UNIVERSITAT DES SAARLANDES

MASTER’S THESIS

A System for
Rapid Development of Large-Scale Rule Bases

for Template-Based NLG
for Conversational Agents

Submitted in partial fulfilment of the requirements for the degree
Master of Science (MSc) in Language Science and Technology

Author: Supervisors:
Tim Philipp Jeydon Krones Prof. Dr. Stephan Busemann
t.krones@coli.uni-saarland.de Dr. ing. Ivana Kruijff-Korbayova

November 27, 2014

Declaration

Eidesstattliche Erklarung

Hiermit erklére ich, dass ich die vorliegende Arbeit selbststéndig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Declaration

I hereby confirm that the thesis presented here is my own work, with all assistance ac-
knowledged.

Tim Krones
Saarbriicken, November 27, 2014

iii

iv

Acknowledgments

I’d like to thank my supervisors, Dr. ing. Ivana Kruijff-Korbayova and Prof.
Dr. Stephan Busemann, for giving me the opportunity to work on a very
interesting project, for providing guidance and invaluable feedback along the
way, and for giving me freedom to explore and implement many of my own
ideas.

I am grateful to Bobbye Pernice for providing non-technical advice and guid-
ance at various points throughout the time I was working on this project.

My sincerest thanks go to my family for their unconditional support, their
words of encouragement, and for their unshakable belief in my abilities.

I am also grateful to Brigitte Krones and Nic Kramer for sharing stories
about the final stages of their studies. You helped me push on at a time when
I was ready to quit.

Finally, I'd like to thank Anna Schmidt for feedback and fruitful discussions,
and for being by my side throughout this journey.

vi

Contents

[__Introduction| 1
(1_Motivation| 2
2_Structurel 4
[IT"__Related Workl 6
[3 Development Environments for General-Purpose NLG| 7
3.1 ()YAGand IDEY| 7

3.2 TG/2, XtraGen, and eGram| 8

|4 Development Environments for Dialogue Systems| 8
4.1 A Graphical Editor for TAG-based Templates| 9
4.2 NLG Template Authoring Environment| 9
HE3 DEXTOR] . . . o o oo e e e e e 10

10
[T System Architecture and Technologies| 12
6 Architecturel 13
6.1 Overviewl e e 13
[6.2 Server-Side Architecturel 14
6.3 Client-Side Architecturel oo 16
6.4 Integration with Existing Tools| 18

{7 Technologies| 18
[7.1 Server-sSide Technologies| oo 19
(.11 MVC Frameworkl 19

[7.1.2 Persistence Layer| 19

[7.2 Client-Side Technologies| 21

§ ayout|. 21

[7.2.2 AJAX Functionality and User Interactions|. 22
IV_Data Models| 23
8 Native Rule Format! 24
9 Server-Side Data Model 25
0.1 Features| 26

vii

Contents

[V User-Facing Functionality|

(12 Feature Editor]
[12.1 Creating Features|.
[12.2 Moditying Existing Features|
[12.3 Deleting Features|
[12.4 Working with Feature Values|
[12.5 Summary| e e

13 Rule Editor]
[13.1 Creating Rules|
[13.2 InputBuilder|
[13.3 OutputBuilder|
(13.3.1 Working with Output Strings|
(13.3.2 Working with Parts|
(13.3.3 Working with Multiple Combination Groups|.
[13.4 Summary|l

(14 Rule Browser|
[14.1 Viewing Detailed Information about Rules|
[14.2 Viewing Sets of Similar Rules|
[14.3 Rule Export|
[14.4 Summary| e e

(15 Rule Searchl
[15.1 Summary| e e

\VI_Evaluation|

{16 Experimental Setup|

......................................
[16.2 Assignment|

[16.3 Questionnaire] e

[17 Results
[17.1 Error Types: LHS| o oo
[17.2 Error Types: RHS| oo
[17.3 Feature Suggestions and Comments|.

[18 Discussion|
[18.1 Summary| e e

viii

32
33

33
34
34
36
36
37

37
37
38
41
42
43
45
47

47
49
49
50
51

51
93

54

55
56
58
61

61
64
67
69

69

Contents

V1l Conclusion 73
74
20 Future Workl 75
20.1 Modifications 76
20.2 Additional Featuresl. 77
(VIITAppendix| 80
|[A_Client-Side Data Maodels| 81
AT Features o oo 81
B2 Rules. . . . oo 81
BASTUSErs .« . o o o e 83
[B__Algorithms| 84
BT Generating Lists of Output Strings] 84

.2 Computing Sets of Similar Rules| 84

B3 Export Algorithm]. 85
|E.3.1 Native Format: Names and Descriptions| 87

B.3.2 Nafive Format: THS 88

B.3.3 Native Format: RHS 89

[B.3.4 Handling Incomplete Rules|, .. 93

B35 Summary] 94

[B.4 Search Algorithm| 0000 94
4.1 Finding Rules Matching Features| 96

B:42 Finding Rules Matching Strings 97

B.43 A Word on Cross-Referenced 98

[B.4.4 Summary| e 99

|C Training Phase: Tasks| 100
[D Assignment: Rules| 109
|[E Assignment: Reference Manual| 110
|F__Questionnaire| 117

1X

Part |

Introduction

1 Motivation

Long-term social interactions between conversational agents and users should feel as natural
as possible to users. This requires adaptivity and variation of system output [34] [35]:
When communicating with humans using spoken language, agents should produce natural
language output that is appropriate for and relevant to the current situation once it is their
turn to speak. Thus, the choice of output to produce depends on what an agent knows
about the current situation and the dialogue context. For instance, when formulating a
greeting at the beginning of an encounter, an agent needs to take into account if it is
meeting a user for the first time or if it has interacted with that particular user before.
Additionally, agents should not repeat themselves in recurring situations involving the
same user(s), which means that they need to be able to choose from a range of different
verbalizations for the content to deliver. Sticking with the example of greeting a user, on
the first encounter with an unfamiliar user an agent might say:

Hello, I am pleased to meet you.

On subsequent encounters, the agent might choose from any of the following verbalizations
to greet the now-familiar user:

Hello, good to see you again.
Hi, good to see you again.
Hello, I am happy to see you again.
Hi, I am happy to see you again.
Hello, it’s so good to see you again!
Hi, it’s so good to see you again!

ALIZ—EE is one example of a project that focuses on developing conversational agents
for long-term social interactions [44]. In the context of this project, which was carried out
jointly by the German Research Center for Artificial Intelligence (DFKI)H and a number of
European partners, conversational agents were used to provide companionship and support
to diabetic children who needed to learn how to manage their condition themselves [30].

In the following, we will describe how the task of designing natural language output is
currently handled in the ALIZ-E project. We will then discuss a number of factors that
make the present approach challenging. Finally, we will outline how the system presented in
this work addresses these challenges in order to facilitate development of natural language
output for conversational agents in the context of the ALIZ-E project.

In ALIZ-E, the task of designing natural language output involves writing rules which
match abstract representations of knowledge that a conversational agent has about a given
situation to appropriate verbal responses. More specifically, abstract representations of
knowledge consist of features and associated values that capture the dialogue situation and
the content to communicate. Rules modify these representations and assign appropriate
verbalizations to them. During on-line processing, a specialized rewriting engine |34}, 31]
chooses rules to apply by comparing collections of features and values representing an
agent’s current knowledge against the situational knowledge that each rule presumes. After

"http://wuw.aliz-e.org
*http://wuw.dfki.de/

http://www.aliz-e.org
http://www.dfki.de/

determining and applying matching rules, a Text-to-Speech system takes care of realizing
natural language output defined by these rules. Rules are stored in plain text files and must
be written in a specialized syntax that the rewriting engine can understand. For example,
the following rule produces one of the outputs listed above every time it is applied:

:dvp = <SpeechAct>greeting
~ <Context>(<Familiarity>yes

~

<Encounter>notfirst)
->
#it#greeting = random("Hello, ", "Hi, "),
#i#t#content = random("good to see you again.",
"T am happy to see you again.",
"it’s so good to see you again"),
-~ :canned "~ <stringOutput>concatenate (###tgreet, ###content)
~ <SpeechModus>indicative.

Although moving to grammar-based natural language generation (NLG) (cf. [52]) is a
long-term goal in ALIZ-E, the generation approach that is currently in use is template-
based: Sets of alternative verbalizations associated with individual rules are specified in the
form of canned text. If necessary, canned text may contain variables that are replaced with
appropriate, context-dependent values at run-time to produce the final output that will be
uttered by an agent. With this approach, creating large amounts of variation for individual
rules can be time-consuming, as alternative verbalizations belonging to individual rules
need to be specified manually. Aside from being time-consuming, this process can also
be quite tedious because within rules, verbalizations might be similar to a large extent,
requiring rule developers to type the same content over and over again. Another issue
is that as the number of alternative verbalizations available for a given rule increases,
keeping track of ways to combine parts of existing verbalizations to create even more output
becomes increasingly difficult. As a result, rule developers might accidentally introduce
duplicate output or omit verbalizations that would have been appropriate for the situation
covered by a given rule.

Issues related to creating large numbers of verbalizations are mitigated to a certain degree
by the fact that the syntax for defining rules provides constructs for reducing the amount of
duplicate content that needs to be specified manually for individual rules (cf. Chapter .
However, without support for visualizing full sets of alternative verbalizations for individual
rules, using these constructs can lead to errors resulting from invalid combinations of
substrings. Additionally, while using these constructs can reduce the number of full strings
that have to be specified manually when defining the output of a single rule, the problem
of having to specify the same or very similar content from scratch for the output of other
rules addressing similar situations remains. Since rules are specified using plain text, it
is of course possible to transfer content to other rules by copying it. Depending on the
amount of content being transferred, however, this approach can be error-prone (in the
sense that it can lead to unwanted duplication across rules).

Aside from challenges related to creating large amounts of variation, there are a number
of additional issues concerning creation, maintenance, and evolution of large-scale rule
bases that could benefit from specialized support. For instance, locating specific rules
and checking rule coverage for specific scenarios in order to identify what to work on
next are common tasks that become increasingly difficult to perform as rule bases grow.
Additionally, if rule bases are large, errors resulting from inconsistent use of features and
values for representing situational knowledge are more likely to occur without support for
detecting them or preventing them from occurring in the first place. Lastly, the process of
defining rules in native rule syntax lacks a standardized way of documenting the purpose
of specific rules. This can complicate the process of locating relevant information both for
original authors of specific rules and for potential collaborators.

Another aspect that is important for rapid and successful development of large-scale rule
bases is efficient collaboration. To a certain extent, the process of collaboratively editing
a set of rule files can be streamlined by using a version control system. But even then a
certain amount of overhead is necessary to ensure that changes are propagated to other
developers as soon as possible, and to resolve potential conflicts.

In addition to the challenges concerning specific aspects of rule design described above,
there is another issue we would like to mention: Creating rules in native rule syntax can be
difficult for people who lack background knowledge in relevant subject areas such as (com-
putational) linguistics and computer science. In order to be able to productively create
and edit rules, rule developers must be aware of the kinds of knowledge agents can have
about their environment, and how this knowledge is represented internally. Furthermore,
they must have at least a basic understanding of how rules operate, and how appropriate
rules are chosen during on-line processing. As a result, enabling people without any rele-
vant background knowledge to productively contribute to rule development might take a
substantial amount of trainindﬂ. This is a problem because natural language output for
intelligent agents might be needed in a variety of domains. On the one hand, we can not
expect people who are experts in these domains to also have background knowledge in
the subject areas mentioned above. On the other hand, people who are qualified to write
rules might lack knowledge relevant to domains in which intelligent agents are to be used.
Reducing the amount of background knowledge required for working with rules (so as to
enable domain experts to contribute more easily to rule development) would therefore be
desirable.

