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Abstract

Gaze estimation error is inherent in head-mounted eye trackers and
seriously impacts performance, usability, and user experience of
gaze-based interfaces. Particularly in mobile settings, this error
varies constantly as users move in front and look at different parts of
a display. We envision a new class of gaze-based interfaces that are
aware of the gaze estimation error and adapt to it in real time. As
a first step towards this vision we introduce an error model that is
able to predict the gaze estimation error. Our method covers major
building blocks of mobile gaze estimation, specifically mapping of
pupil positions to scene camera coordinates, marker-based display
detection, and mapping of gaze from scene camera to on-screen
coordinates. We develop our model through a series of principled
measurements of a state-of-the-art head-mounted eye tracker.

Keywords: Eye Tracking; Gaze Estimation; Error Modelling and
Prediction; Gaze-Based Interaction; Error-Aware Interfaces

1 Introduction

Recent advances in head-mounted eye tracking promise gaze-
based interaction with ambient displays in pervasive daily-life set-
tings [Bulling and Gellersen 2010]. A key problem in mobile set-
tings is that gaze estimation error, i.e. the difference between the
estimated on-screen and the true gaze position, is often substantial
while the user moves in front of one or multiple displays [Lander
et al. 2015]. Several methods were proposed to address this prob-
lem, such as filtering gaze jitter or snapping gaze to on-screen ob-
jects [Špakov 2012; Špakov and Gizatdinova 2014]. More recent
works try to reduce gaze estimation error, e.g. through continuous
self-calibration [Sugano and Bulling 2015]. Although they can im-
prove user experience, all of these approaches only alleviate the
symptoms and do not aim to embrace the inevitable gaze estimation
error in the interaction design. These approaches also don’t allow
designers of interactive systems to simulate gaze estimation error
or to predict the error to adapt pro-actively during runtime and de-
pending on the current user position, orientation and on-screen gaze
position. As a consequence, current interfaces do not leverage the
full potential of gaze input.

We envision a novel class of mobile gaze-enabled interfaces that
are “aware” of the gaze estimation error. This enables interfaces to
adapt to gaze estimation error at runtime, for example, by magni-
fying on-screen objects in high-error regions or by moving them to
low-error region of the display. As a key building block for these
error-aware interfaces, in this work we present a method to model
and predict gaze estimation error for head-mounted eye trackers
depending on the current user position and orientation as well as
on-screen gaze position. Our method models error of the major pro-
cessing steps for mobile gaze estimation, specifically mapping of
pupil positions to scene camera coordinates, marker-based display
detection, as well mapping of gaze from scene camera to display
coordinates (see Figure 1). Input to our model are 1) properties
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Figure 1: Gaze estimation error model for head-mounted eye track-
ers comprising two main building blocks: Pupil Position Mapping
and Display Detection and Gaze Mapping. Model inputs include
parameters for Calibration, Eye Tracker and Display, as well as
real-time gaze, visual marker, and 3D head pose, some specific to
the Eye or Scene camera.

of the display, such as physical size and resolution, and the visual
markers, 2) intrinsics of the eye tracker cameras, 3) parameters of
the calibration routine and pattern, as well as 4) the user’s current
position and orientation relative to the display. The model provides
real-time output of the gaze estimation error for any 3D surface in
the field of view (FOV) of the eye tracker’s scene camera specified
by visual markers attached to the surface.

The specific contributions of this work are twofold. First, we re-
port a series of measurements to characterise the error for build-
ing blocks commonly used in mobile gaze interaction using head-
mounted eye trackers. Specifically, we quantify extrapolation and
parallax error, error for detecting the display in the scene camera,
and for mapping gaze coordinates from the scene camera to the dis-
play. Second, we present a support vector regression model that can
predict gaze estimation error in real time depending on the current
user position, orientation, and on-screen gaze position.

