
An Examination of the NCV-|v1〉
Quantum Library Based on Minimal Circuits

Arman Allahyari-Abhari Robert Wille Rolf Drechsler
Institute of Computer Science, University of Bremen, Bremen, Germany

Cyber Physical Systems, DFKI GmbH, Bremen, Germany
{abhari, rwille, drechsle}@informatik.uni-bremen.de

Abstract—In the recent past, significant effort has been put
on the investigation of design methods for quantum circuits.
Based on different physical realizations, several gate libraries
have been proposed for this purpose. Recently, the so-called
NCV-|v1〉 library has been introduced in this context. In contrast
to established libraries, the NCV-|v1〉 library seems to inherit
some significant advantages compared to established ones, e.g.
with respect to the mapping from reversible circuits or the
satisfaction of nearest neighbor constraints. However, all these
conclusions have been drawn based on heuristical results. In this
work, we perform a more in-depth examination of the NCV-|v1〉
library based on minimal circuits. For this purpose, an exact
synthesis scheme is proposed which utilizes the power of solvers
for Boolean satisfiability. Our examination clearly unveiled that,
from a logic design perspective, the NCV-|v1〉 library indeed
superiors the currently established library.

I. INTRODUCTION

The development of conventional circuit technologies is
going to reach physical limits in the near future. Therefore,
significant effort is put in the investigation of alternative
paths. One of the most promising alternatives are quantum
circuits [1]. These circuits rely on qubits rather than conven-
tional (Boolean) bits. Besides the established Boolean states 0
and 1, qubits can be set into superposition, i.e. may assume
states which represent 0 and 1 at the same time (each of
which with a certain probability). This allows for performing
computations with massive parallelism which, in turn, enables
to solve certain problems with a polynomial, sometimes even
an exponential, speed-up compared to existing (conventional)
solutions. The states of such qubits are thereby manipulated
by inherently reversible quantum operations.

From a design perspective, synthesis of respective quantum
circuit descriptions constitutes an elemental step in the design
flow for this technology. Since many well-known quantum
applications (e.g. Shor’s Algorithm for factorization [2] or
Groover’s Iteration for database search [3]) rely on variable
Boolean components, how to realize arbitrary Boolean func-
tions in quantum logic is an important and heavily considered
research area. As additionally various technologies for the
physical realization of these circuits are being investigated
right now, different gate libraries are assumed for this purpose.
The NCV library [4] and the Clifford+T library [5] are
prominent examples for such libraries which have intensely
been considered in the past (see e.g. [4], [6], [7], [8], [9], [10]
or [5], respectively).

Besides that, another library – the so-called
NCV-|v1〉 library – recently found attention and provides
significant advantages over existing ones. In fact, initial
investigations unveiled benefits (1) with respect to the
mapping of reversible gates to NCV-|v1〉 circuits (still, the
most common design scheme to realize quantum circuits
for Boolean functions; see [11]) and (2) in the satisfaction
of so-called nearest neighbor constraints (an important
criterion for many physical quantum architectures; see [12]).
Nevertheless, although a physical realization of this library
has (theoretically) been discussed e.g. in [13], no thorough
examination from a logic design perspective has been
conducted yet. This is mainly caused by the fact that existing
investigations heavily relied on heuristics. No exact results
are available for this library yet.

In this work, we address this issue. We conduct an exact
experimental evaluation of the NCV-|v1〉 library from a logic
design perspective. For this purpose, an exact synthesis scheme
is provided which realizes a minimal quantum circuit for a
given arbitrary reversible Boolean function. This exact syn-
thesis scheme enables a detailed examination of the costs of
NCV-|v1〉 circuits for Boolean functions. In order to tackle the
complexity of exact synthesis, solving solutions for Boolean
satisfiability are exploited.

Our experimental analysis unveiled interesting properties of
NCV-|v1〉 circuits. We prove that the mapping from reversible
gates as proposed in [11] indeed is minimal for many cases.
Besides that, NCV-|v1〉 circuits seem to be more costly than
circuits relying on the previously introduced NCV library
(with respect to gates). Nevertheless, a detailed examination
unveiled that this can be compensated by a proper encoding of
the respective basis states. Then, with respect to the number
of gates and a logic design perspective, NCV-|v1〉 circuits
provide a more efficient alternative compared to the established
NCV library. These results provide a further foundation to the
discussion about the applicability of the NCV-|v1〉 library for
quantum computation.

