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ABSTRACT
Today, sports and activity trackers are ubiquitous. Especially
runners and cyclists have a variety of possibilities to record
and analyze their workouts. In contrast, climbing did not find
much attention in consumer electronics and human-computer
interaction. If quantified data similar to cycling or running
data were available for climbing, several applications would
be possible, ranging from simple training diaries to virtual
coaches or usage analytics for gym operators.

This paper introduces a system that automatically recognizes
climbed routes using wrist-worn inertia measurement units
(IMUs). This is achieved by extracting features of a recorded
ascent and use them as training data for the recognition sys-
tem. To verify the recognition system, cross-validation meth-
ods were applied to a set of ascent recordings that were as-
sessed during a user study with eight climbers in a local
climbing gym. The evaluation resulted in a high recognition
rate, thus proving that our approach is possible and opera-
tional.
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learning.
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INTRODUCTION
Tracking of sports like running and cycling with smartphones
and special sport devices is becoming increasingly popu-
lar [10]. These devices allow the recognition of tracks ran
or distances cycled. In contrast, it is only possible to as-
sess the routes which were climbed during a climbing session
by hand. Common methods are noting the climbed routes
and their difficulty levels in a book, spreadsheet, or low fi-
delity smartphone apps. Existing methods and applications
for climbing tracking lack user-friendliness and additional
value. Ladha et al. [11] developed a system which assess
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Figure 1. ClimbSense wearable sensors to automatically detect climbed
routes with wrist-worn Inertia Measurement Units.

the user’s climbing style and performance by analyzing ac-
celerometer readings assessed by sensors which were worn
on both wrists during an ascent.

In this paper we introduce ClimbSense, a system that is able
to record and automatically recognize the route which a user
climbed during a climbing session (see Figure 1). A climbing
gym usually provides a large amount of different climbing
routes that consist of several artificial holds mounted to the
climbing walls. One particular route consists of a certain set
of holds and only these are allowed to be used as either a
hand- or foothold (see Figure 2). Climbing routes usually do
not have one single possible sequence of movements to mas-
ter an ascent, which makes it hard to recognize the climbed
routes. In our approach the climber is tracked by wrist-worn
Inertia Measurement Units (IMUs). A corpus of climbing
data was collected in an initial user study which should in-
vestigate the general feasibility of an automatic route recog-
nition system. Eight climbers of different skill levels partic-
ipated in the study. The features that were extracted from
the collected data were used as training data for the recog-
nition system. Our recognition approach is based on feature
extraction and string comparison. To verify the recognition
system, cross-validation methods were applied to a set of the
corpus data. This evaluation resulted in a recognition rate of
90.19% (SD = 5.39).

We envision the following scenario that shows the potential of
automatic climbing route recognition using wrist-worn IMUs
reaching from self tracking for training and coaching to an-
alytics for climbing gym maintenance. Our ClimbSense ap-
proach does not fully implement this vision yet. However,
an automatic route recognition and tracking system, as it is
described in this paper, could be the first step towards such
applications.

http://dx.doi.org/10.1145/2702123.2702311


Figure 2. A climbing route consists of a certain set of holds (often de-
noted by color). Only these holds are allowed to be used during an as-
cent.

Scenario
When Paul enters the climbing gym, his phone notifies him
that, according to his training plan, today is a cardio day.
Since Paul uses his sensor armbands that automatically record
every ascent he does, the system adapts to him. It knows
that Paul usually climbs in the grades around VII+1 and likes
overhanging routes with big holds. Thanks to crowd sourced
information every route is tagged with information about the
holds, if dynamic moves are required or which inclination the
wall has.

The system suggests a cardio training, which requires Paul
to climb five different routes with three repetitions, within
30 minutes. To make things easier, five routes are proposed
which are one level easier as Pauls average climbing skill.
The routes which Paul climbed in the past were automatically
assessed by his climbing wrist bands. Pauls climbing partner
Sarah, who also uses the system, is also doing cardio train-
ing. After an exhausting training session, Paul and Sarah sit
in the lounge and compare each others training progress on

1For climbing, many different grading systems exist varying accord-
ing to country. The UIAA grading system is used within the scope
of this work because the participants were familiar with this system.
The grade reach from I (easy) to XII- (hard). Average skilled and
sportive people might quickly reach the V range while climbing a
VI requires some training. Climbing in grades above VII make a
regular and rigor training regime necessary.

their smartphones. The system summarizes the last months
sessions and visualizes the training progress. Back in the
climbing gym office, Michael, the manager of the gym opens
the dashboard of the climbing gym management software.
The dashboard displays operating numbers like the number
of routes, the average route age, and the route distribution.
Thanks to the climbing history data he automatically receives
from his customers, he can compare the present difficulty dis-
tribution with the skill levels of his customers. He sees that
many new customers started climbing which require routes in
the easier difficulty levels. To counterbalance, he schedules
ten new routes for beginners that should be created during the
next route setting session.

To sum up, this paper contributes a method to detect features
in individual recordings of climbing route ascents based on
absolute arm orientations which are assessed by wrist worn
IMUs. A modified edit distance algorithm makes it possible
to compare two recordings of ascents and returns a measure of
similarity. Furthermore we cast a vision of how this technique
could be used to enhance the climbing experience for both,
climbers and climbing gym operators.