2 Modelling Gaze Estimation Error

Monocular head-mounted eye trackers are typically equipped with
two cameras: a scene camera that captures part of the user’s current
FOV, and an eye camera that records a close-up video of the user’s
eye [Kassner et al. 2014]. The problem of gaze estimation is that
of mapping 2D pupil positions in the eye camera coordinate system
to 2D gaze positions in the scene camera coordinate system [Ma-
jaranta and Bulling 2014]. The mapping is usually established in a
calibration process. Pupil positions and corresponding scene cam-
era positions are then typically mapped to each other using a first
or second order polynomial. If these gaze positions are to be used
for interacting with a display placed somewhere in the environment
they have to be mapped further to the corresponding display coordi-
nate system, e.g. by using visual markers attached to the display [Yu
and Eizenman 2004] or by detecting the display itself [Mardanbegi
and Hansen 2011]. This indicates two main components where er-
rors can arise (see Figure 1): 1) the mapping of 2D pupil positions
in eye camera coordinates to 2D scene camera coordinates (Pupil



Position Mapping), as well as 2) detecting interactive displays in
the environment and mapping gaze from scene camera coordinates
to display coordinates (Display Detection and Mapping).

We focus on extrapolation and parallax error for Pupil Position Map-
ping. These errors are particularly important for mobile gaze inter-
action where users frequently change their position in front of a
display [Cerrolaza et al. 2012; Mardanbegi and Hansen 2012]. We
assume measures of the pupil detection error to be provided by the
manufacturer, such as the pupil detection confidence c value pro-
vided by the PUPIL eye tracker [Kassner et al. 2014]. In addition,
the detection of ambient displays is essential for gaze-based interac-
tion and commonly combined with homographies to map the gaze
estimates to that display [Breuninger et al. 2011]. Errors caused
by the display detection algorithm propagate when mapping gaze
and thus are covered by the Display Detection and Mapping block.
We use separate models for the error in x and y direction as pro-
posed by [Holmqvist et al. 2012]. The resulting model has several
input parameters that are described in detail in the appendix (see sec-
tion 8.1). Sp is the ratio between the calibrated and the total scene
camera area. Normalised by Sp we define dxt (dyt ) as difference
between scene targets Tx (Ty) and calibration centre Cx

cal (Cy
cal).

To model vergence we propose drelp , the difference between record-
ing and calibration distance, normalised by the squared calibration
distance.

3 Pupil Position Mapping Error

We first studied extrapolation and parallax error independently to
quantify their contribution to the pupil position mapping error.

Extrapolation Error. To quantify the extrapolation error, dcal
and drec were fixed to 250 cm while the size of the calibration
pattern was varied between 100%, 75%, and 50% influencing Sp.
We asked users to calibrate the eye tracker three times, each fol-
lowed by one recording in which they looked at 13 target locations
(Tx, Ty) equally distributed across the scene camera’s FOV.

Parallax Error. To quantify the parallax error, we varied the dis-
tance between user and display during calibration dcal and record-
ing drec. The edge size of the calibration pattern was changed ac-
cordingly, i.e. in such a way that its relative size Sp remained con-
stant. Similar to the first measurement users were asked to calibrate
the system three times from certain positions dcal ∈ {100 cm,
200 cm, 250 cm}. After each calibration users performed three
recordings, one at the current calibration distance and two at the
other distances, i.e. |drec − dcal| ∈ {0, 50, 100, 150} cm. The
target locations were the same as for the first measurement.

3.1 Experimental Setup and Procedure

We recruited 12 participants (five female), aged between 19 and
50 years (M = 24.067, SD = 7.459), each receiving 15 EUR
as compensation. Two participants for measurement 1 and one for
measurement 2 had to be excluded from the analysis due to prob-
lems with the eye tracker. To record gaze we used a PUPIL head-
mounted eye tracker [Kassner et al. 2014]. The monocular device
features a scene camera with a resolution of 720p and an eye camera
with 640× 480 pixels, both delivering videos at 30 fps. The scene
camera has a FOV of 90 degrees. To show the stimuli we used a
projector mounted at the ceiling with a resolution of 1400 × 1050
pixels with a corresponding size on the canvas of 267× 200 cm.

Participants were first introduced to the experiment and asked to
complete a questionnaire on demographics and prior eye tracking
experience. Their heads were then fixed using a chin rest. For

M SD
100% 28.19 px 1.92◦ 7.67 px 0.55◦

75% 28.07 px 1.87◦ 6.77 px 0.46◦

50% 28.34 px 1.87◦ 6.29 px 0.39◦

0 cm 24.97 px 1.68◦ 4.86 px 0.34◦

±50 cm 27.76 px 1.9◦ 5.54 px 0.38◦

±100 cm 31.5 px 2.13◦ 3.89 px 0.26◦

±150 cm 35.87 px 2.44◦ 6.86 px 0.48◦

Table 1: Mean and standard deviation of spatial accuracy in scene
camera coordinates for measurements on extrapolation error (top)
and parallax error (bottom)
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Figure 2: Spatial accuracy in scene camera coordinates for all
targets and different sizes of the calibration pattern.

both measurements, participants first calibrated the eye tracker us-
ing PUPIL’s standard on-screen calibration. Afterwards, they were
asked to look at a cross-hair that was manually positioned by the ex-
perimenter indicating the 13 stimuli one after another. The record-
ing took on average 50 minutes per participant.