In order to address the issues described above, we developed a graphical system for
designing natural language output for conversational agents that supports creation, main-
tenance, and long-term evolution of large rule bases in the following way: First of all,
specialized editing features for rule output allow for quick creation of large numbers of
alternative verbalizations for individual rules. By facilitating reuse of existing material,
the amount of typing involved in creating output alternatives is reduced. Secondly, by
abstracting away from native rule syntax as much as possible, the system makes the pro-
cess of creating rules more accessible to people without necessary background knowledge.
Minimally, the system allows tasks involved in creating rules to be distributed according to
areas of expertise of individual collaborators. Results from a first study involving subjects
without a background in (computational) linguistics or computer science provides support
for this claim. By having users work with graphical representations of rules, the system also
reduces the potential for errors that are likely to happen when creating rules manually, and
eliminates some classes of errors entirely. Third, our system aims to facilitate long-term
evolution and maintenance of large rule bases by allowing users to store meta-information
about rules, which enables them to, e.g., communicate the purpose of a specific rule to
their collaborators. Users can also get a compact overview of all existing rules, and filter
existing rules in various ways to locate specific rules or check scenario coverage. Lastly, in
order to facilitate collaboration, we chose to implement our system as a web application
instead of a desktop application. This allows for real-time collaboration on a given rule
base and eliminates the overhead involved in exchanging rule files between developers.

3In environments that make use of a version control system to share rule files between developers, non-
experts would additionally have to be trained in using that particular technology.

2 Structure

The remainder of this thesis is structured as follows: Part [l discusses related work. In
particular, Chapter [3| presents graphical development environments for general-purpose
NLG, and Chapter [describes a number of tools supporting output design for Dialogue
systems. Part [[I] ends with a short discussion of how our system relates to the tools
presented in chapters [3] and [l As mentioned before, our system was implemented as
a web application to facilitate collaboration between rule developers. Part [ITI] describes
server-side and client-side architectures of the application and provides information about
the technologies that were used to implement different components of the system. It also
discusses how our system integrates with existing tools developed in the context of the
ALIZ-E project. In Part|[[V]we present the data models that were designed for the purpose
of storing and operating on rules: We start by providing information about relevant aspects
of native rule syntax in Chapter Chapter [0 then describes the server-side data model
in detail, and Chapter [10| provides basic information about client-side data models. (An
in-depth discussion of client-side data models is deferred to Appendix . Part [V| provides
detailed information about user-facing functionality of our system. A specialized interface
for defining building blocks for representing situational knowledge is presented in Chapter
[[2] Functionality for creating and editing rules is described in Chapter Chapter [14]
presents functionality for browsing existing rules and filtering them in various ways. It
also describes how users can export sets of rules to native rule syntax. Chapter [L5|explains
how the system can be used to conduct fine-grained searches for rules based on situational
knowledge to which they apply and natural output they produce. As mentioned above,
we conducted a small study to evaluate our system with respect to making the process
of writing rules more accessible to people lacking necessary background knowledge. This
study is described in Part[VI Chapter [I6]describes the setup of the evaluation experiments.
Chapters [I7] and [I§] present and discuss the results we obtained, respectively. We conclude
our discussion in Part [VII} Chapter [19 summarizes the main points from the previous
chapters and Chapter [20] gives an overview of challenges that will have to be addressed in
future work.

Part |l

Related Work

3 Development Environments for General-Purpose
NLG

In the past, a number of projects in the area of natural language generation have yielded
graphical tools for creating, editing, and managing output corpora. In this chapter we
describe two full-featured systems developed in the context of general-purpose Natural
Language Generation. Tools supporting output design for Dialogue Systems are presented
in Chapter Lastly, we highlight how existing applications differ from the system we
developed.

3.1 (J)YAG and IDEY

YAG (Yet Another Generator) [10, 1I] is a “real-time, general-purpose template-based
generation system” [39) [12] written in Lisp. JYAG is a Java implementation of YAG. Tem-
plates for YAG must be written in a custom declarative template specification language.
JYAG is designed to work with templates in XML format. Each template consists of a
number of template slots and a number of template rules. Template slots are parameters
that applications or users can fill with values at run-time. Template rules define how inputs
to templates should be translated into text [39, [56].

IDEY (Integrated Development Environment for YAG) [12, 56] is a graphical devel-
opment environment for (J)YAG templates. It was created for a similar purpose as the
system we present in this work: When distributing their system to other researchers, the
creators of YAG found that these researchers were able to install and use YAG from other
applications successfully, but had difficulty defining new templates. These experiences led
them to design and implement a graphical editing environment for YAG templates [56].

In order to facilitate tasks commonly involved in dealing with templates, IDEY provides
functionality for authoring, testing, and managing them [12]. Individual templates can be
visualized in different ways (see below). According to the authors, template visualization
reduces the amount of time required for users to become familiar with template syntax.
By constraining template construction and modification appropriately, IDEY also aims to
prevent errors which are likely to be introduced when editing plain text representations of
templates.

IDEY’s user interface consists of two main components called Project View and Template
View [56]. The Project View allows users to browse resources available to the current
project. Resources include lexicons, morphological functions for inflecting verbs according
to features such as tense, person, and aspect, and template libraries. When a resource
is selected, its contents are shown below the list of available resources. The Template
View consists of two tabbed subsections providing functionality for creating and editing
templates, as well as for navigating and visualizing them in different ways. For instance,
template rules can be manipulated via the Rule tab which shows individual rules in a
hierarchical, tree-like structure whose nodes can be expanded and collapsed. The View
tab shows plain text representations of rules that are currently displayed in the Rule tab.
To test a given template, users can specify input values by entering them into a feature
structure displayed in the Test tab. The Test tab then shows the text that would be
generated from the current input [56].

As mentioned above, YAG and JYAG use different formats for templates. IDEY under-
stands both of these formats and can be used to convert between them, which makes it
possible to use templates created for YAG with JYAG and vice versa [56].

3.2 TG/2, XtraGen, and eGram

TG/2 5, 8] is an NLG system written in Common Lisp that has been incorporated into a
number of NLG applications ranging from shallow template systems to in-depth realization
engines [7]. Generation grammars for TG /2 are created by defining sets of condition-action
rules with a context-free categorial backbone [7]. These rules define input conditions in
the form of test predicates and are used to map content representations matching these
conditions onto chains of terminal elements — which may consist of canned text — to generate
desired output. Agreement relations between different elements of the derivation tree are
established by means of a constraint propagation mechanism [7]: Rules can be annotated
with equations asserting equality of feature values at different constituents [5]. XtraGen
[50] is a Java implementation of TG/2 that uses XML to encode grammar objects [6, [7].

eGram [6], a full-featured graphical environment for grammar development, supports
both TG/2 and XtraGen. It was introduced to enable development of large-scale generation
grammars, and abstracts away from different formats used by the TG/2 and XtraGen
NLG systems by exposing a universal, developer-friendly grammar format to end users [7].
Consistency issues which arise from creating and editing grammars manuallyﬂ are addressed
in eGram by enforcing that basic building blocks for rules — such as test predicates for input
conditions and constraints determining agreement relations — be defined before new rules
using them can be added to the grammar. Additionally, for some elements the eGram GUI
offers context-sensitive editing menus that are created dynamically to include only those
options that are appropriate for the element currently being edited. For instance, menus for
defining constraints list existing features (such as CASE, NUMBER, and PERSON), and menus
for selected features list appropriate values (such as nom and acc). According to [7], by
using dynamically created menus and moving from basic to more complex elements when
defining rules, errors are minimized and definitions of individual elements are guaranteed
to by syntactically complete.

To speed up creation of similar elements, eGram makes it possible to reuse existing ele-
ments for editing by providing options for saving their definitions without closing associated
windows. Additionally, eGram provides functionality for deriving additional grammar rules
by means of meta-rules [46]. The meta-rule mechanism is convenient if grammar cover-
age needs to be extended to include more specialized linguistic phenomena: Due to the
fact that grammars defined using eGram have a context-free backbone, some phenomena
such as word order variation, pronominalization, and voice require a large number of ad-
ditional rules for handling them. If it were not for the option to derive additional rules
automatically, these rules would have to be defined manually by the grammar developer
[6].

Lastly, for the purpose of testing generation grammars, eGram integrates with TG/2
via a client-server interface [0, [7], and communicates with XtraGen via a Java API [7].
This allows users to issue calls to running generation systems. With each call, eGram
sends an abstract content representation as input to the generator, and also transfers any
modifications that have been made to the grammar since the last call. Input structures
representing content to generate can also be defined via the eGram GUIL.

4These include, e.g., use of undefined features and insufficient restrictions for feature values.

4.1 A Graphical Editor for TAG-based Templates

4 Development Environments for Dialogue
Systems

4.1 A Graphical Editor for TAG-based Templates

Becker [2] briefly describes a tool for managing and editing TAG-based [26] templates
that was developed in the context of the SmartKom projectﬂ [55]. SmartKom is a multi-
modal dialogue system which is controlled by speech and gestures and also interprets facial
expressions of users. It is capable of presenting graphical output, interacting with users
via an animated talking agent, and carrying out a variety of other tasks such as controlling
VCRs, sending e-mail, and querying databases. Instead of using strings, the generation
component of the SmartKom system represents parts of sentences that make up a given
template as a partial TAG derivation tree, thus bridging the gap between template-based
and fully lexicalized generation [2].

The tool for managing and editing templates described in [2] allows users to organize
related templates into tree families. Tree families are represented in the editor in the form
of a directory structure that can be expanded and collapsed as necessary. Users can view
graphical representations of individual trees and edit them in-place via a context menu.
Supported operations include cutting, copying, and pasting subtrees, as well as changing
the order of nodes by moving them horizontally. Users can also create new nodes, remove
nodes along with their children, and turn individual nodes into root nodes [2].

4.2 NLG Template Authoring Environment

Caropreso et al. [9] describe an NLG Template Authoring Environment developed in
the context of designing textual information and user interactions for Serious Games. A
Serious Game is an interactive simulation game with the main goal of teaching players
about a specific subject matter. In particular, the goal of the project described in [9] was
to make generation functionality provided by the SimpleNLG library{| [24] accessible to
subject matter experts and game content designers lacking programming experience and
advanced linguistic knowledge.

Compared to the systems described above, the graphical interface of the authoring envi-
ronment is quite minimalistic. To create a template, users have to enter a natural language
sentence, mark variable elements, and provide types and possible values of these elements.
Additionally, they must specify syntactic dependencies between elements that are subject
to variation. The system then displays the set of sentences that could be generated from
the current template by determining all possible combinations of values for variable ele-
ments that respect the given dependencies. If necessary, templates can subsequently be
refined by adjusting canned and variable portions of sentences and modifying dependencies
between variable elements until they meet the needs of the target application[] [9].

Shttp://www.smartkom.org/

Shttps://code.google.com/p/simplenlg/

"Note that functionality for refining templates was missing from the prototype implementation available
at the time of publication.

http://www.smartkom.org/
https://code.google.com/p/simplenlg/

4.3 DEXTOR

DEXTOR (Dynamic tEXt generaTOR) [40] is another tool geared towards supporting
specification of natural language output for dialogue systems. Its background is similar to
that of the template authoring environment developed by Caropreso et al. [9]: The target
audience is users who need to create ongoing dialogue for interactive games. With DEX-
TOR, output is specified in the form of dynamic text which consists of nested templates
that expand to predefined strings [40]. For instance, the authors state that one possible
output corresponding to

inform(glados, chell, onsale(ties))

would be:
Glados says to Chell, ’There is a sale on ties.’

Starting from a root template with empty slots, DEXTOR’s graphical interface allows
users to fill slots with subtemplates by either typing them in or by locating them in a list
of available templates and double-clicking them. In the previous example, the root tem-
plate is inform. In addition to a list containing all available templates, the user interface
also provides a suggestion bor showing, in real-time, only those templates that would be
appropriate to add to the dynamic text next. To come up with the list of suggestions,
the system takes into account both the root template and subtemplates that have already
been added [40].

While creating dynamic text using DEXTOR does not require extensive linguistic knowl-
edge, the functionality described above does depend on the availability of template libraries
and information about acceptable slot fillers for individual templates. No graphical inter-
face seems to be available that facilitates creating these resources, and according to the
authors, the task of creating template libraries in particular “may require non-trivial plan-
ning and organization” [40].

5 Summary

The tools described above share similar goals. Like the system described in this thesis,
they aim to facilitate the process of engineering output for natural language generation
systems. There is also a certain amount of overlap between these tools in terms of concrete
features. For instance, several of them implement support for project management, testing,
and context-sensitive editing. As will become apparent in later chapters that describe user-
facing functionality provided by our system in detail, we adapted a number of ideas present
in these tools for the system we implemented.