RELATED WORK
Our work builds on methods for (1) sports and activity track-
ing and (2) climbing technologies and research.

Activity Tracking
Today, a number of devices and smartphone apps are avail-
able which enable the user to track various parts of her live.
This ranges from sports tracking, through activity tracking,
to sleep cycle logging. These examples show that not only
sports can be tracked, but also daily activities such as count-
ing steps, recording sleep cycles, and calculating the number
of calories burned. Many of these trackers incorporate a cor-
responding smartphone app that visualize the recorded data,
rewards the user with achievements, acts like a mobile coach,
or makes it possible to share data within social networks.

The motivations for users to track activities are diverse. Ac-
cording to Rooksby et al. [18] the reasons for activity tracking
could be directive, documentary or diagnostic, but also mo-
tivated by collectable rewards or simply for the sake of the
fetishized gadget. Ojala and Saarela [14] have shown that
sharing also plays an important role for the motivation of the
users. By interviews they identified seven main categories
that motivated them to use the online communities.

Besides consumer-ready devices and services, a variety of re-
search exists on activity recognition and tracking. Kranz et
al. [10] introduced GymSkill, an app-based personal trainer
which assesses the exercises performed on a balance board.
They proposed an assessment algorithm that relies on the ac-
celerometer of a smartphone and evaluated it with the assess-
ment of a professional coach as ground truth. Swimming as a
sport got also some attention in research. Daukantas et al. [5]
made a first step towards measuring swimming performance
of butterfly strokes with inertial sensors attached to the swim-
mers’ spine. Their work reveals several problems when trying
to assess the moving speed from acceleration data. Stamm et
al. [20, 19] also tried to measure the swimming velocity with



the help of an accelerometer that was attached the to swim-
mers sacrum. An evaluation indicated a good match between
the proposed accelerometer-based velocity profile and a teth-
ered speed probe. Kooyman et al. [9] presented a gyroscope-
driven system to improve motor skills while performing a golf
putt. A user study showed that experienced and inexperienced
participants improved their putting performance after using
the feedback GUI. Morris et al. [13] introduced RecoFit, a
system for automatic tracking of repetitive exercises. They
used an arm worn IMU to recognize fitness exercises. In an
evaluation study 20 participants had to perform two rounds of
a four-exercise course which resulted in an average recogni-
tion accuracy of 99.3%.

The proposed papers suggest that the usage of accelerome-
ters and gyroscopes attached to the sport device or the user
herself is a common and proven method for activity tracking.
In addition to the research in tracking technology, the related
work showed that using a tracking system could improve the
performance of the user. We envision this for climbing and
assume that a virtual climbing coach could be built that is
based on the climbing data, in terms of the determination of
climbed routes, assessed by the system proposed in this paper.

Climbing and HCI
Sport climbing can be performed indoors as well as outdoors
and requires protection such as harnesses and ropes. Indoor
climbing gyms provide the climber with a variety of routes
in different difficulty levels. Artificial holds are mounted to
the climbing wall which allows a large variety in different
route styles and difficulties. A climber can decide whether
she wants to climb top rope or lead. In the first case, the
climber is tied on a rope that leads from the bottom to the
top, passing through carabiners and is held fast by a second
person, the belayer, with the help of a belay device. In case of
a fall the belayer prevents the climber from hitting the ground.
Lead climbing describes the type of sport climbing where the
rope is carried up by the climber who has to clip the rope
into carabiners. Bouldering is another discipline of climbing
which requires neither a rope nor a harness. Bouldering is
climbing in low heights that is performed indoors as well as
outdoors. Artificial bouldering walls are surrounded by thick
mats that prevent a climber from severe injuries in case of a
fall. As of recently, climbing got some attention in research
maybe because of its growing popularity. Climbing-related
research includes work on technology aided route creation,
instrumented climbing walls, and automated skill assessment.

Pfeil et al. [16] propose a climbing route designer that aims to
enable even non-expert route setter to create quality climbing
routes. An informal user study showed some limitations that
were explained by the missing specification of certain climb-
ing moves and feedback on why a move fails. They concluded
that this system could be used by experienced and novice
climbers to design routes for children. Daiber et al. [4] inves-
tigated handheld augmented reality for collaborative boulder
training. They present a mobile augmented reality applica-
tion to define, document and share boulder problems. Ka-
jastila and Hämäläinen [8] also explored augmented reality
for climbing walls but they directly augmented the wall with

Figure 3. Mounting for the sensor modules. Left: Arduino Fio. Right:
SDCard writer and sensor stick.

a projector. A preliminary Wizard-of-Oz study with six inter-
action prototypes and structured interviews showed that users
liked the system.