The remaining paper is structured as follows. Section II
provides the background on quantum computation and the
considered gate libraries. Afterwards, the exact synthesis
scheme is described in Section III which has been used in
order to conduct the anticipated experimental examination.
Section IV eventually describes the performed experiments
and summarizes their results. Finally, Section V concludes the
paper and outlines some further directions for future work.

TABLE I
QUANTUM OPERATIONS NOT , V AND V†

x NOT (x) V (x) V†(x)
0 1 v0 v1
v0 v1 1 0
1 0 v1 v0
v1 v0 0 1

II. QUANTUM GATES & CIRCUITS

The basic information unit for a quantum computer is the
qubit. Theoretically, a qubit can assume an infinite number of
different states. However, from a logic design perspective and
in accordance to the established gate libraries, a simplified
state model is assumed. Here, the possible states of a qubit
are restricted to the four values S = {|0〉, |v0〉, |1〉, |v1〉}, i.e. a
four-valued logic is considered. This includes representations
for the established Boolean values |0〉 and |1〉 as well as special
quantum values |v0〉 and |v1〉. The fundamental operations
needed in order to realize a Boolean function in a quantum
computer are NOT , V, and V†. The precise definition of
both, the quantum values as well as their respective operations,
differs depending on the assumed gate library. In this work,
the following two libraries are considered.

A. NCV Library

The quantum gate library introduced by Barenco et al. [4]
is the most-applied one in the logic design for quantum
circuits. The library is universal, i.e. any arbitrary reversible
Boolean function can be realized by cascades of NCV gates.
Here, the Boolean values |0〉 and |1〉 are basis states, while
the states |v0〉 and |v1〉 originate from superposition and are
explicitly given by |v0〉 = 1+i

2

(
1
−i
)

and |v1〉 = 1+i
2

(−i
1

)
.

The respective operations NOT , V, and V† are accordingly
defined by the unitary matrices

NOT = (0 1
1 0) ,V = 1+i

2

(
1 −i
−i 1

)
, and V† = 1−i

2 (1 i
i 1) .

The V operation is also known as the square root of NOT, since
two consecutive V operations are equivalent to an inversion. If
fed with a Boolean value (i.e. |0〉 or |1〉), a V operation leads
to one of the quantum values (i.e. |v0〉 or |v1〉, respectively).
The V† gate performs the inverse operation of the V gate,
i.e. V† = V−1. Table I provides an overview of all possible
transformations of quantum states (denoted in the rows) and
operations (denoted in the columns).

Having this as basis, a quantum circuit in the NCV library
is defined as follows:

Definition 1. A quantum circuit based on the NCV library is
a cascade of quantum gates over one or two qubits. Unary
quantum gates, i.e. gates over one qubit, apply the NOT
operation at the respective qubit (denoted target qubit). Two-
qubit gates are additionally composed of a control qubit. Those
gates perform one of the respective NOT , V, or V† operations
at the target qubit only if the control qubit is assigned 1. The
number of qubits is defined by n, while the number of gates
is defined by d.

x1 = 1 f1 = 1

x2 = 1 f2 = 1

x3 = 0 f3 = 0

x4 = 1 f4 = 0V† V V

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

1

1

1

0
v1

1

1

0

0

Fig. 1. Quantum circuit using the NCV gate library

Example 1. Fig. 1 illustrates an NCV quantum circuit com-
posed of n = 4 qubits and d = 7 quantum gates, which maps
e.g. the input pattern 1101 to the output pattern 1100.

B. NCV-|v1〉 Library

Although the NCV gate library is universal, i.e. every
Boolean function can be realized by it [4], different extensions
and alternatives have also been introduced. In this work, we
additionally consider the NCV-|v1〉 library recently introduced
in [11] and based on the physical foundations described
in [13].