However, there are also a number of ways in which the systems described above differ
from the system we present in this work: Full-featured development environments like
IDEY and eGram are designed to minimize problems that arise from editing templates
and rules manually. They also provide uniform interfaces to generation systems using
different textual formats to represent templates and rules. These aspects arguably reduce
development effort for template libraries and generation grammars. At the same time,
however, these systems were not specifically designed to be usable by non-linguists or
people without a background in computer science. Unsurprisingly, then, they still require
different types of specialized knowledge which we can not assume people from unrelated

10

backgrounds to have, and which take a while to acquire. For instance, using eGram requires
good knowledge of rule-based systems and their derivational power, and using the editor
developed for the SmartKom project requires familiarity with Tree-Adjoining Grammars.
By contrast, we aim to make our system accessible to users who do not have a background
in (computational) linguistics or computer science by reducing the amount of necessary
background knowledge from these areas as much as possible.

On the other hand, systems like DEXTOR and the template authoring environment
presented in [9] are specifically geared towards being usable by non-linguists, but lack even
the most basic features for navigating and managing template corpora. As described in
chapters[I4 and [I5] our system supports multiple ways of navigating and filtering rule bases
to locate relevant content. Lastly, none of the tools described in the previous chapters are
particularly suited for collaborative editing of content, as they require each end user to
install and run their own copy of the software. The following chapter describes how our
system addresses this particular concern.

11

12

Part |11

System Architecture and Technologies

6 Architecture

6.1 Overview

As mentioned in Chapter I}, one of our main goals is to facilitate collaborative development
of rule bases. Having rule developers access and modify a single copy of a rule base is a
prerequisite for successful collaboration. In the context of the ALIZ-E project, this concern
has so far been addressed by using a version control system to track changes made to plain
text rule files. With respect to developing a dedicated system for creating and editing rules,
however, this meant choosing an architecture that would allow rules to be stored centrally
and accessed remotely. This is why we chose to adopt a cloud-based Software-as-a-Service
(SaaS) approach for our system: A single instance of the application runs on a central host
that multiple clients can connect to using a web browser (cf. Figure (1) [22]. All interaction
with the system happens inside the browser. There is no need for end users to go through
complex, operating system-specific install procedures, as the sole requirement for using the
application is a modern web browser with JavaScript enabled.

The following two sections describe server-side and client-side architectures of our system
in more detail. Integration with existing tools is addressed in Section [6.4] Chapter [7]
provides information about technologies that were used to develop server-side and client-
side components of our system.

Figure 1: Software-as-a-Service architecture

13

6 Architecture

6.2 Server-Side Architecture

The server-side architecture of our system is shown in Figure It roughly follows the
Model-View-Controller (MVC) pattern, which was first introduced by Krasner and Pope
[32] for the purpose of building user interfaces in Smalltalk-80 [23]. One of the main benefits
of this pattern is that it supports separating data from presentation [42]. Implementations
of MVC vary in their interpretations of the MVC pattern, but in the context of web
application development, responsibilities are generally divided between individual layers
as follows [42]: Models represent application data and encapsulate logic for storing and
operating on that data. Controllers are responsible for handling user requests, and the
view layer is concerned with presentation of data. In particular, a router maps URLs
requested by clients to appropriate controllers. Controllers communicate with the model
layer to effect necessary changes to data stored in a persistence back-end. Additionally,
controllers are responsible for rendering appropriate views by injecting relevant data into
them, and sending them back to the client in an HTTP response.

Host
: =
Client (1)
\‘ Models
Router
e ‘ nodes ‘ relationships‘
\8) : g
@) g N
. Managers
14 Al
G‘\J N
T (6\) LNode Managers LRelationship Managersl
s

(1\ HTTP reguest \
—~ n
2) Choose controller Controllers) -\Z_I/l
(3) call CRUD method(s) . Database Access Layer
(g Communicate with K
4. DB Access Layer -“render —
(= Communicate with . (5)
5. pB | =
I/6\‘ Return information -
\—/ to controller
G\ HTTP response
(é“\ Client-side processing

Figure 2: Flow of information on the server side. HT'TP requests from clients are delegated
to appropriate controllers by the router. Controllers operate on model objects
by calling CRUD methods provided by Manager classes. Instead of communicat-
ing directly with the database, managers make use of the API provided by the
database access layer to request information or effect changes to existing data.
Results from operations involving the database are post-processed by managers
and then returned to controllers, which send HT'TP responses containing relevant
data back to the client.

For reasons that will be explained shortly, we had to use a non-standard persistence
back-end for storing rule data. From an architectural standpoint, using a custom persis-
tence back-end necessitated the introduction of two additional components: First of all,
functionality for communicating directly with the database was encapsulated in a separate

14

6.2 Server-Side Architecture

database access layer. Secondly, a hierarchy of managers was added to handle communi-
cation with the database access layer in order to reduce coupling between models and the
access layer, increase encapsulation, and obtain a sensible distribution of responsibilities.
As shown in Figure 2] controllers communicate with managers via model classes: Each
concept that is represented as a model has a static nodes field (or, in case of relationship
models, a static relationships field) that stores a reference to an appropriate Manager
object. Each manager implements appropriate CRUD (Create, Read, Update, Delete)
methods for obtaining and operating on model data. Controllers call these methods via
the nodes and relationships fields of relevant model classes. This design was inspired
by the way application data is managed in Djangoﬂ which is an MVC web framework for
Pythonﬂ

As a more concrete example of how individual server-side components of our system
collaborate to make functionality available to end users, consider the following scenario:
A user clicks a button that represents a link to an interface which lists all rules that are
currently defined. (This interface is described in detail in Chapter) This causes the
browser to send an HTTP GET request to the URL associated with the link. At this
point, server-side processing takes over: The router forwards the request to the controller
that it knows to be responsible for handling this specific type of request. In order to be
able to return an appropriate response to the client, the controller first needs to request
a list of all rules from the Manager object responsible for handling rules. The manager
contacts the database access layer with this request, which translates the request to an
appropriate query and sends that query to the database. Upon receiving the results of
the query from the database access layer, the manager generates a list of rule objects with
fields set to appropriate values and returns that list to the controller. As a last step, the
controller injects rule data into an appropriate view to generate the HTML page that the
user requested by clicking the link in the browser, and sends the page back to the client in
an HTTP response. JavaScript code that is necessary for further processing on the client
side is transmitted in this step as well.

Having established how different server-side components interact to handle client re-
quests, we now come back to the issue of persistence. The framework that was chosen
to provide the core MVC architecture for our application supports a variety of Relational
Database Management Systems (RDBMS) via the Ebean ORME Relational databases
organize data in terms of the relational model [30], which was first introduced by E. F.
Codd [14], 13]. It is based on predicate logic and set theory and uses the concept of a
(mathematical) relation as its main primitive for modeling data [47]. As a result, when
using RDBMS any data to be stored has to be modeled using tables (or, in mathematical
terms, n-ary relations), with columns corresponding to attributes of concepts being mod-
eled. Although this form of representation might have been appropriate for a subset of
the concepts we needed to model, we chose not to use it: In ALIZ-E, rules for generating
natural language output contain collections of feature-value pairs [31], which are naturally
modeled as feature structures [28] (cf. Section [9.2.1). Feature structures, in turn, can be
represented as directed acyclic graphs (DAGs) for the purpose of operating on them [28].
While relational databases can be used to store DAGs, the data model that is required for
this to work (cf. [17] and [16]) uses a number of indirections that unnecessarily obscure
the inherent structure of the original data [48]. Both retrieving and altering data requires
complex (and in some cases non-standard) SQL queries (cf. [48] and [17]), and as Partner
et al. [43] show, retrieval of connected data from RDBMS does not scale well.

8https://www.djangoproject.com/

%https://www.python.org/

OORM stands for Object Relational Mapping, which describes the process of mapping objects to and from
a relational format [29]. Ebean (http://www.avaje.org/) is an open source ORM tool for Java.

15

https://www.djangoproject.com/
https://www.python.org/
http://www.avaje.org/

6 Architecture

To circumvent these problems we chose to use a schema-free graph database [25] for the
persistence layer of our system. Graph databases facilitate modeling highly interconnected
data by representing it in the form of nodes and relationships [48]. Sections and
[0.2] describe the data model we developed for the purpose of storing and operating on
rules in this type of database in detail. Aside from being more suitable for representing
interconnected data, the schema-free nature of graph databases also facilitates the task of
evolving data models over time. For instance, adding new types of nodes and relationships
to support additional concepts does not require complex database migrations, and leaves
existing data uncompromised [48)].

In the current setup, the database runs in server mode, which means that it runs in a
process that is completely separate from the process of the main application [48]. As a
result, it is fully decoupled from other components of the system. The main application
treats it as a remote web service and communicates with it via a RESTful interface. REST
(Representational State Transfer) [20] is an architectural style that was developed by Roy
Fielding as an abstract model of web architecture [19]. According to Richardson and
Ruby [45], web services can be considered “RESTful” if their level of adherence to the
architectural constraints for REST set forth in [20] is fairly high. Providing a detailed
treatment of REST is outside the scope of this thesis, but one of the main ideas shared by
many RESTful services is to represent data as resources and expose them via associated
URISs, allowing clients to operate on them using standard HTTP methods (such as GET,
POST, PUT, and DELETE) [45[""] As mentioned above, knowledge about how to communicate
with the database is encapsulated in the database access layer. Other components of the
main application are not aware of how data is sent to and requested from the database
(and do not need to be).

One major implication of treating the persistence back-end as a web service is that the
lifecycle of the database does not depend on the lifecycle of the main application. As a
result, the database server can be accessed from and plugged into other applications easily.
This could be useful for, e.g., independent analysis of rule data. Another consequence of
treating the database as a remote service was that we had to build custom support for
wrapping multi-step operations into transactions into the database access layer: While the
graph database implementation we use (cf. Section does run queries inside of transac-
tions by default, these transactions are committed at the end of each HTTP request [51].
This means that operations involving multiple steps will not be rolled back automatically
if an intermediate step fails, which is likely to happen with multiple users accessing and
modifying the same rule base simultaneously. As a result, rule data stored in the database
might be left in an inconsistent state. To ensure that multi-step operations can only suc-
ceed if each intermediate step is successful, the database access layer provides an API for
opening and closing transactions, allowing managers to execute individual steps belonging
to a given operation inside a single transaction. This functionality relies on the use of an
alternative transactional HT'TP endpoint provided by the database that makes it possible
to keep transactions open across multiple HT'TP requests.

6.3 Client-Side Architecture

To improve user experience, a large number of user interactions with the system were
implemented as client-side operations [49]. Page reloads generally only happen when nav-
igating to a different system component (cf. Chapter . Actions requiring interaction

"For instance, a new node can be created in the database by POSTing appropriate data to
http://<host>/db/data/node. An existing node can be retrieved or deleted by sending a GET or
a DELETE request to http://<host>/db/data/node/<id>, and updated by sending a PUT request to
http://<host>/db/data/node/<id>/properties [51].

16

6.3 Client-Side Architecture

with the back-end for the purpose of reading or altering data are communicated to the

server via AJAX requests.

The architecture underlying client-side functionality follows an MV* pattern (cf. Figure
. We initially tried to build client-side functionality using native JavaScript and jQueryE
only. Due to the complexity of the data that the client-side front-end needs to manipulate
and render, this approach turned out to be infeasible fairly quickly, causing us to adopt
an additional framework in order to be able to separate responsibilities in a sensible and
maintainable way. MV* patterns also make use of models and views, but differ from the
MVC pattern in that they merge responsibilities of controllers into views or introduce

additional components [42].

Client \/i\; Input event
(2. Call CRUD method(s)

\/ 5\; AJAX request

~—, Serverside
\%) processing

Button ®— —
* — -'\5) JSON response

o — =

E 4 =y

HTML page

. 5 (7)) Render content
(7 oQé%' H -
My 6??':5&\"\0 -'
(1) ‘hold
Ly Y TR ;
Views Host

— Q ; .

| Events | 4 @:___,_
E, > A, — - (4\)
EZ - AZ (D _ -
C = (3)

|\ N -/ .