There are various possibilities to track a climber such as
body-worn sensors, image processing, or instrumented climb-
ing walls. Liljedahl et al. [12] proposed Digiwall, which con-
sists of holds that can sense the climber’s position with built-
in capacitive sensors and provide subtle feedback with LEDs.
The focus of this work is gaming, competitions, and chal-
lenges that can be rather used for playful activities than rig-
orous training. A very similar instrumentation was done by
Ouchi et al. [15] whereas the goal of their work was to model
play behavior of children. The used climbing holds that in-
corporated a LED and a strain gauge. Their work aims to
improve the design of age-appropriate and safer playground
equipment. Aladdin and Kry [1] proposed an instrumented
climbing wall for static pose reconstruction. They use holds
equipped with 6-axis force torque sensors that were used to
reconstruct the climber’s pose during an ascent. An evalua-
tion showed that dynamic motions and higher errors coincide.
Fuss and Niegl [6] also used torque sensors in instrumented
climbing holds to measure the performance of a climber. Data
collected on three climbing events was be segmented into the
three phases of contact: set-up phase, crank phase, and lock
off.

While the previous methods required an instrumented climb-
ing wall, Ladha et al. [11] used wrist worn accelerometer sen-
sors to assess the climbing performance of the user. An eval-
uation of the system during a climbing competition resulted
in a positive correlation between the predicted and the actual
score of the participants.

Although our system is closely related to the work of Ladha et
al. [11] we follow a slightly different approach. The purpose
of our system is not to assess the skills of the climber, but
rather to automatically detect which routes she is climbing
during a session. We further used sensor-fused orientation
information and accelerometer data of a 9 degrees of free-
dom (DOF) IMU instead of accelerometer-only data. Our
approach is motivated by self-tracked sports activities and
thus requires no additional instrumentation of the environ-
ment. Other approaches that instrument the climbing wall
(e.g. with RFID/NFC technology) instead of the climber are
indeed possible, but we think that instrumenting solely the
climber is the better option.



Figure 4. Recorded data (left hand) of an ascent. Blue: sum of standard deviations, green: mean of x-axis acceleration, red triangles: thresholds for
move segmentation, pink squares: start and stop of climbing sequence.

CLIMBING DATA COLLECTION
Wrist-worn inertia measurement units (IMUs) were used to
automatically recognize climbed routes. After introducing
the hardware prototype a data collection study with eight
climbers of different skill levels is presented. The aim of this
study was to collect a corpus of climbing data to extract fea-
tures as training data for the recognition system.

Climbing Sensor Hardware
Commercial accelerometer driven products like the fitbit or
the Nike+ FuelBand do not provide access to the raw data
collected by the device [3]. The missing API of commercial
devices and the need for additional data like the orientation
of the sensor required to build a custom prototype.

The prototype uses a Razor 9DOF Sensor Stick containing
a triple-axis gyroscope, a triple-axis accelerometer, and a
triple-axis magnetometer. This sensor allowed to assess the
orientation. A microSD card writer was used to store the sen-
sor readings during the climbing sessions. Both components
were driven by an Arduino Fio v3 with an ATmega32U4 chip
and a rechargeable battery. The sensor box could record ap-
proximately three hours of climbing with a fully charged bat-
tery.

Since the sensor should be worn on the wrist, a 3D model of
a housing was designed using OpenScad2 and printed with an
Ultimaker3 3D printer. As it can be seen in Figure 3, stackable
frames were used to hold the individual modules in place.
This setup also allows later extensions of the prototype by
muscle or heart rate sensors. The frames were held in place
by off-the-shelf nuts and bolts inside a custom built housing.
This housing had the dimensions of 7cm × 3.5cm × 5cm. A
leather strip with Velcro was used to fix the sensor boxes on
the wrist of the climber (see Figure 5): The sensor bands have
to be tightly attached to the wrist to avoid slipping of the box
during a climb.

Participants and Task
Eight climbers with different skill levels participated in the
study, were one participant was female. In average the partici-
pants climbed for 7.25 years (SD = 7.12), ranging from four
to 24 years. The participants’ skill levels ranged from IV to
2http://www.openscad.org/
3https://www.ultimaker.com

Figure 5. Sensor box attached to wrist. The attached button is used
to manually mark timestamps in the recorded data. The x-axis runs
parallel to the arm which is later used to determine if the arm is pointing
up- or downward. Yaw, pitch, and roll corresponds to the y-, z-, and x-
axis.

V III+ (UIAA). Seven of the participants were right-handed.
Furthermore the height (M = 177.38cm, SD = 9.40) and
arm span (M = 183.25, SD = 10.61) of the participants was
assessed. To build a data corpus, the participants were asked
to climb a set of 5 predefined routes. The difficulty of the
routes ranged from IV− to V I+ and they contained dynamic
and static moves, and different hold types. All routes had
the same height and roughly the same number of holds. The
routes were straight with no to little overhang. Each route var-
ied in terms of holds in different forms and difficulty to grip
which resulted in a broad variety of climbing styles. Most of
the routes had more holds than necessary, allowing varying
ascents and thus, resulting in differing recordings for every
ascend. Furthermore, all routes were top-rope routes. Be-
side the general security aspect, top-roping allowed the par-
ticipants to fully concentrate on climbing. The participants
were asked to climb each route two times. No participant
climbed any of the selected routes before. Both ascents were
recorded. Since not every participant was able to climb every
route during the recording sessions, the average number of
recording per route was 10 (SD = 3.53). As a result, in total
50 recordings could be achieved.

