot team (see Figure 16).

3.7. Teaming

In order to support the team effort, the system builds up
and maintains knowledge on the users, supporting them to
stay in a continual workflow, by attuning the information
processing and sharing to the task at hand. First, this in-
volves making sense of what the users are doing, in terms
of their current task, their cognitive task load (CTL), and
emotional state. Second, the team and user context can be
exploited by suggesting the appropriate level of autonomy
for the task at hand, or notifying other team members to
help their colleague.

The NIFTi system gives us a rich environment for col-
lecting data on the users’ behavior, and for the design and
implementation of such team support functionality. Based
on the data gathered in our end user experimentation, we
have tailored the CTL and emotional state models, and
integrated them into the prototype system, where they were
incorporated into a formal framework for dynamic task
allocation and adaptive dialogues. We also collected a data-
set for conducting three-dimensional eye-tracking exper-
iments to further develop computational visual attention
models for top-down search tasks. Over the course of the
project, we have also refined the methods for balancing
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1562 G.J.M. Kruijff et al.

Figure 16. Content display.

the information transfers by means of policies for infor-
mation exchange of team members with specific roles and
capabilities. These working agreement policies, designed
in collaboration with our end users and evaluated during
the end user experiments, aim at establishing coherent and
reusable specifications of human-automation interaction at
the communication level.

4. Experimentation

Each year the project went through a development cycle
of a description of scenarios and use-cases, derivation of
requirements and hypotheses, implementation of the sys-
tem components, integration, and finally, an evaluation.
Figure 17 shows the three components of this situated
Cognitive Engineering (sCE) methodology: the foundation
entails operational, human factors, and technological anal-

yses to derive a sound and practical design rationale, the
specification and maintenance of the requirements baseline,
and the evaluation by means of simulation or a prototype,
to validate and refine the requirements baseline.[42,43] The
requirements and hypotheses were described on three lev-
els, the communication level, the task level, and the group
level.[44] An example of each level in the context of a robot
for USAR is given in Table 1. The task level and group
level can both be evaluated with small tasks (Task battery)
or within a scenario.

4.1. Design patterns

The manner of information presentation influences the per-
formance of the user enormously. To approach the eval-
uation of this presentation in a structured manner and to
support development and reuse of good design solutions,

Figure 17. Situated Cognitive Engineering (sCE) design and evaluation process [42].
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Table 1. Design patterns, premises, requirements, and claims on different levels.

USAR robot

Communication level Interaction design pattern: for look and feel of smart
question

Premise: smart questions are easy to use questions

Task level Requirement: provide automatic object recognition Claim: improved object detection
Group level Requirement: provide information on location and

recognized objects teammates
Claim: improved object detection

Figure 18. (a) Explicit unknown design and (b) re-design.

we use design patterns.[45] Table 1 provides an example of
a design pattern that has been evaluated in the fourth year of
the project and Figure 18 provides the evaluated design and
the suggested design improvement based on an evaluation.
In the evaluation, 18 subjects evaluated the design using
a questionnaire and they noted some problems in under-
standing who was responsible for answering the information
request. Therefore, information about who should react on
the information request was added (the UGV (operator) in
the case of the improved design figure).

4.2. Task battery

To benchmark the progress in the yearly changing scenarios
(see Section 2.2), we developed small tasks that evaluated
some basic functionality (e.g. stopping the UGV before
collision). This set of tasks was extended over the years to
incorporate the growing capabilities of the systems. A first-
year task was for instance ‘detect objects’ in a maze-like
environment (see for example Figure 19) to look at the per-
formance of the combination UGV, UGV control interface,
situation awareness display, and operator. This task was kept
over the years to see if changes in the combination had
an (positive) effect on operator performance (task level).
Because in the fourth year, there was a complete team of two
operators and a commander the same task was performed
but with both a UAV and UGV (group level). This made
it possible to not only compare the results over years, but
also over different team compositions. The complete system

with UAV and UGV and their operators and a commander
provided in the fourth year of course involved opportunities
which entailed an extra test where the complete team had
to detect objects in an area.