Figure 3: Flow of information on the client side. Input events such as button clicks cause
views to call appropriate CRUD methods on associated model objects. CRUD
methods issue AJAX requests to the server to send and/or receive data. Results
of server-side processing are sent back to the client in a JSON response. Views
are notified of any changes concerning model objects they are associated with.
If necessary, views re-render updated information in the interface.

The framework that provides the basic architecture for client-side processing in our
system is called Backbone.js. It provides two primitives for modeling application data,
namely models and collections. Models serve an already-familiar purpose: They are used
to represent domain entities and provide methods for operating on data that is associated
with these entities. Collections are sets of models. Both models and collections provide
CRUD methods for synchronizing the data they hold with the application server. These
methods wrap AJAX functionality provided by jQuery, resulting in a large reduction in
the amount of code required to perform RESTful synchronization for model objects [42].

2https://jquery.com/

17

https://jquery.com/

Views contain logic for rendering data that has been stored using models and collec-
tions. Upon creation, view objects are associated with model or collection objects which
enables them to access the data they are supposed to render. Backbone.js supports the
use of client-side templating libraries such as JsRender™] Mustachd™}, and Underscore.js
micro—templateﬁ for rendering model and collection data to HT'ML, but also allows for
custom rendering solutions [42]. Our system makes use of nested views and models for ren-
dering and representing complex entities. This reduces the amount of HTML that must be
rendered per view, allowing us to use functionality for creating HTML elements provided
by jQuery (instead of a dedicated templating library).

Being an MV* framework, Backbone.js merges responsibilities that are usually associated
with controllers into the view layer: On the client-side, requests correspond to events such
as clicks on specific HTML elements or changes to models and collections [42]. Views
can be set up to listen to both of these types of events. When a specific event occurs,
views listening to it can respond by executing a number of appropriate actions. These
actions usually involve making changes to rendered representations of associated models
and collections.

Figure [3] illustrates the flow of information between different components on the client-
side. Differences between server-side and client-side data models are described in Chapter
Appendix [A] provides a detailed treatment of client-side data models.

6.4 Integration with Existing Tools

Rules created with our system can be prepared for testing and on-line processing by ez-
porting them to a format that the rewriting engine can understand. There are three main
advantages to this approach: First, it maximizes reuse of existing functionality by allow-
ing the system to integrate into the overall pipeline of development tools for rule bases
without interfering with existing implementationﬂ Note that this advantage is specific
to the ALIZ-E project, i.e., the context in which our system was developed. Secondly,
it preserves the option of working with plain text representations of rules directly. At
this stage, this is especially important because the system does not (yet) support editing
rules whose output consists of instructions for manipulating abstract representations of
situational knowledge. And lastly, it opens up the possibility to port the target system to
projects using different rule formats by substituting the export module (cf. Section ,
while leaving other components of the system untouched. Section [I4.3] describes how the
export process can be triggered by end users. A detailed explanation of processing steps
involved in exporting rules is presented in Appendix [B23]

Bhttps://github.com/borismoore/jsrender

Yhttps://mustache.github.io/

5http://underscorejs.org/

16To0ls developed prior to the system presented here allow rule developers to debug individual rules by
stepping through the processing steps that take place when a given rule is applied [31]. Given availability
of appropriate test files, it is also possible to batch test an entire rule base. Syntax highlighting for
rule and batch test files is available through integration with the Emacs editor (https://www.gnu.org/
software/emacs/)).

18

https://github.com/borismoore/jsrender
https://mustache.github.io/
http://underscorejs.org/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/

7.1 Server-Side Technologies

7 Technologies

7.1 Server-Side Technologies

As explained above, the server-side portion of the system consists of two major components,
namely the main application and the persistence back-end. Both the graph database we
use to store rule data and the MVC framework providing the basic architecture for the
main application are written in JavalT_7].

7.1.1 MVC Framework

The framework that forms the basis for the main application is called play{ig]. It belongs to a
family of evented web frameworks enabling the use of asynchronous (or non-blocking) 1/0
when making calls to remote services [4]. This means that threads handling individual
requests do not have to wait for network calls to complete. Instead, they can process
other requests in the meantime and resume work when the response from the network call
becomes available [4]. With respect to our system, asynchronicity on the server side is
important because as mentioned above, the main application treats the persistence layer
as a remote service.

Play uses Scala as its default templating language for the view layer. For our purposes, a
less powerful templating engine would have sufficed: We only use server-side templates to
provide basic scaffolding for individual pages. Complex data structures representing rule
components are stored in HTML 5 data-* attributes [37], and final rendering of these data
structures takes place on the client-side. However, in order to avoid making yet another
addition to the set of technologies that were used to build the system we chose not to
replace the default templating system.

7.1.2 Persistence Layer

We use an open source implementation of a graph database management system called
Neofj] to store rule data. The graph database exposes a property graph model that makes
it possible to conceptualize domain knowledge using nodes and directed relationships.
As the term property graph suggests, both nodes and relationships can store additional
information about entities (nodes) and connections (relationships) between them in the
form of properties. Properties are key-value pairs whose keys must be strings and whose
values can be arbitrary data types [48]. In addition to properties, nodes can have one
or more labels, and relationships always have a type [48| [51]. Labels make it possible
to restrict operations to specific subsets of nodes. Relationship types provide enhanced
possibilities for graph traversal. To illustrate, consider the example graph shown in Figure
which represents a small social network. Although structurally simple, using relationship
direction and type this graph can be queried for the following information [51]:

"More precisely, the MVC framework is written in Java and Scala (http://www.scala-lang.org/), but
since other tools developed in the context of the ALIZ-E project were implemented in Java we chose
to use the Java version of the framework.

Bhttps://playframework.com/

http://www.neodj.org/

19

http://www.scala-lang.org/
https://playframework.com/
http://www.neo4j.org/

7 Technologies

Persons Obtained by following

followed by a person outgoing FOLLOWS relationships, depth 1
following a person incoming FOLLOWS relationships, depth 1
blocked by a person outgoing BLOCKS relationships, depth 1

blocking a person incoming BLOCKS relationships, depth 1

Table 1: Information that can be obtained from the graph shown in Figure 4| [51]

[Person] f Person]

name = 'Maja’ name = 'Alice’

FOLLOWS\FOLLOWS

name = 'Oscar’

(Person W

Lname = 'Williamj

Figure 4: Example graph representing a small social network [51]

Sections through describe how we use these modeling primitives to represent
relevant data for the purpose of storing it in the database.

Query Language

Neo4j defines a custom query language for retrieving and manipulating data stored in
property graphs called Cypher. Its declarative syntax is designed to mimic visual repre-
sentations of graphs. This makes it possible to describe data in the form of patterns when
querying the database [48]. Discussing the Cypher query language in detail is outside the
scope of this thesis, but as an example, consider the following query:

MATCH (x:Person)-[:FOLLOWS]->(y)
WHERE x.name = ’Alice’
RETURN y;

The first line contains a MATCH clause that defines the pattern to locate in the database.
Nodes are surrounded by parentheses, so in this example, both (x:Person) and (y) are
placeholders for nodes. x and y are identifiers. The purpose of identifiers is to make
it possible to reference specific parts of patterns by naming them [51]. Person is a label.
Including this label in the query reduces the set of nodes matching the pattern (x:Person)
to all nodes x whose set of labels includes Person. In their simplest form, relationships
are represented as arrows consisting of two dashes (--). If necessary, directionality of
relationships can be indicated using < and >: Relationships matching the pattern specified
in the query shown above must point from nodes matching the pattern (x:Person) to nodes
matching the pattern (y). Incoming relationships of (x:Person) nodes are filtered out.

20

7.2 Client-Side Technologies

Arrows representing relationships can be annotated with additional constraints enclosed
in square brackets. In the example above, the string following the colon specifies that
the entire pattern should only match nodes connected by relationships that are of type
FOLLOWS.

The WHERE clause in the second line adds a constraint to the pattern described by the
MATCH clause: It specifies that nodes matching the pattern (x:Person) must also satisfy
the condition that their name property be set to the value Alice. Constraints can be
negated using NOT, and it is possible to specify multiple constraints by chaining them with
Boolean operators AND, OR, and XOR [51]. Lastly, RETURN clauses determine which nodes,
relationships, and properties from the data matching a pattern should be returned by the
query [48]. In the example above we are only interested in the end nodes of the pattern.

Summing up, the query shown above can be used to obtain the set of persons being
followed by a person named Alicelﬂ When run against the graph in Figure |4} it returns
a single node, Oscar, who is the only person Alice is currently following.

7.2 Client-Side Technologies

Client-side functionality was implemented using HTML for structure, CSS for formatting,
and JavaScript for user interactions. A number of different frameworks and libraries were
employed to aid development of client-side functionality. Important characteristics of the
MV* framework that provides the basic architecture for client-side processing were pre-
sented in Section [6.3] so we will not repeat them here. The following sections give a brief
overview of technologies providing functionality for laying out Ul components, making
AJAX requests, and for manipulating structure and content of HTML pages representing
individual interfaces of our system.

7.2.1 Layout

As mentioned at the beginning of this chapter, content displayed to users was formatted
using Cascading Style Sheets (CSS)E. Aside from specifying fonts, colors, and spacing for
HTML elements, CSS can also be used to create responsive, grid-based layouts for precise
placement of interface components [15 53]. When developing such layouts, special atten-
tion must be payed to concerns of cross-browser compatibility in order to avoid forcing
end users to use specific browsers [54]. Since our focus was on designing and implementing
functionality for working with rewriting rules, we chose to circumvent these issues by using
an existing framework with built-in support for grid-based layouts called Twitter Boot-
stmpm. Aside from providing CSS for grid-based layouts, this framework also implements
a large variety of reusable interface components such as drop-down menus, tabs, and but-
ton groups. Most notably, our application uses a Bootstrap navigation bar@ for providing
quick access to different types of functionality (cf. Chapter , and incorporates a number
of buttons that are rendered using glyphiconﬂ.

20Note that for the purpose of illustrating different aspects of Cypher syntax, we omitted the Person label
from the end node of the pattern to match. Therefore, when running this query against data sets
allowing other types of entities to be followed, the result set might include nodes with different labels.

http: //www.w3.org/Style/CSS/

Zhttp://getbootstrap. com/

Zhttp://getbootstrap. com/components/#navbar

2Ihttp://getbootstrap. com/components/#glyphicons

21

http://www.w3.org/Style/CSS/
http://getbootstrap.com/
http://getbootstrap.com/components/#navbar
http://getbootstrap.com/components/#glyphicons

7 Technologies

7.2.2 AJAX Functionality and User Interactions

Backbone.js, the MV* framework that provides the basic architecture for client-side func-
tionality of our system, does not include support for making AJAX requests to the ap-
plication server. However, as mentioned in Section [6.3] above, methods for synchronizing
model data to the server do require AJAX functionality to be available. Furthermore,
Backbone.js views rely on external support for DOME manipulation. The jQuery library
addresses both of these concerns, and although it is possible to use other libraries exposing
similar APIs (such as Zepto@ with Backbone.js, jQuery provides the highest level of com-
patibility. For these reasons we chose to add jQuery to the set of tools we used to build
our system.

Lastly, a number of features for working with rule data were implemented as drag-and-
drop operations (cf. chapters and . Support for drag-and-drop is enabled through
the use of jQuery UIE] which is built on top of jQuery and provides “a curated set of user
interface interactions, effects, widgets, and themes” [27].

This concludes our discussion of system architecture and the technologies that were used
to build the system. The following chapters describe the native format of rewriting rules, as
well as the server-side and client-side data models we developed for storing and processing
them.

%The Document Object Model (DOM) is an API for representing and manipulating contents of HTML
and XML documents [2]].