Procedure
To assess the climbing data, the following procedure was per-
formed for each climb. First, the participant had to put on the
wristbands. Since the recognition of the route relies on the
orientations of the arms, it was necessary to put on the sensors

http://www.openscad.org/
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in the same way for each recording (details on the recognition
see below). The sensors had labels to distinguish between the
left and right hand. Figures 1 and 5 show the sensors, worn by
participants. After the participant tied herself in, the record-
ing was started by simultaneously pressing the external but-
tons of the sensor boxes. This was necessary since the current
prototype does not contain clock modules for synchroniza-
tion. Additionally the climbing tasks were video captured for
later analysis. The video footage was mainly used to com-
pare the collected sensor data with the actual movements of
the climber.

Each recording of the ascents lasted about 30 minutes per par-
ticipant. The participants were allowed to take breaks as often
as they wanted. When the participant had finished the route
she was lowered. As a final step the recording was stopped
by switching of the sensor boxes. The sensor data for each
ascent was automatically written in a separate file on the in-
ternal SDCard. These files were finally uploaded via an API
into the analytics toolkit. We developed the analysis toolkit
with the help of the Django web framework 4 which made it
easy to implement both, GUIs and CLIs, to access the func-
tions of our system. The analytics toolkit is responsible for
the storage and processing of the collected climbing data.

Results
To analyze the recordings, the data was preprocessed by the
analytics toolkit. First the orientation of the sensors was cal-
culated with a sensor fusion algorithm[17] using the direc-
tion cosine5. The algorithm calculates a robust orientation
of the device based on the data from the magnetometer, the
gyroscope, and the accelerometer. In a second step the data
stream was segmented with a sliding window procedure: each
window covered 280ms of data with 20ms overlap on each
side. Next, the average and the standard deviation of the three
accelerometer values was calculated for each window. The
sum of the standard deviations served as a description for the
movement energy within the borders of a window.

When visually analyzing the plots from the data described
above, the climbing sequence and the individual grips of the
hands could be easily identified (see Figure 4). Most of the
time during an ascent both hands are pointing upwards. This
results in a mostly positive value of the acceleration in the
x-axis (green). Transitions from one hold to another can be
identified by the peaks of the standard deviation (blue). The
valleys in-between the peaks indicate the gripping of a climb-
ing hold.

CLIMBSENSE SYSTEM
The automatic route recognition introduced in this section is
based on the assumption that a route can be characterized by a
sequence of arm orientations, asessed in the moment of grip-
ping a hold. Our system relies on the assumption that some
of the recordings collected during training are similar to the
recording to be recognized. Since the setup of a route usu-
ally limits the number of possibilities on how a route can be
climbed, this assumption should be fulfilled. We chose the
4https://www.djangoproject.com/
5https://github.com/ptrbrtz/razor-9dof-ahrs

arm orientations in the moment of gripping a hold as char-
acterization, since the determination of absolute movement
based on the available accelerometer data is hard. This is
due to errors based on the double integration of accelerome-
ter readings [22]. Especially during movements like fast hand
switching or shaking the hands for relief, using the absolute
arm orientations in holding position as opposed to interpret-
ing movements, is a viable approach.

Every aspect of processing and data management is covered
by the analytics toolkit. Each recording of an ascent is stored
in a so-called recording dataset. This includes the raw data
obtained from the sensors as also the processed data, i.e. the
extracted features of the ascent.

The process of the route recognition consists of the follow-
ing steps: (0) preprocessing, (1) climb segmentation and grip
detection, (2) feature extraction, and (3) matching. After seg-
menting the climb within a recording, grips are detected and
the arm orientations of each grip are extracted. The orien-
tations are discretized and considered as a sequence of sym-
bols, i.e. a string. Since each route can now be characterized
by a string, the identification of new unrecognized record-
ings is achieved by applying a weighted Levenshtein edit dis-
tance [2].

(0) Preprocessing
As mentioned above, preprocessing includes the calculation
of the orientation based on a sensor fusion algorithm which
uses the sensor readings from the accelerometer, gyroscope,
and magnetometer [17]. A sliding window procedure is ap-
plied and parameters such as the average acceleration and the
standard deviation are calculated. The following steps are ap-
plied on the resulting windows.

(1) Climb Segmentation and Grip Detection
After preprocessing the recorded data, the climbing sequence
was extracted from each recording dataset. Each recording
dataset only contains one climbing sequence. This also in-
cludes standing on the ground, the ascent itself, and lowering.

From the accelerometers point of view, a climbing sequence
is defined as a sequence of alternations between low and high
movement. These alternations arise when gripping a hold and
the transition from one hold to another. Analog to this defi-
nition, the segmentation of individual movements is achieved
by applying two thresholds tlow and thigh on the energy (i.e.
the sum of the standard deviations) for each window. An al-
ternation between those two thresholds indicates a movement
that is set as property of the window (is gripping window).
A second pair of thresholds is applied to the x-axis (paral-
lel to the climber’s arm) acceleration indicating whether the
arm is pointing down (tdown) or up (tup). After identify-
ing the movements and arm position in the dataset for the
left and right hand, the climbing sequence is narrowed down
by observing both arms simultaneously. For this, both win-
dow sequences (left hand and right hand) are iterated and
flagged with both hands down or both hands up whenever in
two corresponding windows (two windows correspond if they
share the same timestamp) the arms are pointing up or down.

https://www.djangoproject.com/
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Figure 6. Segmentation of the orientation yaw = 50°, pitch =
125°, roll = 10°. One segment spans an interval of [i × 36, (i + 1) ×
36 − 1]. For the sake of simplicity, the number of segments was reduced
to 10.