In contrast to the NCV library, qudits instead of qubits
are assumed here, i.e. not a two level quantum system but
a (multiple-valued) 4-level quantum system is assumed. More
precisely, the NCV-|v1〉 library assumes all states |0〉, |v0〉,
|1〉, and |v1〉 introduced above to be basis states. Accordingly,
the respective operations NOT , V, or V† are not defined in
terms of two-level unitary matrices anymore, but four-level
descriptions, i.e.

NOT =

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
,V =

(
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
,V† =

(
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
.

Based on this, the transformations shown in Table I remain the
same but are applied on basis states rather than on (partially)
superposition states. This enables quantum gates which are
not controlled by 1 but instead by other basis states (v1 in
this case). More precisely, a quantum circuit in the NCV-|v1〉
library is defined as follows:

Definition 2. A quantum circuit based on the NCV-|v1〉 library
is a cascade of quantum gates over one or two qudits. Unary
quantum gates apply one of the operations NOT , V, or V†

at the respective qudit (denoted target qubit), while two-qubit
gates are additionally composed of a control qudit. However,
in contrast to the NCV library, the respective operation at the
target qudit is not performed if the control qudit is 1, but if it
is assigned v1.

For sake of simplicity, qubits and qudits are used inter-
changeably in the remainder of this paper.

Example 2. Fig. 2 shows a quantum circuit with n = 4
qubits and d = 8 quantum gates, which realizes the same
reversible function as the circuit from Fig. 1, but is composed
of gates from the NCV-|v1〉 library. The different control value
is emphasized by v1 at the corresponding control qubits.

x1 = 1 f1 = 1

x2 = 1 f2 = 1

x3 = 0 f3 = 0

x4 = 1 f4 = 0

V
v1

V
v1

v1

V†

v1

V
v1

v1

V†
V†

v1

1

0

1

v1

1
v0

1

v1

1
v0

1

v1

1

0

1

v1

v1

0

1

v1

v1

0

0

v1

1

0

0

Fig. 2. Quantum circuit using the NCV-|v1〉 gate library

III. APPLIED EXACT SYNTHESIS SCHEME

Initial evaluations on NCV-|v1〉 circuits already unveiled
promising properties, but entirely relied on results obtained
heuristically. In order to conduct an exact examination, we
developed a corresponding exact synthesis scheme. This holds
the challenge of a significant complexity: Determining exact,
i.e. minimal, circuits realizing a given function requires to
consider all possible gate combinations. To cope with this
complexity, we exploited the power of existing solving engines
for Boolean satisfiability1. This section describes the applied
solution. First, a brief background on the utilized solving
engines is provided. Afterwards, the exact synthesis scheme
is described in detail.

A. Solvers for Boolean Satisfiability
The Boolean satisfiability problem (SAT problem) is one of

the most important core problems in computer science and,
therefore, well studied. It is defined as follows:

Definition 3. Let f be a Boolean function in Conjunctive
Normal Form (CNF), i.e. as a Product of Sums (PoS). The
SAT Problem is to determine an assignment of the variables
of f such that the function evaluates to true or to prove that
no such assignment exists. If there exists such an assignment,
then f is satisfiable; otherwise it is unsatisfiable.

A CNF is a conjunction of clauses, whereas a clause is a
disjunction of literals. A literal can be either a variable in its
positive or negative phase.
The task of searching for a satisfying assignment or proving
that no such assignment exists is performed by automatic
theorem proving algorithms, so-called SAT solvers. Most of
the modern SAT solvers are based on the main ideas originally
proposed in [15], which include three main steps:

1) the decision heuristic assigning values to free variables,
2) the Boolean Constraint Propagation (BCP) procedure

deducing all implications of the last decision, and
3) the conflict analysis trying to resolve appearing conflicts

by backtracking.
Modern state-of-the-art SAT solvers involve many improve-
ments of these basic procedures, e.g. more efficient BCP
schemes like in [16], better conflict analysis and learning [17],
or sophisticated decision heuristics [18]. Due to their effi-
ciency, nowadays SAT solvers are suitable search engines
for many applications like automatic test pattern generation,
logic synthesis, as well as equivalence, model, and property
checking.

1This was inspired from approaches such as [7], [8], [14] where SAT solvers
have been utilized for synthesis as well.