4.2.1. Measures

Each task had its own set of measures. For the object de-
tection task these were: performance (How many objects
are detected) and situation awareness (participant has to
draw how they drove through the area and draw the UGV’s
start and end position). To measure the performance on a
task like ‘explore area,’ the performance was measured as
amount of area covered, the efficiency was measured by
taken path (ratio length of path and explored area) and the
same measure for situation awareness was taken.

4.3. Scenario

Next to the task battery, the scenario as described in Section
2.2 was performed by multiple firemen each year. The setup
of the fourth year (see Figure 1) shows that a capability
such as objects detection is also relevant here. The sce-
nario is less structured than the task battery tasks but the
same requirements can be tested. Another difference from
the task battery is that multiple tasks are to be executed
and the participants always work in a team and are free to
use the operation mode of the UGV they prefer.

D
ow

nl
oa

de
d 

by
 [

D
eu

ts
ch

es
 F

or
sc

hu
ng

sz
en

tr
um

] 
at

 0
4:

08
 2

6 
Ja

nu
ar

y 
20

15
 



1564 G.J.M. Kruijff et al.

Figure 19. Set up of the detect objects task.

4.3.1. Results

One of the things we are interested in is if performance on
the task battery is predictive for the scenario performance.
In [46], it is shown that the ‘detect object’ task does partially
predict the scenario performance.

5. Deployment

In May 2012, two major earthquakes occurred in the Emilia-
Romagna region, Northern Italy, followed by further
aftershocks and earthquakes in June 2012. This sequence
of earthquakes and shocks caused multiple casualties, and
widespread damage to numerous historical buildings in the
region. The Italian National Fire Corps (CNNF) deployed
disaster response and recovery of people and buildings.

In June 2012, they requested the aid of NIFTi, to assess
damage to historical buildings, and cultural artifacts located
therein. To this end, NIFTi deployed a team of humans and
robots (UGV, UAV) in the red area of Mirandola, Emilia-
Romagna, from Tuesday July 24 until Friday 27 July 2012.
The team worked closely together with the members of
the CNVVF involved in the red area. Below we briefly
summarize our experience; see [47] for more detail.

In Mirandola, we deployed a subset of the available NIFTi
functionalities, described above.We focused on robust func-
tionalities for robot control, video streaming from various
omni-directional and monocular cameras (UGV,UAV), and
laser-based three-dimensional reconstruction of the envi-
ronment (UGV), coupled to the NIFTi multi-modal OCU.

We deployed two NIFTi UGV platforms in Mirandola:
One as the main system, and one in reserve should some-

thing go wrong. Figure 20 shows the UGV platform used. In
addition to the usual sensor suite, we mounted a 25-cm-tall
static mast on the battery compartment of the robot. On top
of the mast was a pan-tilt unit with a Kinect camera. This
provides a chase-style view of the robot, which is highly
useful when navigating (tele-operating) the robot in tight
or complex spaces – cf. also the recent experience with
Quince reported in [48]. During the deployment, we had
the robot running all day long, under outside temperatures
of 35–40 ◦C and operating temperatures inside the robot up
to 95 ◦C. Batteries only needed a recharge in the evening.

Two different types of UAVs were prepared for the mis-
sion (Figure 21). One was a NIFTi UAV microcopter plat-
form, the other a research platform which we could flexibly
outfit with a variety of cameras, e.g. a high-definition cam-
era or an ASUS Xtion Pro.

The human–robot team included operators for the UGV
and UAV, UGV and UAV mission specialists, and a Mission
Commander. Both the UGV Operator and the UAV Operator
suffered from cognitive overload. UGV missions typically
lasted about half an hour, and were characterized by in-
terleaving driving, and observing. This interleaving made
it possible for the UGV Operator to relax, momentarily;
a luxury the UAV Operator did not have. The UAV did
have some degree of autonomous flight control, but cir-
cumstances demanded that the UAV Operator continuously
attended to the UAV. This provides a first insight in possible
roles of ‘robot autonomy.’ In human–robot teams, humans
and robots are (inherently) interdependent.[49] Robots can
go where humans need to but cannot, whereas humans can
aid robots in better understanding and operating in the en-