The thresholds for climb segmentation and grip detection
were determined in an iterative procedure on data recorded
during a pilot study. For this, the actual number of grips was
manually transcribed from all videos. Based on this, an aver-
age number of grips was calculated for each route. An inter-
val ranging from a relatively low to a relatively high energy
was assigned to each threshold. After iterating over all values
within these intervals, the script returned the “best” combina-
tion of thresholds. The “best” combination is defined as the
set of thresholds which result in the smallest delta between
the actual number and the detected number of grips. During
the later measurement of the recognition performance, data
different from the data assessed in the pilot study was used.

In a final step, the climbing sequence within the recording is
marked by applying the definition above. Figure 4 shows a
plot of a route’s recording with the hold transitions and the
boundaries of the climbing sequence indicated as red trian-
gles and pink squares. This results in two sequences of groups
of windows which were marked as gripping windows. These
sequences are then used to extract the features of this ascent.

(2) Feature Extraction
The method of gesture recognition as proposed by [21] uses
a codebook to convert the direction vectors which were cal-
culated from accelerometer data into symbols. A codebook is
basically a mapping from a set of values to one single value
or symbol. A sequence of those symbols forms a string. This
string is then considered a word, which can be used to cal-
culate the Levenshtein distance [2] between two ”stringified“
gestures.

We adapted this method for the route recognition process. In-
stead of direction vectors, arm orientations, which arise dur-
ing the ascent of a route, are used. These orientations are
fetched whenever a hand grips a hold. An orientation is con-
verted, with the help of a codebook into a symbol represent-
ing the yaw, pitch and roll angles. The codebook is generated
as follows. First, a circle is divided into 30 segments. The
resulting 12◦ circular segments represent a satisfying tradeoff
between generalization and sufficient discriminability. This
step has to be executed three times, one time for each of the
three angles (yaw, pitch, roll).

The following example illustrates this procedure: To convert
a specific orientation of the sensor box, the matching seg-
ment for each angle is chosen. Supposing the orientation
yaw = 50, pitch = 125, roll = 10 the resulting segments
for the three axis would have the indices 4, 10, and 0 (see Fig-
ure 6). By using this method an orientation of a sensor box

can be coded into one of 30 × 30 × 30 = 27.000 resulting
symbols. During recognition each orientation is assigned to a
combination of segment indices.

(3) Matching
In a final step of the route recognition process, the route is
determined based on the calculated strings. The general ap-
proach is to compare the incoming dataset with each of the
training datasets that are stored in the database for each in-
dividual route. As comparison, a weighted Levenshtein dis-
tance is used. The weighted Levenshtein distance used by the
system is defined by the following equation.

m = |u|, n = |v|
Di,0 = i, 1 ≤ i ≤ m, D0,j = j, 1 ≤ j ≤ n

Di,j = min


Di−1,j−1 +0 if ui = vj
Di−1,j−1 +0.1× SymDist(ui, vj)

Di,j−1 +1 (Insertion)
Di−1,j +0.1 (Deletion)

1 ≤ i ≤ m, 1 ≤ j ≤ n

SymDist depicts the distance between two symbols, i.e. two
orientations and is used when applying a substitution. The
symbol distance has to be included in the calculation, since
the system should allow a certain degree of deviation. This
need arises, since an ascent is not always performed in the
same way. Skipping of holds or different grip positions pro-
duce a variation in every ascent, which is compensated by
this method. The distance between two symbols is calculated
by adding the encoded angle distance of all three axis, e.g.
dist([0, 0, 0], [0, 1, 2]) = 0 + 1 + 2 = 3. Since there are al-
ways two possibilities to transition from one angle to another,
the shortest difference has to be chosen. As an example, con-
sider a circle from its center two lines arise. Both of these
lines have an outer and an inner angle. As a result, the dis-
tance between the two symbols [0, 0, 0] and [29, 0, 0] is 1 and
not 29.

To generate the final result, the incoming dataset has to be
compared to the training datasets which are available for each
route. For this, the Levenshtein distances between the strings
for the left hand and the strings for the right hand are summed
up, which results in a score for the pair of the two datasets
(incoming and training). The smaller the score is the higher
is the probability that the route is recognized correctly. Thus,
the pair with the lowest score is chosen as the winner.

ANALYSIS
The recognition performance of the algorithm was evaluated
based on the data corpus collected in the user study. For this,
the recorded data was used as both, training and testing data
using cross validation methods.

Grip Detection
The first step in the route recognition process is the detec-
tion of grips. To evaluate the grip detection of the system,
five sample recordings were randomly chosen. For each sam-
ple the number of grips was assessed manually by inspect-
ing the video recording. This number served as a ground



Ascent LHV RHV LHD RHD SV SD ∆
1 10 10 11 8 20 19 1
2 10 10 11 11 20 22 2
3 9 9 10 9 18 19 1
4 9 10 10 12 19 22 3
5 9 10 12 12 19 24 5

Table 1. Grip detection. A random sample of 5 ascents was analyzed.
Ground truth based on video recordings and detected number of grips.
LH: left hand, RH: right hand, V : video, D: detected, S: sum, ∆:
delta.