B. SAT-based Exact Synthesis

Utilizing SAT solvers, a minimal NCV-|v1〉 quantum circuit
for a given function f is synthesized by iteratively applying
the following two steps:

1) Formulate the task “Generate an NCV-|v1〉 circuit with
a fixed number of d gates” as an instance of Boolean
satisfiability and

2) apply a SAT solver in order to check whether this
instance is satisfiable or not.

The SAT instance needs to be satisfiable if and only if there
is a quantum circuit with d gates for realizing the reversible
function f. The exact synthesis problem is formulated as a
sequence of such SAT instances starting with d = 1. In
case of unsatisfiability, d is increased for the next iteration.
This continues until a solution is found. By this, a minimal
solution is found once the respective SAT instance turns
satisfiable. The following sections describe the structure of
the respective instance, i.e. the used variables as well as the
applied constraints, in detail.

C. Used Variables

In order to formulate the synthesis problem in terms of a
SAT instance, the following variables are used:

Definition 4. Let f : Bn → Bn be a reversible Boolean func-
tion over n variables to be synthesized with d NCV-|v1〉 gates.
Then, variables zi,j,k are introduced in order to represent the
quantum states for each truth table line (0 ≤ i < 2n), at
each position in the circuit (0 ≤ j ≤ d), and for each qubit
(0 ≤ k < n).

Since these zi,j,k-variables have to represent all states from
S = {|0〉, |v0〉, |1〉, |v1〉}, they are actually substituted by a
Boolean variable pair xi,j,kyi,j,k eventually representing a
four-valued encoding as follows:

zi,j,k xi,j,kyi,j,k
0 0 0
v0 0 1
1 1 0
v1 1 1

That is, each assignment to zi,j,k-variables is actually an
assignment to the variables xi,j,kyi,j,k, whereby if yi,j,k is
assigned 0, a Boolean value is assumed and, if it is 1, one of
the quantum values v0 and v1 is assumed.

Besides the representation of states, also variables are
introduced representing which gate type is chosen for a
corresponding gate position.

Definition 5. Let f : Bn → Bn be a reversible Boolean
function to be synthesized with d NCV-|v1〉 gates. Then,
#»q j = (qj,0 . . . qj,s−1) is a vector of s = dlog2(g)e Boolean
variables representing the chosen quantum gate type for the
jth gate of the circuit with 0 ≤ j < d. The variable g
denotes the total number of possible gate types available in
the NCV-|v1〉 library for n qubits.

0
0
0
0
0

0
0
0
0
1

0
0
0
1
0

0
0
0
1
1

0
0
1
0
0

0
0
1
0
1

0
0
1
1
0

0
0
1
1
1

0
1
0
0
0

0
1
0
0
1

0
1
0
1
0

0
1
0
1
1

0
1
1
0
0

0
1
1
0
1

0
1
1
1
0


V

V

V

V†

V†

V†
v1

v1

v1

v1

v1

v1

0
1
1
1
1

1
0
0
0
0

1
0
0
0
1

1
0
0
1
0

1
0
0
1
1

1
0
1
0
0

1
0
1
0
1

1
0
1
1
0

1
0
1
1
1

1
1
0
0
0

1
1
0
0
1

1
1
0
1
0


V

v1

V

v1

V

v1

V

v1
V

v1

V

v1
V†

v1

V†

v1

V†

v1

V†

v1
V†

v1

V†

v1

Fig. 3. Mapping of vector assignments to quantum gates for n = 3

The total number g of possible gate types for n qubits is
calculated as follows:

1) Each of the three unary gate types NOT, V, and V† can
be applied to n qubits, resulting in a total of 3n different
unary gates.

2) The controlled versions of the respective operations have
n possible target qubits and n−1 possible control qubits,
resulting in a total of n(n−1) gates for each of the three
controlled gate types.

3) Altogether this makes g = 3n + 3n(n − 1) = 3n(1 +
(n− 1)) = 3n2 different gates types.

Each of these 3n2 possible quantum gate types is assigned
a particular unique identifier. If the respective #»q j-variables
are assigned such an identifier, then the corresponding gate
type is assumed at position j in the circuit. Fig. 3 exemplarily
provides the relation between gate types and identifiers for a
quantum circuit composed of n = 3 qubits.