Znttp://zeptojs.com/

“™http://jqueryui.com/

22

http://zeptojs.com/
http://jqueryui.com/

Part IV

Data Models

23

8 Native Rule Format

Rewriting rules for on-line generation of natural language output consist of two compo-
nents, a left-hand side (LHS) and a right-hand side (RHS)™] In native rule syntax, these
components are separated by an arrow (->):

:dvp = <SpeechAct>greeting

~ <Context>(<RobotName>#robot ~ <Encounter>first)
->

#i##x = concatenate("ciao, mi chiamo ", #robot),
##t#y = concatenate("ciao, sono ", #robot),

- :canned " <stringOutput>random(#i##x, ###y) ~ <SpeechModus>indicative.

LHS of rules contain a set of matching conditions which must be fulfilled for a rule to
apply: During on-line processing, knowledge that a conversational agent has about the
current situation is represented as a proto-logical form (PLF) |31, [41]. PLFs are instances
of feature structures [41], i.e., they are collections of features and associated values [28].
When it is the agent’s turn to speak, decisions about what to say are made by matching the
PLF against conditions specified by LHS of individual rules. If a PLF fulfills the conditions
established by a given rule, that rule is applied to the PLF (cf. below). Matching conditions
specify a set of features that must be present in the PLF. For each feature they can also
specify the value to which it should be set. In native rule syntax, features are enclosed in
angular brackets. To match the LHS of the rule shown above, a PLF must contain four
features: SpeechAct, Context, RobotName, and Encounter.

Features differ in the types of values that they take. If a feature is set to a simple string
value, we call it atomic. In the example above, SpeechAct, RobotName, and Encounter
are instances of atomic features. On the other hand, if the value of a feature consists of
a number of feature-value pairs enclosed in parentheses, we call it complez. The LHS of
the rule shown above contains a single feature that is complex, namely Context. Values
starting with a hash symbol (#) are variables. They are used to capture concrete values
associated with features in a PLF during on-line processing. Among other things (cf. [31]),
this makes it possible to reference feature values that only become known at run-time from
other locations within the same rule. To give a concrete example, the rule shown above
stores the name of the agent in a variable called #robot. It then references that variable
on the RHS to incorporate the name of the agent that is currently involved in a dialogue
with a user into the natural language output it produces.

In addition to features and values, every PLF also has a type [41]. Types are represented
using a colon followed by a sequence of non-whitespace characters in native rule syntax.
The presence of a type in the LHS of a rule places further constraints on the input PLF.
For instance, the rule shown above only applies to feature structures of type :dvp. The
~ operator is used to combine individual match conditions to form more complex match
expressions [31]. Specifically, the presence of this operator requires that a given PLF match
all of its operands.

RHS of rules provide explicit instructions about how the rewriting engine should modify
a matching PLF. Additionally, they can specify one or more output strings that are appro-
priate for the conversational agent to produce if their parent rules apply. For example, the

ZNote that from this point on we will be using “LHS” and “RHS” as shorthand for both singular and
plural forms of the terms they represent.

24

rule shown above defines ciao, mi chiamo #robot and ciao, sono #robot as possible
outputs. This is achieved by using a function called concatenate@ to combine two pieces
of canned text (ciao, mi chiamo and ciao, sono) with the value of the #robot variable
at run-time. The resulting output strings are stored in two separate variables ###x and
###ylﬂ. Instructions for modifying the input PLF are given in the last line of the rule
definition: In the context of an RHS, a single hash character represents the PLF against
which a rule is matched, and the ~ operator signifies addition. In its entirety, the last line
of the rule definition instructs the rewriting to change the type of the PLF to :cannedﬂ,
and to add two features (stringOutput and SpeechModus) with appropriate values to it.
It also specifies that the rewriting engine should make use of a function called randon>’|
to compute the value of the stringOutput feature from the values of ###x and ###ty. As
the name suggests, this function randomly selects and returns one of the arguments that
are passed to it at each application of a ruldﬂ During on-line processing, actual output
is produced by reading the value of the stringOutput feature from the altered feature
structure.

Since one of our goals is to make the process of working with rules more accessible to
people without background knowledge in (computational) linguistics and computer science,
our system currently hides the fact that RHS of rules provide instructions for manipulating
PLFs from end users completely. Editing functionality for RHS of rules (described in
detail in Section allows users to focus solely on designing appropriate verbalizations.
Instructions for choosing among available output strings and adding the stringOutput
feature to input PLFs are automatically incorporated into rules when exporting them to
plain text as described in Section [14.3

Finally, it must be noted that the example above only shows a subset of the syntax for
rewriting rules that has been developed in the context of the ALIZ-E project. We omit
additional details about native rule syntax here because the server-side and client-side data
models that we developed for the purpose of storing and operating on rules only take into
account the concepts presented above. Please refer to Kiefer [31] for a formal specification
and an in-depth treatment of rewriting rule syntax.

9 Server-Side Data Model

This chapter describes the server-side data model that we developed for the purpose of
storing rules created with our system. Section [0.1] describes how features and associated
values are represented, and Section describes the data model for rules. In the last
section of this chapter we briefly touch on a basic model for representing registered users.

Note that the following sections do not describe a new formalism. Rather, they describe
how we make use of the property graph model to translate rule data (augmented with
specific kinds of useful meta-information) to a format that is serializable using the Neo4]
graph database implementation. The process of designing the server-side data model was

The concatenate function is part of a set of built-in functions provided by the rewriting engine. In
native rule syntax, built-in functions can be used from both LHS and RHS of rules [31].

30Variables prefixed with three hash symbols (###) are called right-hand side local variables [31]. As their
name suggests, they are local to RHS of rules.

31Feature structures can only have one type. As a result, “adding” a new type to a feature structure causes
the existing type to be replaced.

32This function also belongs to the set of built-in functions provided by the rewriting engine [31].

33Note that if there is no variable content to be interpolated into individual output strings, they can also
be passed directly to the random function; it is not necessary to use the concatenate function in the
definition of a rule in this case.

25

9 Server-Side Data Model

greatly influenced by practical concerns: We wanted to represent rule data in a way that
would keep the amount of duplicate information we needed to store to a minimum. To
address this goal, we decided to introduce different types of nodes to represent complex
entities, and to connect them using appropriately-typed relationships. This allows the
system to store components shared by many rules (such as features) only once, which would
not have been possible if we had opted for storing information about rule components as
properties of a single rule node. In addition to minimizing redundancy, we also wanted to
keep the number of processing steps involved in performing relevant operations minimal.
This was achieved by tailoring both the server-side and the client-side data models to the
different types of editing operations that we wanted to support.

9.1 Features

Features are represented as nodes in the database. Each feature node stores the name and
type of the feature it represents, as well as a description. Additionally, feature nodes have
a property called uuid whose value is a Version 4 UUI[ﬂ. The uuid property is used
for internal purposes and becomes relevant when operating on stored representations of
LHS. Section below explains why it was added to the set of properties we store for
feature nodes. By introducing a description property we enable users to document and
communicate to others how individual features should be usedEl Note, however, that we
do not force users to provide descriptions for features: If they fail to specify a description
for a feature when first creating it, the system will assign a default value of “...” to the
description property that can be modified at any time (cf. Chapter . The type of
a feature determines whether is atomic or complex. As described in Chapter [§] atomic
features take string values and complex features embed sets of feature-value pairs. Feature
nodes are uniquely identified by a combination of their label (Feature) and the value of
the name property: No two features are allowed to have the same name.

In addition to name, type, and description properties, each feature is associated with
a number of possible targets. Complex features target other features: If a feature A
targets another feature B, this means that the targeted feature (B) is allowed to appear
in the set of feature-value pairs embedded by A. Atomic features, on the other hand,
target values: In the context of any given rule, the value of an atomic feature can only be
set to a targeted value. Associations between features and appropriate target nodes are
represented by relationships of type ALLOWS. Relationships of this type currently do not
store any additional information in the form of propertie@

As hinted at above, values of atomic features are represented as nodes as well. They
have a single property called name which — in conjunction with the Value node label —
uniquely identifies them. Value names are thus subject to the same uniqueness constraint
that applies to feature names.

By default, each atomic feature is associated with a special value node whose name is
set to underspecified. The purpose of this value is explained in Section [0.2.1] below.

31UUID stands for Universally Unique Identifier. A UUID is 128 bits long and can be generated using a
number of different algorithms. Version 4 UUIDs are generated from truly random or pseudo-random
numbers [3§].

35Gince feature descriptions constitute meta-information that is irrelevant for the purpose of generating
output during on-line processing, they have no counterpart in native rule syntax.

36The purpose of associating features with specific targets via ALLOWS relationships is similar to the role of
types in typed feature structure formalisms: It restricts the set of features that are allowed to appear
in feature structures embedded by specific features. The main difference is that in the context of typed
feature structure formalisms, the type of a given feature structure can determine, for each feature that
belongs to it, the exact value the feature is supposed to take (cf., e.g., [33]). By contrast, the data
model described here only allows users to specify general restrictions for sets of values specific features
are allowed to take (by associating atomic features with one or more values).

26

9.2 Rules

With the exception of the underspecified value, the lifespan of values is controlled by
the atomic features that target them. That is, a given value will continue to exist as long
as it is referenced by at least one feature. The associated node will be removed from the
database as soon as it becomes orphaned.

Figure b shows an example subgraph of features and associated values.

name = 'Context’
Eype ='‘complex’

escription =".."
uuid = 'b9b6f9ce’

(e) ([femwe)
name = 'Encounter’ name = 'Familiarity’ name = 'SpeechAct'
type = 'atomic' type = 'atomic' type = 'atomic’
description ="... description ="..." description ="..."
uuid ='e64c2f37' uuid ='971410b31" uuid ='039cfeb?’

ALLOWS ILLOWS ALLOWS

ALLOWS IALLOWS ALLOWS /ALLOWS \A:LOWS

(Value (Value \ (Value \ (Value w (Value \ (Value \ (Value \
Lname:'ﬂrstj kname:'notﬂrstj kname:'noj kname:'underspeciﬂedj Lname:'yesj kname:'greetingj kname:'requestj

Figure 5: Example subgraph of features and associated values. Descriptions have been
truncated for brevity.

9.2 Rules

Rules are represented as nodes with name, uuid, and description propertieﬂ. Just
like feature descriptions, rule descriptions can be omitted when creating new rules: The
description property will be set to a default value of “...” in this case. The uuid
property is set to a Version 4 UUID that is generated upon rule creation and used for
internal purposes. Section below provides more detailed information about what
these purposes are. Rule nodes are uniquely identified by a combination of their label
(Rule) and the value of the name property. No two rules are allowed to have the same
name.

In addition to the name, uuid, and description properties, each rule is associated with
a subgraph representing its LHS via a relationship of type LHS, and another subgraph
representing its RHS via a relationship of type RHS. The following two sections describe
the data model for these rule components in detail.

9.2.1 LHS

As mentioned in Chapter [§ above, LHS of rules contain pairs of features and values that
are matched against input structures to determine whether or not a given rule should be
applied during on-line processing. We therefore chose to represent them as Attribute- Value
Matrices (AVMS)EL both for the purpose of graphical editing (cf. Figurein Section
and for the purpose of storing them in the database. Each AVM is represented as a node
with a single property called uuid. In conjunction with the AVM node label, this property
identifies AVM nodes uniquely. For each AVM node, the value of the uuid property is set
to a Version & UUIHﬂ If an AVM node represents an LHS, this UUID is derived from
the UUID of the parent rule. On the other hand, if an AVM node represents a nested

3"Note that none of these properties have counterparts in native rule syntax.
38 AVMs are graphical representations of feature structures [28, [3].
39Version 3 UUIDs are generated from “names” that are unique within some namespace [38].

27

9 Server-Side Data Model

‘ Rule)

name = '@firstEncounter’
description ="..."
uuid ='76748fb9'

uuid ='60a90766 uuid = '60a90766'

HAS HAS
{rule:'76748fb9" } | { rule:'76748fh3' }

(Feature) (Feature W

name = 'Context’ name = 'SpeechAct’'
pe ='complex' type = 'atomic’ uuid = 'fba%aa8d’
escription =".." description ="..." position = 1
uuid = 'b9b6f9ce’ uuid ='039cfeb9’

HAS
{ rule: '76748fb9",

avm: '60a90766' }
uuid ='a1d1b76e’

Value
uuid ='1a22940e’' | | name = 'greet"ng'} position = 1

HAS HAS

‘(ule: '76748%9Nule: 76748fb9") / HAS \HAS
Feature Feature

[£ ' (Pt (Part

‘ uuid = '5360706¢' ’ uuid = 'f31c4b80'
content = "Hil" content = 'My name is Nao.'