Route actual no. of holds min max mean SD
Route 1 16 21 32 27 2.78
Route 2 21 26 39 32 4.30
Route 3 18 21 34 25 4.32
Route 4 16 19 28 22 3.62
Route 5 17 16 31 22 3.60

Table 2. Statistics w.r.t the number of detected grips for all routes used
in the study. The table shows that the number of actual holds correlates
with the average number of detected holds per climb.

truth and was compared to the number of automatically rec-
ognized grips. This measure was chosen since the number
of grips during an ascent varies from climber to climber but
correlates with the number of holds mounted to the wall. Ta-
ble 1 shows the result of this assessment. For each ascent
the actual number of holds per hand was transcribed from the
video and compared to the number of detected grips. The
number of actual grips ranged from nine to ten while the rec-
ognized number of grips ranged from eight to twelve. Except
for one record, the difference between the actual number of
grips and the detected number of grips fluctuated between one
and three. One record differed in five grips.

Furthermore, the minimum, maximum, and average number
of detected holds was calculated for each route. This was
done for the whole data corpus. Additionally, the number of
holds attached to the wall was included in this analysis. Ta-
ble 2 shows the results. The actual number of holds per route
ranged from 16 to 21, while the average detected number of
grips ranged from 16 to 39. Although the average difference
between the actual number of holds and the average number
of detected grips was 8.0 a correlation could be identified.
A computation of the Pearson correlation resulted in 0.788
which shows a significant relation between the detected num-
ber of grips and the actual number of holds mounted on the
climbing wall. The standard deviations of the average number
of detected grips ranged from 2.78 to 4.32.

Route Recognition
To evaluate the route recognition exhaustive and non-
exhaustive cross validation methods were applied: leave-one-
out cross-validation (LOOCV) and 2-fold cross validation.
(2FCV). When applying LOOCV to every recording dataset,
the system tries to recognize the route based on all 49 remain-
ing recordings. For this, the evaluation script iterates over all
recordings and queries the analytics toolkit, which responds
with a route id. Since all recordings, including the testing
data, are linked with the corresponding route, the number of
correctly recognized routes can be divided by the number of

processed routes. This results in the recognition rate. The re-
sults of this validation method indicate how good the system
works, when a relatively large number of recordings per route
are available.

Leave-one-out cross-validation
This LOOCV is executed two times with a slightly different
training set. In the first run the training set contains all records
except the one record which is used for testing. To validate if
the recognition is influenced by the fact that the training set
and also the testing set both contain records of the same per-
son, the following method was applied. Whenever a dataset
was used for testing which was recorded by participant A, all
records from this participant were removed from the training
set. This test should reveal whether the recognition system
is influenced by user dependence, or if a general corpus of
foreign training data is sufficient.

Applying the LOOCV over the complete dataset resulted in a
recognition rate of 100%. When using only “foreign” training
records, i.e. the training dataset does not contain recordings
of the user whose dataset is to be recognized, a recognition
rate of 100% was achieved.

Two-fold cross-validation
To investigate how good the system performs when only a
small number of recordings per route is available a 2FCV
was applied. In a 2FCV the available data is divided into
two groups of the same size. One group is used as training
data, while the other one is used for testing. In the case of the
recognition system, the datasets can not be simply divided
into two parts. This is due to the fact that it could not be as-
sured that every route is equally represented in each group.
For this, the two sets (training and testing data) are com-
piled as follows. The recording datasets of all routes are shuf-
fled and afterwards split into two parts. These two parts are
then appended to the training group, respectively the testing
group. The resulting groups are then analyzed with the 2-fold
cross-validation described above. This step was performed
100 times to get a more meaningful result.

As for the LOOCV, the 2FCV is also applied in two modes.
In the first run the training dataset was not modified and con-
tained a random set of recordings, except the ones that were
used for testing. In the second run, the training dataset was
modified as follows. At first, all participants which created
records used in the training set were identified. Then, all
records of these participants were removed from the testing
dataset to ensure a user-independent recognition.

The application of the 2FCV resulted in an average recog-
nition rate of 93.11% (SD = 5.52). When observing only
foreign training records the average recognition rate was
90.19% (SD = 5.39).

One Handed Recognition
Motivated by the growing popularity of smartwatches, the
validation methods described above were also applied on a
modified implementation of the recognition system. The im-
plementation was modified in such a way, that it would only
consider either the left or the right hand for training and



recognition. This could be easily achieved since both, the
data for the left and the right hand were gathered separately.
The current implementation of the climb segmentation, that
is, identifying the ascent within a recording, uses the sensor
data of both hands. Since the grip detection relies on the cor-
rect segmentation of the ascent, an evaluation of the grip de-
tection using only one hand was not performed.

Applying the cross-validation methods on only the left and
only the right hand resulted in different recognition rates.
The leave-one-out cross-validation scored with 84% for the
left hand and 94% for the right hand (see Table 3). Using
only user independent data sets resulted in recognition rates
of 68% and 94%. It can be seen that using only the data from
the right hand resulted in a recognition rate almost as good as
using both hands.