Over all these variables introduced above, the exact synthe-
sis problem can be formulated. Fig. 4 exemplarily summarizes
all needed variables for a circuit to be synthesized composed
of n = 3 qubits and d = 3 gates. As can be seen,
for each truth table line, a corresponding set of xi,j,kyi,j,k-
variable pairs representing the states for each qubit and each
circuit position is introduced. At the same time, for each gate
position, #»q j-variables representing the respective gate type are
introduced.

D. Applied Constraints

Passing the variables introduced above to a SAT solver, as-
signments representing arbitrary gate types as well as arbitrary
quantum states would be chosen. Hence, additional constraints
are added ensuring that only valid assignments are allowed
which (1) follow the definition of the library and (2) indeed
realize the desired function f . More precisely:

1) The variables representing the in- and outputs of the
circuit are assigned the corresponding values in the
truth table defined by the given function f . There-
fore, constraints for the in- and outputs are applied on
the xi,0,kyi,0,k- and xi,d,kyi,d,k-variables, respectively.
Since the truth table values are Boolean, variables yi,0,k

00 = x0,0,0y0,0,0

00 = x0,0,1y0,0,1

00 = x0,0,2y0,0,2

00 = x1,0,0y1,0,0

00 = x1,0,1y1,0,1

00 = x1,0,2y1,0,2

00 = x7,0,0y7,0,0

00 = x7,0,1y7,0,1

00 = x7,0,2y7,0,2

#»q 0

x0,1,0y0,1,0

x0,1,1y0,1,1

x0,1,2y0,1,2

x1,1,0y1,1,0

x1,1,1y1,1,1

x1,1,2y1,1,2

x2,1,0y2,1,0

x2,1,1y2,1,1

x2,1,2y2,1,2

#»q 1

x0,2,0y0,2,0

x0,2,1y0,2,1

x0,2,2y0,2,2

x1,2,0y1,2,0

x1,2,1y1,2,1

x1,2,2y1,2,2

x2,2,0y2,2,0

x2,2,1y2,2,1

x2,2,2y2,2,2

#»q 2

x0,3,0y0,3,0 = 11

x0,3,1y0,3,1 = 11

x0,3,2y0,3,2 = 11

x1,3,0y1,3,0 = 11

x1,3,1y1,3,1 = 11

x1,3,2y1,3,2 = 11

x7,3,0y7,3,0 = 11

x7,3,1y7,3,1 = 11

x7,3,2y7,3,2 = 11

...

Fig. 4. Variable structure for n = 3 qubits and d = 3 gates

and yi,d,k are always assigned 0. In contrast, xi,0,k and
xi,d,k take the corresponding value of truth table line i
for qubit k, i.e.

2n−1∧
i=0

n−1∧
k=0

xi,0,k = i[k] ∧ yi,0,k = 0

∧ xi,d,k = f(i[k]) ∧ yi,d,k = 0.

2) The vector #»q j is composed of s Boolean variables
used to represent all possible gate types. As this vector
may assume 2s possible assignments, while only 3n2

different gates types exist, this results in an overhead
of unnecessary assignments which must be blocked.
Therefore,

d−1∧
j=0

(0 ≤ #»q j < 3n2)

is added.
3) Finally, constraints ensuring the correct functionality

based on the chosen gate types are added. For this
purpose, each gate type represented by an assign-
ment to the #»q j-variables is associated to a function
q(xi,j,k, yi,j,k,

#»q j). This function defines the output
states xi,j+1,kyi,j+1,k of the respective gate based on
the corresponding input states xi,j,kyi,j,k and the gate
type #»q j . More formally:

2n−1∧
i=0

d−1∧
j=0

n−1∧
j=0

xi,j+1,k, yi,j+1,k = q(xi,j,k, yi,j,k,
#»q j).