HAS
{rule:'76748fb3" }

OutputString w

uuid = 'a081c777'
content = 'Hey there, what's your name?'

uuid = 'f16ba2ca’
position = 2

name = 'Encounter’
type = 'atomic’
description ="...'
uuid = 'e64c2f37'

name = 'Familiarity’
type = 'atomic’
description="..."
uuid ='97141b31'

HAS HAS
{rule:'76748fb9", {rule:'76748fb9",
avm: "1a22940e" } avm: "1a22940e" }

A
(Value) [Value
(name = 'first') name ="no"

Figure 6: Example subgraph of a rule. UUIDs and descriptions have been truncated for
brevity.

substructure of an LHS (i.e., a set of feature-value pairs embedded by a complex feature),
the UUID is derived from a combination of the UUID of the parent AVM and the UUID
of the complex feature embedding the AVM. The main benefit of using derived UUIDs is
that UUIDs of AVM nodes belonging to a given rule can be determined programmatically
without having to query the database for this information, allowing write operations to
target appropriate nodes directly. Since names of rules and features are subject to change,
we would risk losing this ability if we were to derive UUIDs for AVMs from values of
name properties of rule and feature nodes. This was the main reason for introducing uuid
properties for rule and feature nodes as well. Deriving UUIDs of embedded AVMs from
UUIDs of parent AVMs and UUIDs of embedding features is necessary because UUIDs of
embedded AVMs would not be unique if they were derived from UUIDs of parent AVMs or
embedding features alone: In the former case, every substructure of a specific AVM would
have the same UUID, and in the latter case, substructures embedded by the same feature
would have the same UUID across rules.

In addition to the uuid property, each AVM is associated with zero or more features.
Connections between AVMs and features are represented by relationships of type HAS with
a single property called rule. The value of this property is set to the UUID of the parent
rule. Features, in turn, are associated with substructures (if they are complex) or values
(if they are atomic) in the context of AVMs. Relationships connecting complex features to
substructures have the same type and set of properties as relationships connecting AVMs
to features. Relationships representing associations between atomic features and values
store an additional property called avm. For each relationship, this property is set to the
UUID of the parent AVM of the start node, that is, the AVM in which the start node HAS

28

9.2 Rules

the end node of the relationship as a value. This allows us to precisely identify the context
in which a feature is associated with a given value.

We mentioned in Section[9.Iabove that every atomic feature ALLOWS the underspecified
value. In the context of rules, each atomic feature HAS the value underspecified by de-
fault. This covers cases in which the LHS of a rule requires the presence of a certain feature,
but makes no assumptions about the associated value. Each complex feature is associated
with (HAS) an empty substructure, i.e., an AVM with no outgoing HAS relationships.

9.2.2 RHS

Just like LHS of rules, RHS of rules are represented as nodes with a single property called
uuid. For any given rule, the value of the uuid property of the RHS node it is associated
with is identical to the value of the corresponding LHS node. That is, the value of the
uuid property of an RHS node is a Version 3 UUID that is derived from the UUID of the
parent rule. RHS nodes are uniquely identified by a combination of their label (RHS) and
the value of the uuid property.

In addition to the uuid property, each RHS is associated with one or more combina-
tion groups via relationships of type HAS. Unlike HAS relationships connecting AVMs to
features and features to embedded AVMs or values, these relationships do not have any
properties. The following sections describe the data model for combination groups and
their components in detail.

Combination Groups

Combination groups do not have a counterpart in native rule syntax. Their exact purpose is
described in Section[I3.3] For now, it is enough to mention that they are used to group sets
of output strings belonging to a given rule. Each combination group is represented as a node
with two properties called uuid and position. The value of the uuid property is a Version
4 UUID that is generated upon group creation. The position property is used to represent
the (1-based index) position of a group in the list of combination groups associated with
a given RHS. By imposing an artificial order on the set of combination groups associated
with a given RHS, the system is able to keep the arrangement of visual representations of
these groups consistent between editing sessions. Nodes representing combination groups
are uniquely identified by a combination of their label (CombinationGroup) and the value
of the uuid property.

In addition to the uuid and position properties, each combination group is associated
with zero or more output strings and zero, or at least two slots. Relationships connecting
combination group nodes to output strings and slots are of type HAS.

Output Strings

We explained in Chapter [§labove that RHS of rules contain specifications of output strings,
and that one of these strings is chosen randomly every time a given rule applies. In
our system, output strings are represented as nodes with two properties called uuid and
content. As its name suggests, the content property stores the content of a given output
string. The value of the uuid property is a Version 3 UUID that is derived from the
value of the content property. As a result, output string nodes are uniquely identified
by a combination of their label (OutputString) and the values of the uuid and content
properties.

Combination groups control the lifespans of output strings. That is, a given output
string will continue to exist as long as it is referenced by at least one combination group.

29

9 Server-Side Data Model

It will be removed from the database as soon as it becomes orphaned, i.e., as soon as it
loses the last incoming HAS relationship.

Slots

As mentioned above, combination groups are not only associated with a number of output
strings; they can also embed two or more slots. Like combination groups, slots are struc-
tural entities. They are used to group strings that can be used as building blocks for full
output strings. We call these strings parts. They are described in more detail below. Slots
are represented as nodes with two properties: uuid and position. The value of the uuid
property is a Version 4 UUID that is generated upon slot creation. In conjunction with
the Slot node label, this property identifies slot nodes uniquely. The position property
records the (1-based index) position of a slot in the list of slots associated with a given
combination group. Unlike combination groups, slots must be ordered not only for con-
sistency across editing sessions, but also because parts stored in slots are combined in a
linear fashion when generating full output strings from them (cf. Section . Without
a fixed ordering of slots, we would not be able to guarantee that generated output strings
would be syntactically valid.

In addition to the uuid and position properties, each slot is associated with zero or
more of the aforementioned parts and can cross-reference zero or more rules. Relationships
connecting slots to parts and rule nodes are of type HAS.

Parts

Parts represent non-overlapping portions of output strings. As will be described in detail
in Section [I3.3] they are created by splitting output strings at word boundaries. With
respect to the data model, each part is represented as a node with two properties, uuid
and content, which serve the same purpose as the identically-named properties of output
string nodes: The content property stores the content of a given part, and the uuid
property is a Version 3 UUID derived from the value of the content property. Part nodes
are uniquely identified by a combination of their label (Part) and the values of the uuid
and content properties. Lifespans of parts are controlled by slots. That is, a given part
exists as long as it is referenced by at least one slot. The associated node will be removed
from the database as soon as it becomes orphaned.

Cross-References

As mentioned above, cross-references between slots and rules are represented by relation-
ships of type HAS. These relationships currently do not have any properties: Unlike features,
slot nodes are unique to their parent rules. As a consequence, individual slots can not ref-
erence the same rule twice, making it unnecessary to record information about parent
rules for the purpose of re-establishing rule context later on. Adding the concept of cross-
references to the data model is a basic requirement for allowing modularization of rule
bases. By establishing a connection between a slot S and a rule R (cf. Section ,
users can import the full output of R into S: Each output string associated with R will be
treated as a part of S when exporting rules to native formats. This is explained in detail

in Section M43

30

9.3 Users

Going beyond representations of features and rules, the data model also includes a basic
user model. At the time of this writing, the sole purpose of storing information about
users is to be able to restrict general access to the system to registered users. However,
by incorporating users into the data model we have also laid the groundwork for adding
more sophisticated access control, and for attributing modifications to features and rules
to specific users when recording version histories of these entities.

Users are represented as nodes with a label of User in the database. Each user node has
two properties for storing a user’s email address and password, respectively. Information
for both of these properties must be supplied upon registration. No two users are allowed
to have the same email address. Attempts to register new accounts using an email address
that is associated with an existing user are rejected by the system.

10 Client-Side Data Models

User-facing functionality of our system — which will be described in detail in Part [V] - is
spread out over a number of different interfaces. These interfaces differ with respect to
how much information needs to be available to them about entities such as features and
rules. As a result, there is no uniform data model on the client side that is reused across all
interfaces. Instead, each interface defines a custom data model that omits any information
that is irrelevant to the functionality it provides. For instance, as it simply lists rule names
and descriptions, the interface for browsing rules (described in Chapter does not need
access to detailed information about LHS and RHS of rules. On the other hand, interfaces
for editing rule input (described in Section and rule output (described in Section
allow users to modify LHS and RHS, respectively, so they do need information about
these entities. Since rule data is much more complex than feature data, client-side models
for rules vary even more across interfaces than client-side models for features. In some
cases, the client-side data model incorporates a small number of models that do not have
a direct counterpart on the server side.

On a more technical level, properties of nodes stored in the graph database generally
translate to attributes of model objects on the client-side. Associations between different
types of entities which are modeled using relationships on the server side are recreated
through the use of nested models and collections on the client-side.

Ideas presented in the following chapters do not rely on a detailed understanding of data
models used by individual interfaces. Therefore, we do not provide more information about
these models here. Please refer to Appendix [A]for an in-depth treatment of client-side data
models.

31

32

Part V

User-Facing Functionality

11 Overview

The following chapters describe user-facing functionality provided by our system. There
are four main components: a feature editor, a rule browser, a search interface, and a rule
editor. The latter is split up into a number of subcomponents for creating new rules, editing
rule input, and editing rule output. A navigation bar at the top of the application window
allows users to switch between individual components of the system. As the contents they
display are specific to individual rules, subcomponents of the rule editor are not listed in
the navigation bar. They are accessed via the rule browser (cf. Chapter , which serves
as an entry point for viewing details about individual rules and modifying them. Except
for the interface for creating new rules, each of the components mentioned above has been
implemented as a single-page application (SPA). This means that unless a user switches to
a different interface using the navigation bar, pages associated with individual components
will not be reloaded. As mentioned in Chapter [6.3] user interactions requiring access to
the server are carried out using AJAX requests.

We begin by describing the feature editor in Chapter [12] below. Functionality for editing
rules is discussed in Chapter [I3] Chapters [I4] and [I5] provide details on rule browser and
rule search, respectively. Where relevant, we present detailed information on how certain
functionality is implemented.

12 Feature Editor

To reduce complexity for the end user, our system separates the task of editing rules from
the task of defining features and appropriate values that are used to build LHS of rules. As
described in more detail below, when editing rules users have at their disposal a read-only
version of all features that are currently defined™} To introduce new features or modify
existing ones, users must navigate to the feature editor which is available on the
tab. Figure [7] shows the feature editor in its initial state.

A list of all features that are currently defined is displayed on the left. It can be filtered
dynamically by typing into the text input field at the top. Filtering is case-insensitive: In
order to locate, e.g., the Encounter feature, both Enc and enc can be used as match strings.
When trying to find matches for the current contents of the input field, the system does not
anchor the search to the beginning of feature names. Using the string en to filter the list
of features shown in Figure [7] would result in two matches, Encounter and ChildGender.
To go back to the full list of features the current match string must be erased from the
input field, or shortened so as to match all features that are currently defined.

A list of all values that are currently defined is displayed on the right. Just like the
list of features, this list can be filtered by typing into the associated input field. However,
filtering the list of values also affects the list of features, which is simultaneously narrowed
down to show only those features that define one or more of the values that are currently

“In addition to allowing users to focus on one task at a time (which reduces the complexity of each
individual task), keeping features and associated values read-only for the purpose of editing rules has
another advantage: By doing away with the need for typing them in it eliminates the possibility of
introducing errors through misspellings.

33

12 Feature Editor

Search Features New

Features Values

ChildGender female
ChildName first
Encounter male
Familiarity marco
no
notfirst
other

yes

Figure 7: Feature editor in its initial state

displayed as possible targets. For example, upon entering the string ma the list of values
shown in Figure [7] would be narrowed down to the values female, male, and marco. At
the same time, the list of features would be narrowed down to the features ChildGender
(whose list of possible values contains female and male) and ChildName (whose list of
possible values contains marco).