3.2 Results

Extrapolation Error. We first analysed the spatial accuracy for
each sub-condition of the first measurement averaged over all scene
targets (see Table 1 top). A repeated measures ANOVA (N =
10) showed no significant difference for the corresponding means
(F (2, 8) = .007, p = .993). We therefore analysed the gaze es-
timation error separately for each scene target location. As can
be seen from Figure 2, the spatial accuracy for the full-sized pat-
tern was evenly distributed across the display. For patterns with
75% and 50% edge length, the error at the display borders (8 outer
stimuli) increased by 33.15% and 56.18%, respectively, while it
decreased in the centre by 37.27% and 51.02% compared to the
full pattern. A further ANOVA test showed a significant difference
for the display border (F (2, 8) = 7.832, p = .013) and the dis-
play centre (F (2, 8) = 15.715, p = .002). A pairwise comparison
(bonferroni-corrected) showed that the means of condition 100%
are significantly different to 75% and 50%, whereas means of con-
dition 75% are not significantly different when compared to 50%
for both, stimuli at border and centre.

Parallax Error. We first grouped the data with respect to the ab-
solute difference in calibration and recording distance |drec−dcal|,
ranging from 0 cm to 150 cm (50 cm increments), see Table 1 bot-
tom. For spatial accuracy, an ANOVA test (N = 11) showed that
these differences are significant (F (3, 8) = 9.041, p = 0.006).
Accordingly a movement of 50 cm after calibration results in a de-
crease of spatial accuracy of 11.17% (26.15% for 100 cm, 43.65%
for 150 cm). A pairwise comparison for 0 cm showed that all differ-
ences in means are significant. Apart from that only the differences
between 50 cm and 150 cm are significant.
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(b)

Figure 3: Gaze estimation error for the display mapping for differ-
ent angles and distances to the display in display coordinate space
(a). Relations between the distance and error and between the dis-
tance and the marker detection rate (b).

4 Display Detection and Mapping Error

Marker-based display detection and tracking to calculate a mapping
from scene camera coordinates to display coordinates is increas-
ingly used for gaze-based interaction (e.g. [Yu and Eizenman 2004;
Breuninger et al. 2011]). Still, existing works typically considered
marker detection and tracking as a black box system and did not
quantify its contribution to gaze estimation error. While the specific
error contribution, of course, depends on the particular markers and
tracking algorithm used, it remains interesting to study one sam-
ple system and its interplay with other parts of the gaze estimation
pipeline. The distance and orientation between scene camera and
display, as well as the number and size of the markers, are impor-
tant for robust marker detection and therefore potential sources of
error. To complement the extrapolation and parallax error measure-
ments, we performed another measurement on the error stemming
from the display detection and gaze mapping to that display.

4.1 Experimental Setup and Procedure

Because gaze mapping is independent of the gaze estimation in
scene camera coordinates, recording a dataset of scene images
from different positions in front of the display without participants
was sufficient. We recorded these images using the PUPIL head-
mounted eye tracker and a wall-mounted 50-inch flat screen with a
resolution of 1920 × 1080 pixels (17.42 px/cm). The eye tracker
was mounted on a tripod and precisely positioned at predefined lo-
cations using an attached plumb-line. The ArUco library [Garrido-
Jurado et al. 2014] was used for marker detection and tracking.

To record the dataset, we systematically varied the distance drec ∈
{75 cm, 100 cm, 200 cm, 300 cm} and orientation α (pitch) and β
(yaw) ∈ {0◦, 20◦, 40◦, 60◦} of the eye tracker to the display. The
roll angle was assumed to be zero. We recorded 800 images for
all 84 combinations, totalling 67200 samples. In a post-hoc anal-
ysis we manually annotated all images with the corresponding dis-
play centre position in scene camera coordinate space. One image
per physical location was used as a reference. The display centres
in these reference images were mapped to display space using the
homography matrix obtained during the recording session. Under
ideal conditions, these points should be mapped to the centre of the
display which was used as ground-truth.