Passing the resulting SAT instance composed of all variables
and all constraints introduced above to a SAT solver, a
satisfying solution results if f can be realized with d gates. If
this is the case, the precise NCV-|v1〉 quantum circuit can be
derived from the assignment to all #»q j-variables. If the SAT
solver returns unsatisfiable instead, it has been proven that no
realization for f with d gates exists. In this case, d is increased
by one and solved again. By this, minimal circuits eventually
result.

IV. EXPERIMENTAL EXAMINATION

Synthesis of Boolean components for quantum circuits
is usually approached from two complementary directions:
(1) realizing the desired functionality as a reversible circuit to
be mapped into an equivalent quantum circuit or (2) realizing
the desired quantum circuit directly. Hence, in order to exactly
analyze the suitability of a gate library from a logical design
perspective, both directions should be considered. This is done
in this section. For this purpose, the exact synthesis scheme
proposed above has been implemented in C++. MiniSAT [19]
together with its SatELite preprocessor [20] was used as back-
end solving engine. Due to the exponential nature of such
an exact synthesis problem, even modern SAT solvers are
limited in terms of applicability. Still, minimal circuits could
be synthesized for many functions by the proposed approach
within acceptable time.

A. Mapping Reversible Circuits
Quantum circuits are inherently reversible [1], i.e. every

reversible circuit can be transformed to a quantum circuit.
This has been exploited during quantum circuit design and
eventually led to an established synthesis flow which, first,
realizes the desired functionality as a reversible circuit (using
synthesis approaches such as [21], [22], [23], [24], [25], [26])
and, afterwards, applies mapping schemes (such as [4], [6],
[7], [8], [9], [10]), to convert the resulting reversible circuit
into a quantum circuit.

Reversible circuits are thereby composed of so-called Tof-
foli gates. A Toffoli gate is composed of a target line t and a
set C of control lines with C = {c1, . . . , c|C|} and |C| < n.
The target line is inverted if all control lines are set to 1;
otherwise the value of the target line is passed through un-
changed. This functionality can easily be realized using NCV
gates as shown in Fig. 5(a) for a Toffoli gate with |C| = 2
control lines. Similar mappings exist for Toffoli gates with a
different amount of control lines. With an increasing number
of control lines, the resulting quantum circuits become more
expensive, i.e. require more quantum gates. Fig. 5(b) provides
some numbers on that based on the current state-of-the-art
mapping scheme introduced in [9]. The resulting quantum
circuits are used as building blocks for the mapping-based
synthesis flow sketched above.

Using the NCV-|v1〉 library results in significantly cheaper
mappings and, thus, building blocks. The synthesis scheme
proposed in Section III enabled us to realize minimal NCV-|v1〉
circuits for Toffoli gates composed of up to |C| = 4 control
gates. An example for |C| = 2 control lines is provided
in Fig. 6(a). In contrast, minimality of the NCV mappings

c1

c2

t V V† V

(a) For |C| = 2

No. of Gates
|C| Opt.?

0 1 X
1 1 X
2 5 X
3 14 ?
4 20 ?
5 32 ?

(b) For |C| < 6

Fig. 5. Mapping Toffoli gates to NCV circuits

c1

c2

t

V
v1

V
v1

v1

V†
V†

(a) For |C| = 2

No. of Gates
|C| Opt.?

0 1 X
1 3 X
2 5 X
3 7 X
4 9 X
5 11 ?

(b) For |C| < 6

Fig. 6. Mapping Toffoli gates to NCV-|v1〉 circuits

has only been shown for Toffoli gates with no, one, or two
control lines thus far (see the respective right-most columns of
Fig. 5(b) and Fig. 6(b)). Moreover, as can clearly been seen,
the NCV-|v1〉 library is particularly more suitable to realize
Toffoli gates than the NCV library (only the case with |C| = 1
control lines is an exception). Although also the number of
NCV-|v1〉 gates increases with more control lines, this increase
is linear. In contrast, the NCV library has a non-linear increase.
This has already been observed before in [11], but until today
it remained unclear whether this mapping is minimal.

Overall, this examination unveiled that the NCV-|v1〉 library
allows for determining smaller building blocks than it was the
case for the NCV library. At the same time, the respective
building blocks are significantly cheaper and, hence, allow for
more compact realizations than the established synthesis flow,
i.e. realizing a reversible circuit first and, afterwards, mapping
it to a quantum realization, is applied.