12.1 Creating Features

New features can be created by filling in an appropriate form which is displayed between
the list of features and the list of values. The form becomes available after clicking a button
that reads . This button is located at the bottom of the list of features. Figure
shows the feature editor with the form for adding a new feature embedded in the center.

Submitting this form creates a new Feature node in the database. Values for name,
description, and type properties are derived from corresponding fields of the form. As
mentioned in Section [9.1] if no description is provided, the value of the description
property will be set to a default value of “...”. On the client-side, a new entry representing
the newly created feature will be inserted into the global list of features to the left of the
form["] The form itself will stay visible to allow for quick creation of additional features.

12.2 Modifying Existing Features

Description, type, and targets of a given feature can be viewed by clicking on its name in
the list of features. The name of the feature that is currently selected is highlighted in the
list of features. Figure [9] shows the feature editor with the Familiarity feature selected.

This view also allows users to rename features, change feature descriptions and types, and
to add and remove targets from individual features.

“Feature and value lists are sorted alphabetically. This sorting is maintained when inserting new items.

34

12.2 Modifying Existing Features

Searct Features New

Features Add a new feature Values

Name:

ChildGender female
ChildName Description: first
Encounter male

Familiarity marco
complex

‘ no
noffirst
S other

yes

Figure 8: Form for adding a new feature

Renaming a feature is accomplished by double-clicking its name (at the top of the view),
entering the new name into the text input field that replaces the read-only version of the
current name, and submitting the changes by clicking an button that is displayed
below the input field. No calls are made to the server if the input field is empty or contains
the current name of the feature being edited when the button is clicked: In this case,
the editing controls are simply replaced with the current name of the feature. The process
for changing feature descriptions is analogous. To increase discoverability, contextual help
is provided in the form of tooltips: When hovering over name or description of a feature
with the mouse, the system informs users that they can start editing the corresponding
property by double-clicking it.

The type of a feature can be changed by selecting the type that is currently unselected
and confirming the change by clicking the button that replaces the list of possible
targets. On the server-side, changing the type of a feature causes all outgoing ALLOWS
relationships to be deleted from the database. Additionally, if the type of a feature changed
from complex to atomic, an ALLOWS relationship is created between the feature and the
underspecified Value@ If a feature is in use, i.e., if it is referenced by one or more rules,
the system will prevent users from changing its type.

Targets can be added to the feature that is currently displayed by dragging them to the
placeholder at the bottom of the list of current targets and clicking the button that
appears when dropping them. Placeholders for targets of complex features will only accept
items from the feature list (and reject values), whereas placeholders for targets of atomic
features will only accept values (and reject items from the feature list). This ensures that
feature definitions conform to the data model defined in Section If a given value to be
added as a target to an atomic feature does not exist yet, it can be entered manually by
clicking the placeholder and typing it in. This will cause a new value node to be created
in the database.

Individual targets can be removed from a given feature by clicking the x button that
appears next to them when hovering over them with the mouse. This will only work if the

42This is done because as explained in Section each atomic feature is associated with this value by
default.

35

12 Feature Editor

Searct Features New

Features Familiarity Values
Records whether or not the agent is familiar with the current user.

complex

ChildGender female
» atomic

ChildName . first
Permitted values:

Encounter male
no

Familiarity x yes marco

no
noffirst
other

yes

Figure 9: Viewing details of the Familiarity feature

feature currently being edited and the value to remove are not associated with each other
in any rule. More specifically, if the feature is atomic, removing a target will fail if there is
a HAS relationship between it and the target. If the feature is complex, removing a target
will fail if the property graph stored in the database contains a path of length 2 (via an
AVM node) between it and the target.

12.3 Deleting Features

As can be seen in Figure [9] when a feature is selected, the system highlights it in the list
of features and displays an x button to the right of it. This button can be used to delete
the feature that is currently selected. If a feature is referenced by one or more rules, the
system will refuse to delete it.

12.4 Working with Feature Values

With respect to the data model, values are second-class citizens. As explained in Section
[0.1] their lifespan is determined by the atomic features that reference them, and as men-
tioned above, the only way to create new values is by adding them to an existing feature.
There is only one operation that can be carried out on values themselves: They can be
renamed by double-clicking on them in the list of values, entering the new name into the
text input field that appears, and clicking the button below the text field. As is the
case for features, if the input field is empty or contains the current name of the value being
edited when the button is clicked, the editing controls are simply replaced with the
current name of the value, and no calls are made to the server. Changes made to value
names become visible immediately in the feature editor. For instance, if the list of targets
for the feature that is currently displayed contains a value named x, renaming that value
to y causes the list of targets to be updated immediately.

36

12.5 Summary

The feature editor allows users to create, rename, and delete features, and to edit their
descriptions and types. It also provides functionality for defining acceptable targets for
complex and atomic features. On the other hand, the feature editor prevents any operations
that would compromise the integrity of the rule base: Targets can not be removed from
features if the features reference them in any rules. If a feature is in use, its type can not be
changed, and it also can not be deleted. Lastly, it is not possible for users to accidentally
add targets to features if they are inappropriate for the features’ types.

Due to the fact that features and values are modeled as nodes and incorporated into
rules by establishing appropriate relationships (instead of storing representations of LHS
as properties on rule nodes), renaming features and values causes all rules to be updated at
once. This ensures that features and values are used consistently across rules. Furthermore,
it eliminates the need to find and manually update rules referencing specific features or
values when the decision is made to rename them — a task that is cumbersome at best,
and becomes increasingly time-consuming and error-prone when rule bases grow in size.

13 Rule Editor

The rule editor provides functionality for creating new rules, renaming rules and changing
rule descriptions, and for editing LHS and RHS of rules. In order to provide a distraction-
free editing experience, the interfaces for editing rule input and output are kept separate.
Section describes the interface for editing LHS of rules, and Section discusses the
interface for editing RHS of rules. We call these interfaces InputBuilder and OutputBuilder,
respectively. Both of them provide means to rename rules and to change rule descriptions.
As described in Section [I3.1] below, new rules can be created from any interface.

13.1 Creating Rules

In order to create new rules, users do not have to switch to a specific interface: No matter
what part of the system they are currently looking at they can click a button labeled
in the navigation bar to bring up a modal windouﬂ containing a form for creating a new
rule. The form consists of two text input fields that allow users to specify a name and a
description for the rule to create. Figure [10| shows the modal window its initial state.

When the [@Z5E1H button is clicked the system checks the form for errors. For instance,
the Name field might have been left empty, or its contents might match the name of an
existing rule. In these cases the modal window stays visible and the system displays an
appropriate error message. By rejecting creation of rules with inappropriate values for the
name property we ensure that newly created rules conform to the data model described in
Section 0.2 If there are no errors, the modal window is closed and the user is redirected
to the interface for editing the LHS of the newly created rule.

43In the context of web application development, modal windows provide a way to display or prompt users
for information without having to use pop-up windows or page reloads. They are also known as modal
dialogs or modal boxes. After invoking a modal window, control is transferred to it, i.e., the parent
window from which the modal was invoked can not be interacted with anymore [I]. Control returns
to the parent window as soon as the user performs an action that causes the modal to be closed. Our
system uses the Twitter Bootstrap implementation of modal windows (cf. http://getbootstrap.com/
javascript/#modals).

37

http://getbootstrap.com/javascript/#modals
http://getbootstrap.com/javascript/#modals

13 Rule Editor

Create a new rule

Description

Figure 10: Modal window for creating a new rule

Rule creation can be canceled by clicking Cancel or by clicking the x button in the
upper right corner of the modal window. This causes the modal window to disappear,
returning control to the interface that was visible when the button was clicked.

13.2 InputBuilder

The interface for editing rule input provides functionality for adding features, setting fea-
tures to specific values, and for removing features from the LHS of the current rule. Figure
shows the InputBuilder in its initial state.

Features @firstEncounter w

Agent meets someone for the first time.

[]

ChildGender
ChildName
Context
CurrentGame
Encounter
Familiarity
GameQuiz

SpeechAct

Figure 11: InputBuilder in its initial state, showing an empty AVM

38

13.2 InputBuilder

In the context of the InputBuilder we call the left column under the Features heading
feature inventory. It lists all features that are currently defined in alphabetical order, and
exhibits the same behavior as the list of features displayed in the feature editor when
filtered via the text input field at the top (cf. Chapter . When hovering over a specific
feature with the mouse, a tooltip containing the associated description is displayed after a
short delay. Provided that a proper definition exists for the feature, this keeps users from
having to look it up in the feature editor if they need more information to decide whether
the feature is appropriate for the current rule.

Name and description of the current rule as well as its LHS are displayed to the right of
the feature inventory[™] If the LHS of a rule is empty because no features have been added
to it, its visual representation consists of two square brackets and a single placeholder for

adding features (cf. Figure [11]).

Editing the LHS of a rule does not involve any typing. To add a feature to an LHS, users
need to click on it in the inventory, drag it to the AVM and drop it on a placeholder. As
can be seen in Figure [12 below, nested AVMs are identical to the root AVM structurally
and therefore have separate placeholder Top-level AVMs accept any feature from the
inventory. Nested AVMs, on the other hand, will reject features if they have not been
defined as acceptable targets for the features that embed them via the feature editor. To
set an atomic feature to a specific value, users can select that value from the drop-down
menu displayed to the right of the feature. The drop-down menu associated with a feature
contains a separate entry for each value that has been defined as an acceptable target via
the feature editor. Values that are not allowed are omitted from the menu. Because rules
can demand the presence of specific features while leaving their values underspecified, the
menu also contains an entry for the underspecified value. Additionally, when an atomic
feature is first added to an AVM, the system sets its value to underspecified by default.
This saves users an additional editing step if they are not interested in specifying an actual
value for a given feature.

OutputBuilder

Features @firstEncounter :]

Agent meets someone for the first time.

Aot Context ChildName unknown j

ChildGender Familiarity no j
ChildName
Context
CurrentGame

SpeechAct greeting j
Encounter

Familiarity
GameQuiz

SpeechAct

Figure 12: InputBuilder showing an LHS with a nested AVM and a total of four features

44The name of the rule displayed in Figure is @firstEncounter, and its description is Agent meets
someone for the first time.

45 As of this writing, features can not be moved within an LHS. Consequently, if a user chooses the wrong
AVM for a given feature, they must remove it from the LHS and re-add it to the correct one.

39

13 Rule Editor

Features can be removed from the LHS of a rule one by one or in bulk: To remove
a single feature from its parent AVM users can click the x button that appears when
hovering over the name of the feature in the AVM. If users need to make more substantial
changes to the structure of an LHS, they can also empty individual AVMs, i.e., they can
remove all features from them at once. This is achieved by clicking a button shaped like
an empty rectangle that appears when hovering over an AVM with the mouse. Figure [I3]
shows a close-up of the LHS displayed in Figure in which both types of buttons for
removing features are visible.

Context ChildName Marco j

Famil@ity x 1o j

SpeechAct greeting j

L 40

Figure 13: Visual representation of an LHS. The mouse cursor points to the name of a
feature (Familiarity) belonging to a nested AVM. As a result, the system
shows a button for removing this feature, as well as two buttons for emptying
the nested and top-level AVMs.

In addition to the LHS-specific features described above, the InputBuilder provides
means to change name and description of a rule. From a user’s point of view, the process
of renaming a rule is almost identical to the process of changing its description: In each
case, the attribute to change must be double-clicked. This causes a text input field and
an button to appear in place of the attribute. Users can then enter the new name or
description into the field and click the button to make the change permanen. To
avoid unnecessary AJAX calls to the server, the contents of the input field are checked for
two conditions on the client-side: If the input field is empty or contains a string that is
identical to the current value of the attribute being edited when the button is clicked,
the system simply replaces the editing controls with the current value of the attribute, and
refrains from contacting the server. From the system’s point of view the difference between
renaming rules and changing their descriptions is that in the former case, the resource URL
of the rule being edited changes, making it necessary to redirect users to the updated URL
after a successful rename.