When applying a 2-fold cross-validation similar observations
could be made. Using only data from the left hand resulted in
an average recognition rate of 73.15% (SD = 6.95) (see Ta-
ble 4). Applying the 2FCV on only data of the right hand re-
sulted in an average recognition rate of 89.46% (SD = 4.99).
When considering only user independent records recognition
rates of 69.19% (SD = 6.36) for the left hand and recogni-
tion rates of 87.46% (SD = 5.4) could be achieved.

The the chance recognition rate for all validation methods was
20% and lies below the recognition rates our system could
achieve.

LOOCV
Left Right Both

complete 84.0% 94.0% 100%
user independent 68.0% 94.0% 100%

Table 3. Summarized evaluation results of the LOOCV. Using only data
of the right hand results in higher recognition rates as when only using
data of the left hand.

DISCUSSION

Grip Detection
When analyzing the grip detection performance, it can be
seen that randomly picked samples (see Table 1) showed good
results. The difference between the actual number of attached
holds and the number of detected holds can be explained with
various possible climbing styles. First, a usual technique is to
grip a hold with both hands (also known as matching). This
is used whenever the next hold is too far away or difficult to
grip. Very fast transitions from one hold to another or the
movement away and then again back to hold may also result
in detection errors. Extensive use of momentum during an

2FCV
Left Right Both
Mean SD Mean SD Mean SD

C 73.15% 6.95 89.46% 4.99 93.11% 5.52
U 69.19% 6.36 87.46% 5.40 90.19% 5.39

Table 4. Summarized evaluation results of the 2FCV. C: complete
dataset, U user independent. As in the LOOCV, only data of the right
hand results in higher recognition rates as when only using data of the
left hand.

ascent may also influence the efficiency of the detection. An-
other reason for the varying number of holds is the fact that
some climbers do not use every single hold that is available.
Additionally, it is also possible to use the wall itself as sup-
port, which could be falsely detected as gripping. Also some-
times climbers use a single hold for a really short amount of
time, using the momentum to ease the transition to the next
hold. All these reasons may lead to a false detection of grips.

This can be also seen when investigating Table 2. Although
the standard deviation of the average number of detected grips
is relatively low, there are sometimes outliers. This can be
noticed in the maximum number of detected grips in route 2.
When investigating the video recording of the corresponding
dataset, it could be seen that the participant struggled a lot
during her first ascent. This resulted in changing the grip of
her hands multiple times before continuing with the climb.
As a result, the system detected more grips than a “normal”
ascent would require. An implication of that would be, that
the recognition performs good at routes which are climbed
confidently, but may fail when the climbers struggles during
the ascent.

Route Recognition
The evaluation results suggest that automatic route recogni-
tion based on wrist worn IMUs is possible and operative.
The very good recognition rate of 100% when applying the
LOOCV may have several reasons. First, a large number of
training records per route are available. Whether this would
be the case in a productive environment is discussed later on.
Additionally, a relatively small number of routes is used. This
needs to be investigated further in the future.

As it can be seen in the difference between the LOOCV and
the 2FCV, a larger number of recordings per route are benefi-
cial for the recognition process. When applying the 2FCV on
an unfiltered training set, a higher recognition rate than in the
other run could be observed. The (filtered) training set used
in the second run of the 2FCV only relies on records from
participants which were not included in the testing dataset.
The cause for the difference between the runs on the filtered
and unfiltered dataset could not be definitely identified. One
reason could be the resulting smaller number of training data
sets. A small training dataset increases the probability of false
recognitions. In future work, we plan an extensive study to
gain more insights regarding this issue. The second reason
would be the difference in climbing styles between the par-
ticipants which are responsible for the training data sets and
the participants which are responsible for the testing data sets.
As it can be seen in the high recognition rate of the LOOCV, a
higher number of training datasets would solve this problem.

One Handed Route Recognition
Using only one hand for recognition and training leads to ad-
ditional promising insights. It could be observed that when
using only data from the right hand, higher scores could be
achieved as when only data from the left hand was used. This
could be due to the fact that most of the participants were
right-handed. We conclude that gripping with the dominant
hand resulted in more precise movement and in less jitter of



the limb. With this, a better recognition of the orientation
could be achieved and thus, a more expressive sequence of
orientations is used for the recognition process. The fact that
the LOOCV for only one limb still performs well may be a
result of the large number of records per route. This assump-
tion is encouraged when considering the results of the 2FCV
for only one limb. Smaller training sets result in lower recog-
nition rates.

The results suggest that in future work the application of
smartwatches for route recognition should be investigated in
more detail. Using future sports bands that allow access to
the raw data could also be used for the recognition and would
make special wrist bands for climbing recognition unneces-
sary.

Prerequisites
Currently the system relies on the assumption that each
recording contains exactly one ascent. In the current proto-
type, this is achieved by turning the devices on before the
climb, and switching them of after lowering. The ultimate
goal would be to integrate a climb segmentation which would
recognize each climb within a recording of a complete climb-
ing session. This could be established like described in [11].