4.2 Results

Figure 3a shows the error for mapping 2D gaze positions in scene
camera coordinates to display coordinates for different angles and
distances to the display. The mapping error increases with increas-
ing angle and distance. Figure 3b plots the mean gaze estimation
error and the marker detection rate against the distance. The small-
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Figure 4: Error estimation performance in cm and degrees of vi-
sual angle in x and y direction of the proposed error model (Ours),
best-case model (Best), and measured model (Measured) for differ-
ent distances to the display.

est absolute error of 5.369 px (SD = 7.277) [M = 0.31 cm
(SD = 0.42); M = 0.18◦ (SD = 0.24)] was achieved at a dis-
tance of 100 cm with a detection rate of nearly 100%. The smallest
error in degrees of visual angle was achieved at 200 cm with 0.11◦

(SD = 0.06◦) [M = 6.51 px (SD = 3.42); M = 0.37 cm
(SD = 0.2)]. For distances beyond 100 cm, detection rate de-
creases and the absolute error increases. Visual inspection of the
scene videos showed that the small increase at 75 cm was due to
not all markers having been visible in the scene camera’s FOV.

5 Evaluation of the Combined Error Model

The previous experiments provided important insights into how
much extrapolation and parallax error as well as display detection
and mapping individually contribute to the overall gaze estimation
error. We performed an evaluation to assess the performance of
the combined error model, i.e. the model combining the Pupil Posi-
tion Mapping and the Display Detection and Mapping components.
We trained two support vector regression (SVR) models with radial
basis function (RBF) kernels on the datasets recorded during exper-
iments 1 and 2 – one model for pupil mapping error and one for
display mapping error. The data were partitioned into a training
and a test set each (70%/30%) and used to evaluate the model.

For evaluation, the model first estimated the error caused by the
Pupil Position Mapping component. The result was an error esti-
mate in scene camera space that we transferred to display coordi-
nates with a distance dependent mapping. Afterwards the display
mapping error was predicted in display coordinates and added one-
to-one to the prior result. Model performance is reported by means
of root mean squared error (RMSE) of the prediction residuals and
R2 as a measure for the portion of the data variance explained by
the given model. This test was repeated on 50 randomly chosen
training/test sets (see section 8.2 for details).

The performance of the combined error model – as a function of
the distance to the display – is shown in Figure 4. On average, the
model achieved an overall spatial accuracy from 3.96 px [0.75 cm]
at 50 cm to 23.74 px [4.53 cm] at 300 cm in x direction, and 2.36 px
[0.45 cm] at 50 cm to 14.19 px [2.71 cm] at 300 cm in y direction.
These values correspond to 0.86◦ for the x-model and to 0.52◦ for
the y-model. In addition, we compared our model to two baseline
approaches. Best assumes a constant error of 0.6◦, which is re-
ported as best-case spatial accuracy of the PUPIL tracker [Kassner
et al. 2014]. The Measured model takes the mean error in visual
degrees extracted from our measurements as a basis. The means
are 1.26◦ for both x and y direction. To simulate the residuals for
Best and Measured we calculated gaze error estimates dependent
on the distance and compared them to the same test set as used for
evaluating our model.



6 Discussion

As a key building block for a novel class of error-aware interfaces,
in this work we presented a method to model and predict the gaze
estimation error of head-mounted eye trackers in real time. Results
from our study suggest that the chosen set of inputs is comprehen-
sive and allows the model to predict the gaze estimation error with
a RMSE of 0.86◦ for x and 0.52◦ for y. To the best of our knowl-
edge, this is the first attempt to develop such a model, characterise
its inputs and evaluate its performance. A subsequent study further
showed that gaze-based interaction can significantly benefit from
our model (see section 8.3).

Although calibration pattern size, distance as well as display de-
tection and mapping are known sources of error for mobile gaze
interaction, this work is also first to quantify how each of these
sources contribute to overall gaze estimation error. Specifically, our
evaluations revealed that in mobile settings extrapolation error is
significant and that a denser calibration pattern can result in better
accuracy. This finding is particularly important for gaze-based inter-
faces as it demonstrates that our model could, e.g., be used to create
high-accuracy regions for fine-grained interactions traded off with
lower accuracy in other regions. Our second measurement extends
on previous findings in that we not only confirm that parallax error
is a significant source of error but also to which extend.