B. Direct Quantum Circuit Synthesis
In a second examination, the sizes of quantum circuits

obtained by a direct synthesis scheme are compared. For this
purpose, we additionally applied the exact synthesis scheme
for NCV circuits as proposed in [8]. Using this approach
together with the approach proposed in Section III allowed us
to compare the minimal realizations for both libraries, NCV
and NCV-|v1〉, for certain functions (taken from RevLib [27]).

Table II gives a summary of the results. The first column
provides the name of the considered function, while the
following two columns denote the number of gates obtained
by direct synthesis assuming an NCV and NCV-|v1〉 library,
respectively. Based on these numbers, NCV-|v1〉 circuits seem
to be more costly (with respect to gates) than circuits relying
on the NCV library – a clear disadvantage of the NCV-|v1〉
library.

However, our investigations showed that these additional
costs are almost entirely caused by the fact that controlled
NCV-|v1〉 gates are sensitive to the |v1〉-state. In contrast,
NCV circuits are sensitive to the |1〉-state (cf. Section II). This
leads to an unfair advantage for the NCV library, since the
considered functions are usually encoded by means of |0〉 and
|1〉 (due to the |1〉-sensitivity, the best possible encoding for

TABLE II
COMPARISON OF NCV AND NCV-|v1〉 CIRCUITS

No. of Gates
NCV NCV-|v1〉 adj. NCV-|v1〉

Toffoli 5 5 4
Peres 4 5 4
Fredkin 7 9 6
Miller 8 10 6
Half-adder-v0 5 8 5
3 17 10 11 8
Toffoli-double 7 8 6
Peres-double 6 10 6
q4example 6 9 6
Low-High-v0 7 7 5
rd32 6 8 6
Zero-One-Two 7 9 6

NCV circuits). But since the applied encoding is only a matter
of definition, different encodings, potentially more suited for
the other gate library, are valid as well.

To explicitly demonstrate this effect, another series of exper-
iments has been conducted. Here, the functions to be realized
have not been encoded conventionally with the basis states |0〉
and |1〉, but respectively with the basis states |v0〉 and |v1〉.
Corresponding results are provided in the right-most column
of Table II. As can clearly be seen, the adjusted encoding
leads to significantly cheaper NCV-|v1〉 circuits. Moreover,
the resulting circuits even provide a more efficient alternative
compared to the established NCV library – in almost all cases
circuits with less gates result.

Overall, this examination unveiled that the NCV-|v1〉 library
also leads to cheaper realizations for quantum circuits in
general. Although the encoding of the function has to be
adjusted for this purpose, this is acceptable and only a matter
of definition. From a logic design perspective, the NCV-|v1〉
gate library clearly superiors the currently established NCV
library.

V. CONCLUSION

In this work, we conducted an exact experimental exam-
ination of quantum circuits based on the NCV-|v1〉 library.
For this purpose, an exact synthesis scheme has been applied
which utilized the power of solvers for Boolean satisfiability.
Our examination clearly unveiled that, from a logic design per-
spective, the NCV-|v1〉 library is a promising alternative with
certain advantages compared to the established NCV library.
It provides a better mapping scheme from reversible circuits
to quantum circuits and, assuming an respectively adjusted
input/output encoding, allows for more compact realizations
of arbitrary functions.

The results of this examination provide an important step
towards the completion of the discussion on the applicability
of the NCV-|v1〉 library for quantum computation. In the
past, a theoretical and conceptual discussion on the physical
applicability of this library has been conducted e.g. in [13].
Now, we complemented these findings by exact results on
logic synthesis. Future work focuses on physical issues such
as the direct realizations of the qudits, the emulation of qudits
e.g. by existing qubit-realizations, or the compatibility to
existing fault-tolerant quantum error correction protocols as
well as the derivation of more precise cost metrics for this
library.

REFERENCES

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge Univ. Press, 2000.

[2] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” Foundations of Computer Science, pp. 124–134, 1994.

[3] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Theory of computing, 1996, pp. 212–219.

[4] A. Barenco, C. H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” The American Physical Society, vol. 52, pp.
3457–3467, 1995.