D
ow

nl
oa

de
d 

by
 [

D
eu

ts
ch

es
 F

or
sc

hu
ng

sz
en

tr
um

] 
at

 0
4:

08
 2

6 
Ja

nu
ar

y 
20

15
 



Advanced Robotics 1565

Figure 20. NIFTi UGV with a rotating SICK-Laser (LMS100),
a LadyBug3 omnicam, active flippers and active/passive bogeys,
IMU, GPS, and a static mast mounting a PTU with a Kinect sensor.

vironment. Both humans and robots are problem-holders
– with the obvious ‘but’ though that the human users are
the stakeholders. Robot autonomy is ultimately to be in
service of the human user, to reduce cognitive load (im-
proved autonomous navigation, sensor data interpretation,

collaboration) and to improve the possibility for the human
to collaborate with the robot as if ‘operating the world rather
than the robot.’[50] We saw this over and again during the
deployment: Autonomy is to make life easier for the human
to understand the environment.

The UAV serves as a good example here. The UAV mis-
sion specialist used augmented reality eyewear (Vuzix
WRAP 920AR+) to watch the video stream from the camera
mounted in a tilt-unit under the UAV. This quickly led to a
pseudo-immersive experience, and the desire to look left-
and-right and have the UAV and/or the tilt-unit follow suit.
More (and better) flight control autonomy, enabling the
UAV to simply hover and turn on the spot, would have
facilitated this.

Further insights concern the flow of information between
the UAV team and the UGV team, in terms of tactical (team-
level) situation awareness (tacSA) and mission planning.
During the entire deployment, the UAV team and the UGV
team never operated in the same area simultaneously. Partly,
the reasons were technical (network) and environmental
(dust).Another reason regarded the use, the workflow which
emerged in using information from the different teams in
establishing further missions. Based on in-field line-of-sight
observations of the area to be deployed in, and a first set
of recon missions by the UAV team, we would establish a
first sketch of the environment. Most importantly, we would
identify important landmarks to navigate by, establishing
explicit names for them (e.g. ‘column 4’), and determining
targets for future missions. These targets typically included
areas and objects to be observed, and how these observa-
tions were to be made. Targets were discussed together with
members of the CNVVF.

Follow-up missions then helped detail out situation
awareness and revise mission targets. Since awareness was
coming from the different teams, we occasionally found
mismatches in expectations which then required further
missions; (as was to be expected, cf. [51]). For example,

Figure 21. Standard NIFTi UAV octocopter with a standard configuration (a) and NIFTi UAV research octocopter (b) with a mounted on
top camera, and a camera in a tilt unit under the main body. Another configuration flown includes a PC and a Kinect-style sensor mounted
on top of the research UAV.

D
ow

nl
oa

de
d 

by
 [

D
eu

ts
ch

es
 F

or
sc

hu
ng

sz
en

tr
um

] 
at

 0
4:

08
 2

6 
Ja

nu
ar

y 
20

15
 



1566 G.J.M. Kruijff et al.

Figure 22. Three-dimensional reconstruction based on NIFTi UAV data.

video from initial UAV recon missions in San Francesco
church gave the impression that the top of the nave would
be reachable from the western aisle, either from between the
fourth and fifth columns, or the opening behind that. This
would then make it possible for the UGV to drive close to
the altar, and provide close-up video. As it turned out at the
end of the second UGV mission, what seemed accessible
terrain from the viewpoint of the UAV, was not so in UGV
reality. The UGV did manage to take video of the altar, but
an additional mission was then planned for the UAV to fly
in over the main nave and record video from that viewpoint.