Despite its advantages in terms of performance and usability our
model also has limitations that need to be studied in future work.
First, we currently train two separate models for error in x and y
direction. While this approach was shown to work well [Holmqvist
et al. 2012], we believe that a single model that outputs a joint er-
ror for both directions would be preferable. Second, future work
could study additional error sources, such as displacement of the
eye tracker on the head that was shown to be important, particularly
for long-term recordings in mobile settings, or motion blur caused
by fast head movements, which can impact marker detection per-
formance. Third, binocular eye tracking may decrease the parallax
error and will therefore be interesting to investigate and incorporate
in a future extension of our model.

7 Conclusion

We proposed a novel method to model and predict the error inher-
ent for head-mounted eye trackers. This enables a new class of
gaze-based interfaces that are aware of the gaze estimation error
and driven by real-time error estimation. We performed a series of
measurements that provided important insights into the individual
error contribution of major building blocks for mobile gaze estima-
tion. Results from our study suggest that the chosen set of inputs is
comprehensive and allows to predict the gaze estimation error with
a reasonable accuracy.
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CUEVAS, F., AND MARÍN-JIMÉNEZ, M. 2014. Automatic gen-
eration and detection of highly reliable fiducial markers under
occlusion. Pattern Recognition 47, 6, 2280 – 2292.
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8 Appendix

8.1 Gaze Estimation Error Model

The resulting model has several input parameters that are sum-
marised in Table 2. The first four parameters are the pupil position
in eye camera coordinates (Px and Py) as well as target positions
in scene camera coordinates (Tx and Ty). As targets one can either
use the current gaze location as an approximation – for real-time
estimation of the error around the point of gaze – or pre-defined tar-
gets, e.g. for simulating the to-be-expected gaze error for a given
display and setting. These four parameters are all normalised by
the eye camera and scene camera resolution, respectively. The con-
fidence c, or a similar value, is reported by most eye trackers; it
denotes the confidence of the pupil detector in the accuracy of the
detected pupil ellipse.

We propose two novel measures that are robust to user movements.
Although the size of the calibration pattern is fixed, head move-
ments influence the position and relative size of the pattern in the
scene camera. We therefore compute Sp as ratio between the cali-
brated area in scene camera space and the total scene camera area.
Normalised by Sp we define dxt (and dyt accordingly) as difference
between scene targets Tx (Ty) and calibration centre Cx

cal (Cy
cal) in

scene camera coordinate space:

Sp =
calibratedArea

resxscene · resyscene

dxt =
|Cx

cal − Tx|√
Sp · 12resxscene

As mentioned above the parallax error is caused by the alignment of
the eyes to the eye camera. We therefore introduce another measure
drelp describing the difference between recording and calibration dis-
tance, normalised by the squared calibration distance:

drelp =

√
|drec − dcal|

d2cal

To target the display detection error, additional input parameters has
been added to the model that describe the 3D pose of the eye tracker
relative to the display. The parameters are the distance between user
and display drec, the pitch and yaw rotation of the eye tracker α and
β, as well as the marker detection rate M and size Smarker .

The eye tracker and display parameters only have to be measured
once or are provided by the device manufacturer, such as camera
intrinsics, resolution as well as display resolution and size. For real-
time error estimation other parameters have to be obtained on the
fly. These include the pupil position in eye camera and the selec-
tion targets in scene camera coordinates, the 3D head pose, as well
as marker detection parameters (marked in grey in Figure 1). Par-
ticularly in mobile settings, these parameters are directly linked to
extrapolation, parallax, and display mapping errors and are there-
fore crucial for modelling overall gaze estimation error.

8.2 Additions to Model Evaluation

The different parameters of the model were added incrementally to
observe their influence on the error estimation quality. The corre-
sponding results for the x- and y-model of the Pupil Position Map-
ping part are shown in Figure 5a, which shows a continuous per-
formance increase for the error model by means of RMSE and R2.
One exception is the last step in the y-model that caused a small

(a)

(b)

Figure 5: Error estimation performance of the Pupil Position Map-
ping (a) and Display Detection and Mapping (b) for x and y in
display coordinate space, incrementally adding the inputs.

performance decrease of 4%. However, the overall improvement in
model performance was 26.83% for the x-model and 50.34% for
the y-model. R2 grows up to 46.19% for x and 74.76% for y.