[5] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-middle
algorithm for fast synthesis of depth-optimal quantum circuits,” IEEE
Trans. on CAD, vol. 32, no. 6, pp. 818–830, 2013.

[6] A. Abdollahi and M. Pedram, “Analysis and synthesis of quantum
circuits by using quantum decision diagrams,” in Design, Automation
and Test in Europe, 2006, pp. 317–322.

[7] W. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski, “Optimal
synthesis of multiple output Boolean functions using a set of quantum
gates by symbolic reachability analysis.” IEEE Trans. on CAD, vol. 25,
no. 9, pp. 1652–1663, 2006.

[8] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact synthesis
of elementary quantum gate circuits for reversible functions with don’t
cares,” in Int’l Symp. on Multi-Valued Logic, 2008, pp. 214–219.

[9] D. M. Miller, R. Wille, and Z. Sasanian, “Elementary quantum gate
realizations for multiple-control toffolli gates,” in Int’l Symp. on Multi-
Valued Logic, 2011, pp. 288–293.

[10] R. Wille, M. Soeken, C. Otterstedt, and R. Drechsler, “Improving the
mapping of reversible circuits to quantum circuits using multiple target
lines,” in ASP Design Automation Conf., 2013, pp. 145–150.

[11] Z. Sasanian, R. Wille, and D. M. Miller, “Realizing reversible circuits
using a new class of quantum gates,” in Design Automation Conf., 2012,
pp. 36–41.

[12] R. Wille, A. Lye, and R. Drechsler, “Considering nearest neighbor
constraints of quantum circuits at the reversible circuit level,” Quantum
Information Processing, vol. 13, no. 2, pp. 185–199, 2014.

[13] A. Muthukrishnan and C. R. Stroud, “Multi-valued logic gates for
quantum computation,” vol. 62, no. 052309, 2000.

[14] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact multiple-
control Toffoli network synthesis with SAT techniques,” IEEE Trans.
on CAD, vol. 28, no. 5, pp. 703–715, 2009.

[15] M. Davis, G. Logeman, and D. Loveland, “A machine program for
theorem-proving,” Comm. of the ACM, vol. 5, pp. 394–397, 1962.

[16] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Design Automation
Conf., 2001, pp. 530–535.

[17] J. P. Marques-Silva and K. A. Sakallah, “GRASP – a new search
algorithm for satisfiability,” in Int’l Conf. on CAD, 1996, pp. 220–227.

[18] E. Goldberg and Y. Novikov, “BerkMin: a fast and robust SAT-solver,”
in Design, Automation and Test in Europe, 2002, pp. 142–149.

[19] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Lecture Notes
in Computer Science, vol. 2919. Springer, 2003, pp. 502–518.

[20] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Conference on Theory and Applications of
Satisfiability Testing. Springer, 2005, pp. 61–75.

[21] P. Gupta, A. Agrawal, and N. K. Jha, “An algorithm for synthesis of
reversible logic circuits,” IEEE Trans. on CAD, vol. 25, no. 11, pp.
2317–2330, 2006.

[22] D. Maslov, G. W. Dueck, and D. M. Miller, “Techniques for the synthesis
of reversible Toffoli networks,” ACM Trans. on Design Automation of
Electronic Systems, vol. 12, no. 4, 2007.

[23] R. Wille, D. Große, G. W. Dueck, and R. Drechsler, “Reversible logic
synthesis with output permutation,” in VLSI Design, 2009, pp. 189–194.

[24] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conf., 2009, pp. 270–275.

[25] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and R. Drechsler, “Syn-
thesis of reversible circuits with minimal lines for large functions,” in
ASP Design Automation Conf., 2012, pp. 85–92.

[26] C. Chandak, A. Chattopadhyay, S. Majumder, and S. Maitra, “Analysis
and improvement of transformation-based reversible logic synthesis,” in
Int’l Symp. on Multi-Valued Logic, 2013, pp. 47–52.

[27] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
an online resource for reversible functions and reversible circuits,”
in Int’l Symp. on Multi-Valued Logic, 2008, pp. 220–225, RevLib is
available at http://www.revlib.org.