Another prerequisite is the existence of a sufficient amount
of training data. Initial training data could be assessed by the
route setter herself. After setting the new route, she could
climb the route a couple of times which would suffice for a
basic training data set. Another option would be crowdsourc-
ing. A corresponding smartphone application could be used
to link recordings of the wristbands to the manual logging
of climbed routes. As motivation for the linking of record-
ings with routes, an achievement system could be deployed.
The user could gain achievements like badges or coupons for
free admittance in the climbing gym. Considering the sce-
nario described above, the gym operator would also profit
from knowing which routes are being climbed. This would
justify the expenses of the coupons.

Limitations
The current implementation of the system limits the recog-
nition to routes which were fully climbed, i.e. climbed from
the bottom to the top without falling or resting. Routes which
are only climbed partially are not recognized, since the sys-
tem would not find a match to a partial route. This is due
to the fact that the edit distance, which is the similarity mea-
sure, is also influenced by the different number of recognized
grips during two ascents. A comparison between an incom-
plete route and the training set would result in a higher edit
distance per se. Depending on the intended use of the sys-
tem, e.g. only as list of completed routes in a climbing gym,
this might not be flaw. In fact, a common training method for
endurance training is to climb a well known, but hard route
multiple times [7].

To recognize the route of a newly recorded ascent, the record-
ing has to be compared to each training dataset. Although this
process requires more resources as more routes are available
in the system, this is not a big concern. Since a real-time
recognition is not necessary, the recognition process can be

performed offline in a server structure. Systems like Strava
and their segment recognition prove that this is a viable solu-
tion.

Shaking the arms for relief, fast switching of holds, chalking
(i.e. applying magnesium carbonate to the hands to remove
perspiration and thus reduce slipping), or clipping the rope
in a belay might evoke irritations of the grip detection. This
results in too many or too few orientations represented by an
ascent. As a result, the edit distances derivates from the ac-
tual value. To overcome this issue, additional machine learn-
ing could be applied to recognize and discard non-transition
movements like the ones listed above. With this technique
grips could be identified better and non-transition movements
could be discarded. This would result in a better segmenta-
tion, which would give better route recognition rates.

CONCLUSION AND OUTLOOK
This paper introduced ClimbSense, a system that is able to
record and automatically recognize the route which a user is
climbing. The climber is tracked by wrist-worn IMUs. A
corpus of climbing data was collected in a user study with
8 climbers of different skill levels. The features which were
extracted from the collected data were used as training data
for the recognition system. To verify the recognition system,
cross-validation methods were applied to a set of the corpus
data. The analysis of the recognition system showed promis-
ing results. Eight participants climbed five routes, resulting
in 50 recorded data sets. These datasets were used for a com-
bination of two cross-validation methods. The leave-one-out
cross-validation resulted in a recognition rate of 100%. A 2-
fold cross-validation was performed 100 times and resulted
in a recognition rate of 93.11%. Considering the good per-
formance of the recognition process when using the data of
only one limb, the use of smartwatches as tracking device
should be investigated in more detail. In general, the recog-
nition could be improved in future work by an extended user
study. Further machine learning methods could be applied to
obtain a better grip detection. A better grip detection might
also result in a higher recognition rate.

Since the recognition relies on training data, two concepts
were introduced to obtain training records. One option would
be, that the setter of the route could climb the route a cou-
ple of times, while wearing the wristbands. As an alternative,
the training sets could be compiled through crowd sourcing.
Climbers could wear the wristbands and link recording with
routes with the help of a smartphone application. By improv-
ing the one handed recognition, open fitness tracker or smart
watches could be used to crowdsource the training data. Fur-
thermore, using future generations of smart watches makes it
obsolete to carry a smartphone around. Incentives for the use
of the application could be given by virtual achievements or
coupons for drinks.

Although the results of the evaluation are satisfying, there
are aspects that need more attention in future works. First,
a larger number of routes have to be included in the eval-
uation. This would give insights into how well the system
scales. With an increasing number of routes, the detection of
movements and grips has to be refined. Currently the system



does not distinguish between transitions from one hold to an-
other and other movements like clipping, shaking the arms
for relief or chalking. These movements could be detected
using machine learning methods. To get closer to the goal of
making this system consumer ready, climb segmentation as
in [11] would be desirable. Currently only recordings con-
taining one single ascent can be processed. Furthermore the
system only detects complete ascents of a route. Falls, resting
on the rope or partially climbed routes will certainly result in
recognition failures.

Including performance assessment into the system would
make it possible to detect user problems that arise at specific
routes. These problems could be deducted by the stability and
power the user shows during an ascent. With the help of these
data and the knowledge of available routes, the system could
make suggestions that would tackle the climber’s weaknesses
and helps her to improve her climbing skills.

Another way of extending the system would be the implemen-
tation of a real-time recognition. Currently the user would
have to upload the data into the online portal to receive the re-
sults of her climbing session. With the immediate knowledge
about the already climbed routes a virtual climbing coach
could adapt to the user and suggest routes which fit into the
current state of training. This would be especially helpful for
smartwatches. In fact, smartwatches or wrist-worn activity
trackers could replace special sensors like the ones used in
this paper. This is shown by the promising results of the one
handed route recognition evaluation.
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