The results for the second part of the model (Display Detection and
Mapping) are shown in Figure 5b indicating a similar effect, that is a
continuously increasing performance with an overall improvement
of 64.65% for the x-model and 56.52% for the y-model. Here, R2

reaches 87.35% for x and 84.56% for y.

Analysis of the importance of individual inputs further showed that
the proposed scene target to calibration pattern relation dxt and dyt
as well as the proposed gaze detection and mapping metric Smarker

improved prediction performance (see Figure 5).

8.3 Error-Aware Gaze-Based Selection

We finally implemented a real-time version of our gaze estimation
error model in a sample error-aware gaze-based interface. The in-
teraction with the interface consisted of a gaze-based selection task
on a large display. The interface used the gaze estimation error pre-
dicted by our model (Ours) by adapting the size of the selection tar-
gets in real-time: The larger the predicted gaze estimation error, the
larger the targets. We compared our model with implementations
of Best and Measured as well as to a baseline model with constant
target size (None). For Ours, Best, and Measured the size of the
target was set to cover two times the mean error, which was calcu-
lated for the target’s centre point in both x and y direction. For the
baseline model the error was computed using the Measured model
but constant dcal.

8.3.1 Experimental Setup and Procedure

We invited 12 participants (six female) aged between 20 and 53
(M = 28.68, SD = 10.84). We used a PUPIL Pro tracker con-
nected to a laptop inside a backpack worn by the participants [Kass-
ner et al. 2014]. Blue rectangles with a white dot at their centre
were shown as stimuli on a back-projected screen (1024 × 768px
with 8.88px/cm). To select a target, participants were asked to
press a button on a wireless presenter while fixating on it. Partici-



Parameter Description Source Frequency

Pupil Position
Mapping

Px;Py Normalised pupil position [%] tracker software real-time

Tx;Ty Normalised scene target position [%] user-defined real-time

c Pupil detection confidence [%] tracker software real-time

Sp Relative calibration pattern size [%] computed one-time

dxt ; d
y
t Scene target to calibration pattern relation [%] computed real-time

drelp Relative difference to calibration distance [%] computed real-time

Display Detection
and Mapping

drec Distance between user and display [cm] computed real-time

α Rotation around x-axis (pitch) [°] computed real-time

β Rotation around y-axis (yaw) [°] computed real-time

M Marker detection rate [%] computed real-time

Smarker Marker size [px] computed real-time

Scene Camera

I Intrinsic parameters measured one-time

FOV Field of view (FOV) [°] measured one-time

resscene Resolution [px] manufacturer one-time

Eye Camera reseye Resolution [px] manufacturer one-time

Target Display
resdisplay Resolution [px] manufacturer one-time

dimdisplay Dimensions [px] manufacturer one-time

Visual Marker
Reference marker definition user-defined one-time

Marker size [cm] user-defined one-time

Calibration
dcal Calibration distance [cm] computed one-time

Ccal Calibration pattern centre [%] user-defined one-time

Table 2: Input parameters of our gaze estimation error model consisting of direct parameters for the model (top) and indirect parameters that
are used to calculate them (bottom). Source describes how the parameter is obtained (tracker software, user-defined, computed, measured,
manufacturer) and Frequency indicates if the parameter is obtained once (one-time) or continuously during runtime (real-time).

pants were first introduced to the experiment and asked to complete
a general questionnaire. Afterwards each participant calibrated the
eye tracker once and performed the selections for all error predic-
tion methods. The order of methods was counterbalanced between
participants. The calibration was performed at the centre of a 3× 3
grid with 50×50 cm cells starting 100 cm in front of the display. Se-
lections were performed on six on-screen targets (radially arranged
with one at the display centre) from all positions of the 3 × 3 grid,
totalling 216 selections per participant. On average one run lasted
967s. At the end participants completed a USE questionnaire [Lund
2001]. Independent variables were the error prediction method and
the user position (grid). The dependent variable was the selection
rate and the USE results.