Aside from the interfaces that are always available in the navigation bar, the InputBuilder
is connected to two additional interfaces: A button located in the upper right corner of the
editing area allows users to view a list of rules that are similar to the current rule in the
rule browseﬂ (Section describes the notion of rule similarity we adopt in detail, and

46Note that the input field initially contains the current value of the attribute being edited. This is
especially useful for situations in which users only want to make small changes to the value of an
attribute: With an empty field they would either have to remember copying the original value before
starting to edit (in order to be able to paste it into the input field), or be forced to manually re-enter
portions of the original value which they would like to keep.

47This button is also present in the editing area for rule output (cf. Figure .

40

13.3 OutputBuilder

also presents the steps that the system takes to compute sets of similar rules.) Additionally
and most importantly, while editing rule input users can switch to the interface for editing
rule output using the button made available in the navigation bar.

Finally, it is important to note that all changes made to the LHS of a rule in the
InputBuilder are persisted to the database as they occur. There is no need to explicitly
“save” a set of changes before switching to another interface. However, changes to rule
names and descriptions are lost unless they are made permanent as described above. In
other words, if a user modifies the value of one of these attributes and navigates away from
the InputBuilder before clicking the button, the edit is aborted and no changes are
made to the value stored in the database.

13.3 OutputBuilder

In terms of high-level organization of interface components, the OutputBuilder is similar
but not identical to the interface for editing rule input described above. It consists of
a parts inventory, an abbreviated, read-only view of the LHS of the current rulﬂ and
an editing area. The LHS view is included for reference purposes: Together with rule
name and description, the presence of this view is supposed to minimize the need for
switching back and forth between InputBuilder and OutputBuilder while designing rule
output. The purpose of the parts inventory is to speed up the process of designing rule
output by facilitating reuse of parts between rules. It displays all parts that are currently
defined, and can be filtered dynamically by typing into the text input field at the top.
Parts inventory and LHS view are located in the same area of the screen that is occupied
by the feature inventory in the InputBuilder, and the editing area for rule output replaces
the editing area for the LHS of the current rule. Figure [14] shows the OutputBuilder in its
initial state.

Parts @firstEncounter [: [:

Agent meets someone for the first time.

Good Group 1

Hello Marco!

Hi Marco!

How are you doing today?
How have you been?

| am glad

| am happy

What's up?

again.

to see you

today.

LHS

SpeechAct greeting
Context [..]

Figure 14: OutputBuilder in its initial state, showing a single combination group

“®Depending on the size and complexity of a given LHS, including a full representation of it might take
up too much space in the OutputBuilder. In order to avoid this, only top-level features and associated
string values are displayed in full. Immediate substructures of LHS are ellipsized to “[...]".

41

13 Rule Editor

The OutputBuilder supports several different methods for building up the desired output
for a given rule which can be combined as necessary. On the one hand, this allows for a
gentler learning curve for new users, as they are not forced to learn how to use more
advanced features for editing output right away. On the other hand, users who are aware
of different options for working with rule output can flexibly choose a workflow that is
most suitable for the content they need to create. In the following sections we describe in
detail how our system can be used to add, modify, and remove content from RHS of rules.
Features for dealing with output strings are described in Section [I3.3.1] Section
details how to work with parts, and Section describes the purpose of using multiple
combination groups.

13.3.1 Working with Output Strings

As can be seen in Figure[l4] the OutputBuilder initially displays a single combination group
without any slots. The most basic way to populate this group with content is to manually
add one or more output strings. This is done by using the (multi-purpose) placeholder
displayed at the bottom of the group: To add a single output string, users must click the
placeholder, enter the desired contents, and click the button that becomes available
below the placeholder after they start typing. If the operation is successful, the output
string is placed above the placeholder, and the placeholder itself is reset to its initial statdﬂ
Sticking to this approach is most suitable for rules that introduce completely novel content
(i.e., rules for which there is no or very little appropriate content to be drawn from the
parts inventory) and/or require only a small number of output alternatives. Additionally,
note that this method of adding content to RHS of rules benefits novice users in two ways:
First of all, it does not require them to understand the concepts of parts and slots, enabling
them to become productive with the system very quickly. Secondly, it allows them to focus
exclusively on creating appropriate output for the situation covered by the current rule.

Once they have been added to a combination group, individual output strings can be
modified by double-clicking them: This causes their contents to be displayed in an editable
text input field, along with an button that users must click to finalize the changes
they made to the original string. It is important to note that changing the contents of a
given output string does not cause all combination groups referencing the same string to
be updated. Instead, the node representing the parent group is connected to an output
string node with the updated content. If no such node exists, it is created first. Individual
output strings can be removed by clicking the x button that appears when hovering over
them with the mouse.

In addition to adding output strings manually as described above, users can also as-
semble them using parts available in the parts inventory. To add a part from the parts
inventory as an output string, they can drop the part on the same placeholder that accepts
text input for manual specification of output stringﬂ If this results in an output string
that is incomplete (after all, parts are substrings of full output strings and do not neces-
sarily constitute grammatical sentences) or lacking in other ways, users can either modify
the output string as described above or extend it. This is done by dropping individual
parts from the parts inventory on the placeholder displayed to the right of the string in
question. Depending on the availability of appropriate parts, assembling output strings in
this manner can reduce the amount of typing involved in creating output for a given rule
considerably.

49Placeholders for other types of operations behave identically; they also reset themselves to their initial
state when the operation currently performed on them completes.

5ONote that in this case, the system does not display an button for users to click: After dropping a
part on a placeholder, it is added to the list of output strings for the current group automatically.

42

13.3 OutputBuilder

nputBuilder

Parts @firstEncounter :} :}

Agent meets someone for the first time.

Group 1
Hello, P
Hey there! Sot1 | |Slt2 Slot 3
Hey,
Hi, Hello, how are you? I am Nao.
Hola! Hi, My name is Nao.
I am Nao. Hey,
My name is Nao.
Nice to meet you
What's up? Hello! | don't think we've met before! What's your name?
how are you?
LHS
SpeechAct greeting Group 2
Context [.]
Slot 1 Slot 2
Hola! What's up?

Hey there! Nice to meet you.

Figure 15: OutputBuilder showing an RHS with two combination groups

13.3.2 Working with Parts

Since one of the main goals of the system presented here is to reduce the amount of work
required for building rules with large numbers of alternative verbalizations, the Output-
Builder supports another type of workflow for populating combination groups associated
with RHS of rules. After adding one or more output strings using the methods described
above, users can split individual strings into parts by clicking the area between the last
word that is supposed to belong to the left part and the first word that is supposed to
belong to the right part. Parts generated by splitting output strings are added to appro-
priate slots which are displayed above the list of output strings defined for the current
group: The left part is added to Slot 1 and the right part is added to Slot 2 (cf. Figure
. If no slots exist, i.e., if no other output string belonging to the same combination
group has been split before, they are created and connected to the appropriate group first.
The original output strings are deleted from the combination group that is currently being

edited.

As soon as the two default slots have been created, users can add parts to them in several
ways: The most basic way to add a part to a slot is by entering it into the placeholder
at the bottom of the slot. The steps involved are very similar to the steps for manually
adding output strings to combination groups: After clicking a placeholder, users can type
in the contents of the part they wish to add to the corresponding slot. The operation is
finalized by pressing Return]. Alternatively, users can add existing parts by dragging them
from the parts inventory and dropping them on the placeholder of the target slotEl Finally,
as hinted at above it is also possible to add parts to existing slots by splitting additional
output strings. Parts that are created manually or by splitting output strings are added
to the parts inventory automatically. Note, however, that this only happens for parts that
are actually new. As mentioned in Section [0.2] parts must be unique with respect to their
content, and as a result, the parts inventory will never contain any duplicates. Another
benefit of making the system responsible for eliminating redundancy is that this allows
users to focus exclusively on what content to add instead of how to add it. If they prefer

5INote that in this case it is not necessary to press in order to finalize the operation: Parts are
added to slots automatically after dropping them on corresponding placeholders.

43

13 Rule Editor

to check the parts inventory for appropriate content first, they are welcome to do so, but
if they deem it best to create content manually, adding an existing part (or output string)
will not lead to increased storage consumption.

Just like output strings, parts can be modified after they have been added to a specific
slot. The process, again, is similar to the process for modifying output strings: After
double-clicking a part, its contents are placed in an editable text input field that can
be used to make the desired changes. Pressing finalizes the operation. Note that
changing the contents of a part does not cause all slots referencing this part to be updated.
Instead, the node representing the parent slot is connected to a part node with the updated
content, which is created first if it does not exist.

To remove a part from its parent slot, users can click the x button that appears when
hovering over it with the mouse. If the parent slot was the only slot referencing this
particular part, this operation turns the part into an orphan. In this case, the part will be
removed from the database as well. Note, however, that the complete removal of a part
from the database will not cause the parts inventory to be updated right away. That is,
the orphaned part will stay available in the parts inventory until the current user either
navigates to a different interface or refreshes the page. This type of lazy behavior takes
into account the possibility that users might want to reuse deleted parts for other slots
and /or output strings in the context of the same editing session.

If the default number of slots does not provide enough flexibility for adding content to
the current combination group, users can add an arbitrary number of additional slots by
clicking a placeholder for new slots that is displayed next to the rightmost slot. If a group
contains more than two slots, any slot n can be removed by clicking the x button that
appears when hovering over its header (Slot n) with the mouse. Slot removal is restricted
to groups with more than two slots because with less than two slots the ability to combine
parts to form full output strings is lost.

In addition to parts, slots can also contain cross-references to other rules, allowing entire
sets of output strings to be reused as parts: When exporting a set of rules via the rule
browser, each output string of a cross-referenced rule is treated as a part belonging to the
slot that contains the cross-reference. Section [[4.3] describes how users can initiate the
export process, and explains individual steps of this process in detail. Cross-references
between slots and rules are established by adding names of rules as parts. In order for the
system to recognize a part as a cross-reference, it must be preceded by an @ symbol. After
a cross-reference has been added to a slot successfully it can be clicked to jump to the
OutputBuilder for the corresponding rule, making it possible to quickly review the output
that this rule generate@ In sum, cross-references allow users to modularize the rule base
— at least to a certain extent — and to reduce explicit duplication of content across rules
by factoring out entire sets of commonly used phrases into separate rules.

At any given point during the editing process, users can view a list of all output strings
that can be generated from the contents of existing slots by clicking a button labeled
EIEENET located in the top right corner of the interface. This list also contains any
regular output strings belonging to the RHS of the current rule. It is identical to the list of
output strings displayed on the details page of the rule being edited, which will be described
in Section below. In the context of editing RHS of rules, the main purpose of viewing
lists of full output strings is to check output strings generated from slots for grammatical
errors, but it also allows users to get a sense of the amount of variation that is available for
a given rule without having to calculate the number of possible combinations. Note that
in order to keep the system responsive, cross-references are not taken into account when
generating the list of output strings associated with a given rule. A detailed description of
the steps involved in generating lists of full output strings can be found in Appendix

52Note that it is currently not possible to edit cross-references. The only way to change a cross-reference
is to remove it and add a new cross-reference pointing to a different rule.

44

13.3 OutputBuilder

Finally, as described in Chapter [8] native rule syntax supports the use of variables
for capturing values associated with features and referencing them from other locations
within the same rule. This is useful for cases in which the value of a feature needs to
be incorporated into the verbal output that an agent should produce, but only becomes
available at run-time. With the current version of our system, it ¢s possible to create
rules whose output incorporates values of variables introduced by corresponding LHS, but
the process involves a number of steps: First, a string representing a variable has to be
added as a target to the atomic feature whose value is to be captured at run-time. Since
feature values must start with a hash symbol (#) to be treated as variables (cf. Chapter
, it is important to prefix the string with this symbol in this step. Secondly, in order
to specify that the value of the corresponding feature should be captured dynamically in
the context of a given rule, users need to select the variable from the drop-down menu
displayed next to the feature in the InputBuilder. The variable can then be referenced
from the corresponding RHS by adding it as a part to one or more appropriate slots. After
exporting a set of rules to plain text as described in Section[I4.3] RHS of rules incorporating
variables must be post-edited to remove quotation marks from parts representing variable
references. This is necessary because when building plain text representations of rules,
the exporter does not distinguish between literal content and variables. That is, all parts
are enclosed in quotation marks when exporting rules to native rule syntax (cf. Appendix
, and will therefore be t