The UAV and the UGV thus supported each other, but
indirectly so. It did result in the required situation awareness
for the team, and the other stakeholders. At the same time, it
also opened new questions as for how to optimally transfer
data from one mission to the next, to make consolidated
awareness available online. Before the deployment, we had
developed a basic viewer for post-mission analysis. During
a mission, a Mission Specialist could take snapshots in an
OCU, annotate them with a description. Snapshots were
stored with the text annotation and robot position informa-
tion. For post-mission analysis, the viewer could then load
snapshots and a two-dimensional map, mark the snapshots
on the map, and enable the user to browse snapshots. We

did use some of this functionality, particularly to get high-
definition snapshots of cultural artifacts, but what was miss-
ing was the possibility to correlate geo-referenced video
from one mission, and show this during another mission in a
context-aware fashion, i.e. show previously recorded video
of the environment in which the robot in the current mission
is located. This is a form of information fusion to provide
continuous situation awareness across different missions
within a single area. We made similar observations about
map information. The UAV could be deployed to gather a
three-dimensional reconstruction of the environment. This
map would not need to be so detailed as to enable the UGV to
localize itself in it.All the map would need to make possible
is a form of forward mapping/scouting for the UGV team to
determine the optimal path amongst different alternatives.
While operating in a harsh environment like the ones in
Mirandola, we would have greatly benefited from such func-
tionality, as it could have saved time, or have indicated paths
where none was obvious (like a traversal from the western
aisle to the nave in San Francesco church). See Figures 22
and 23: Coupling the UAV three-dimensional information to
the dense three-dimensional metrical representation for the
UGV could improve situation awareness for the Operator
as well as the robot.
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Figure 23. Three-dimensional map constructed by the NIFTi UGV.

In summary, we observed several issues regarding the op-
erations of a geographically distributed human–robot team,
with team members operating both in-field and at a remote
command post. As the UGV and UAV teams operated asyn-
chronously, maintaining and transferring situation aware-
ness between missions was an issue to the extent that system
automatization could help (in the future) to make aspects of
operational situation awareness from one team available to
the next in an operational context-aware fashion. We thus
need to address persistence of information.

6. Conclusions

We presented an overview of what we achieved in the NIFTi
project. We have robust models of three-dimensional dy-
namic environments, fusing information from a wide vari-
ety of sensors. We have highly robust and adaptive robot
platforms (UGV, UAV) that use these models to operate
in the complex environments typical for disaster response.
And we have embedded all of that information, all these
platforms, into the use context of a human–robot team.
Humans have access to information at different operational
levels, to form an assessment of the overall situation, and
collaborate with robots as team members to guide further
operations. The way information is presented takes into ac-
count that these contexts are stressful, with people working
under varying cognitive load. What is displayed, how, and
when, is adapted to fit the current load and usage. While
further improvements are possible and needed at the level

of the individual functionalities and system components,
the important global achievement of NIFTi is that robots,
and the information they provide, have been made useful
to people. NIFTi achieved this through closely integrating
research and development with a scenario- driven roadmap,
end users, and real-life experiments. Reality, and real end
user demand, drove the NIFTi R&D – and the NIFTi R&D
showed that, despite the fact that robot-assisted disaster re-
sponse is a complex and difficult task, we can make substan-
tial advances toward real-life deployments of these systems.
The NIFTi Mirandola deployment is an example of that.

Through our practical experiences, we have learnt that it
is important to go beyond the single-robot single-operator
paradigm and consider the operation of the response team
as a whole with the robots as team members who collab-
orate with humans as well as among each other. Clearly,
more research is needed in this area, to further improve
distributed situation awareness as well as dynamic levels
of autonomy, adapted to task, the situation, and the team
members capabilities and needs.

Another aspect the importance of which we have identi-
fied through our practical experience is that such missions
take time. In Mirandola, we ran multiple missions over one
or more days to explore a site. A robot does not just drive
in and out, and the mission is done. In order to support
this, a system needs to maintain and continue to update
information over the course of missions. Information, and
human-robot team experience as such, must become per-
sistent. Based on our experience, we see persistence as a
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key challenge for further progress in human–robot disas-
ter response: we need persistent models for perception, of
acting, of distributed joint situation awareness, of collab-
oration and human–robot teaming. We are addressing the
challenges involved in taking such long-term ecological
perspective on robot-assisted disaster response in our next
project, TRADR.[52]
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