8.3.2 Results

Averaged over all on-screen targets and grid positions the selec-
tion rate was 22.47% (SD = 15.56) for Best , 48.92% (SD =
29.09) for None, 53.4% (SD = 22.53) for Measured and 81.48%
(SD = 17.99) for Ours. A repeated measures ANOVA (N = 12)
showed that the differences are significant (F (3, 9) = 56.294, p <
0.001). All pairwise differences (bonferroni-corrected) are signif-
icant, besides Measured and None. We further analysed the ef-
fect of distance and angle (see Figure 6). For Measured we ob-
served a significant drop in selection rate when moving from the
calibration position towards the display with 43.18% (F (2, 10) =
14.127, p = 0.001). Results for Best also decreased by 34.92%,
but not significantly (F (2, 10) = 1.448, p = 0.28). For None
we found an inverse effect, i.e. the selection rate increased by
30.39% (F (2, 10) = 9.988, p = 0.004). The results for our
error prediction model Ours reveal a similar effect as for Mea-
sured and Best, but the selection rate only decreased by 20.64%
(F (2, 10) = 17.298, p = 0.001). In the USE questionnaire, 11
participants judged Ours as their favourite method and the method
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D:\OneDrive\Master 
Thesis\validation_study\raw_data\Se
lections.sav

DataSet1

rounded_distance>=100 & 
rounded_distance <= 275 & 
rounded_rotation>= -40 & 
rounded_rotation <= 40 (FILTER)

<keine>

<keine>

2575

GGRAPH
  /GRAPHDATASET NAME="
graphdataset" 
VARIABLES=rounded_rotation 
MEAN(num_result)[name="
MEAN_num_result"] 
prediction_method 
MISSING=LISTWISE 
REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
  SOURCE: s=userSource(id
("graphdataset"))
  DATA: rounded_rotation=col
(source(s), name
("rounded_rotation"), unit.category())
  DATA: MEAN_num_result=col
(source(s), name
("MEAN_num_result"))
  DATA: prediction_method=col
(source(s), name
("prediction_method"), unit.
category())
  GUIDE: axis(dim(1), label("Angle 
[°]"))
  GUIDE: axis(dim(2), label
("Mittelwert num_result"))
  GUIDE: legend(aesthetic(aesthetic.
color.interior), label
("prediction_method"))
  SCALE: cat(dim(1), include
("-50.00", "-40.00", "-30.00", 
"-20.00", "-10.00", ".00", "10.00"
, "20.00", "30.00", "40.00"))
  SCALE: linear(dim(2), include(0))
  SCALE: cat(aesthetic(aesthetic.
color.interior), include
("BestErrorPredictor", 
"DummyErrorPredictor"
, "MeasuredErrorPredictor", 
"OursErrorPredictor"))
  ELEMENT: line(position
(rounded_rotation*MEAN_num_resul
t), color.interior(prediction_method), 
missing.wings())
END GPL.
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D:\OneDrive\Master 
Thesis\validation_study\raw_data\Se
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DataSet1

rounded_distance>=100 & 
rounded_distance <= 275 & 
rounded_rotation>= -40 & 
rounded_rotation <= 40 (FILTER)

<keine>

<keine>

2575

GGRAPH
  /GRAPHDATASET NAME="
graphdataset"
    VARIABLES=rounded_rotation
[LEVEL=ordinal] num_result
[LEVEL=scale] prediction_method
[LEVEL=nominal] rounded_distance
[LEVEL=ordinal]
    MISSING=LISTWISE 
REPORTMISSING=NO
  /GRAPHSPEC 
SOURCE=VIZTEMPLATE(NAME="
Heat Map"[LOCATION=LOCAL]
    MAPPING( "color"="num_result"
[DATASET="graphdataset"] "rows"="
rounded_distance"[DATASET="
graphdataset"] "Panel across"="
prediction_method"[DATASET="
graphdataset"] "columns"="
rounded_rotation"[DATASET="
graphdataset"]))
    VIZSTYLESHEET="Traditional"
[LOCATION=LOCAL]
    LABEL='Heatmap: 
rounded_rotation-num_result-
rounded_distance'
    DEFAULTTEMPLATE=NO.
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Figure 6: Selection rate of the different methods depending on (a)
the distance and (b) the orientation of the user to the display.

None Best Measured Ours

Usefulness 3.75 2.58 4.08 6.17

Ease of use 4.17 3.33 4.25 5.83

Ease of learning 5.33 4.75 5.08 5.083

Satisfaction 4 3 4 6.17

Table 3: Qualitative results for the different methods (USE ques-
tionnaire with 7-point Likert scale).

ranked best for usefulness, ease of use, and satisfaction (see Ta-
ble 3).

8.3.3 Conclusion

Our gaze-based interface exemplary prototypes the novel class of
error-aware gaze interaction. The evaluation showed that our error
model allows interfaces to adapt to the inevitable gaze estimation
error in real-time and with a significant benefit in terms of perfor-
mance and usability.


