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Abstract 
Home environments are one of the subjects of study by Ambient Intelligent Systems for 

various purposes, including developments of elderly assistance systems and energy 

consumption optimization. Sensing the environment, via different sensors, is the first 

and crucial component of every Ambient Intelligent System. In this thesis we design and 

develop the Sound-based Device Recognition Framework to investigate the application 

of environmental sounds usage for touch-free audio-based device recognition in a home 

environment. For this purpose, we study the characteristics of the sounds dispersed by 

devices in a home environment. We use the acquired knowledge to implement different 

Sound Processing techniques for the extraction of a flexible set of features, which can be 

determined both manually and automatically. For the classification of gathered device 

acoustic fingerprints we use multiple optimized straightforward techniques of 

Supervised Learning as well as integrated established ones. Furthermore, we use a 

feedback from the user for creating an incremental learning system. After establishing a 

recognition basis for the recognition of fixed length sound buffers on demand, we 

implement a live recognition mode for real-time environment monitoring, providing 

runtime setup adjustments. These include changing the selected features, switching 

between Machine Learning algorithms, and recognition time interval choice, without 

interruption for modifications of the trained data. We then extend our work with the 

recognition of untrained simultaneously working known devices, utilizing Semi-

supervised Learning. Finally, we create an automatic test utility to evaluate different 

aspects of the developed framework, including recognition rate performance for the 

different combinations of features and Machine Learning algorithms, as well as to study 

the reliability of the automatic mixing of trained data. Our evaluation shows satisfactory 

results in all tested aspects. Therefore we consider the development of our Sound-based 

Device Recognition Framework as complete and providing a solid base for further 

research. 
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Chapter 1  

Introduction 

In our modern way of life we are surrounded by an increasing number of devices, which 

we use to perform large variety of activities. Some of those activities are not always 

straightforward and we often need some assistance to perform them. To make this 

happen, one has to give some intelligence to the devices to make them able to 

understand our intentions and fit into our needs. In other words: making those devices 

sensitive and responsive to our presence, instead of relying on us to learn how to 

operate them. Making the devices more sensitive to human actions is one of the goals in 

Activity Recognition. This is the first step of designing a so called Ambient Intelligent 

System, which at first anticipates human actions with their purpose in a given 

environment, and then acts in an intelligent manner by predicting and assisting future 

actions. This should hold especially in the case, where humans are experiencing 

difficulties in performing those actions, but there are many further applications, such as 

optimizing electrical energy consumption. 

In this thesis we study the sensing component of an Ambient Intelligent System. For this 

purpose we introduce our Sound-based Device Recognition Framework – a fully 

developed system for device recognition based on analyzing environmental sounds. Our 

environment consists of a normal home. Its devices, which are to be recognized, are 

commonly used for performing daily tasks, like electrical toothbrush or shaver. Most of 

those devices create or disperse sounds, while being used to perform different activities. 

We study the most frequently used devices and the nature of the sounds, which 

accompany their usage. We then use this knowledge to transform those sounds to the 

selected different acoustic representations in order to extract their most telling 

characteristics for the purpose of sound-based device fingerprinting. For the gathering 

of acoustic fingerprints we build a database, which is later used as a knowledgebase for 

further classification tasks. The latter are performed by trying out different Machine 

Learning algorithms and evaluating their performance in terms of complexity, 

recognition accuracy and adaptation capability. We then expand our work by adding 

further system capabilities, like live recognition using buffers of variable length or 

automatic mixing of different sounds for recognition of untrained combination of known 

devices. Finally, we create a module for automatic testing and use it to evaluate 

different aspects of the implemented recognition techniques in a home setup. 
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1.1. Motivation of Sound-based Recognition Research 
Ambient Intelligence has become a trending field in computer science as a natural 

consequence of high instrumented environments, where each device is a target to 

embedding a microchip with increasing computational power. However, not all devices 

possess some sort of intelligence, nor need they. Furthermore, the so called intelligent 

devices are often not meant to be intelligent in a way besides accomplishing their 

function in a constant manner, regardless of its environmental effects and regardless of 

potential improvement possibilities. From this standpoint, Ambient Intelligence is about 

providing an intelligent interaction between different environmental parts, to integrate 

them in a whole intelligent system, which acts as one and adapts to further 

environmental changes and increases its knowledge (Weber, Rabaey, & Aarts, 2005) 

(Cook, Augusto, & Jakkula, 2009). 

The first component of such system is the environment sensing component, which has 

as a function to recognize all types of activities, ranging from long to short term and 

from large scale to small scale activities. Video cameras are a popular choice for a sensor 

when it comes to recognizing user activities (Tapia, Intille, & Larson, 2004), because they 

can provide a detailed knowledge about the ongoing activities in a home environment. 

On the other hand, cameras have some fallacies such as being obtrusive for its 

inhabitants regarding their presence (Brey, 2005), and usually suffer from bad 

recognition in sub-optimal light conditions. In addition, cameras are expensive and 

require computationally intensive algorithms for recognition (Ke, et al., 2013). 

Another touch-free technique of recognition, regarding the human perception, is based 

on analyzing the audible sounds in a given environment. However, most of the sound-

based recognizers are limited in recognizing human speech, together with some of its 

characteristics like speaker recognition and his emotional state in order to obtain 

detailed information about their subject of interest. On the other hand there are very 

few studies, which aim to examine in abstract way the daily human activities in a home 

environment according to their acoustic characteristics (Stager, et al., 2004) (Temko, et 

al., 2006) (Istrate, et al.,  2008) (Wang, et al., 2008) (Lozano, et al.,  2010) (Karbasi, et al., 

Dec 2011) (Sehili, et al., 2012). Despite their generalized way of analyzing sounds, they 

are all developed in a healthcare perspective and often make the implication that 

certain sound implies certain activity, which is not necessarily true. This slightly differs 

from our perspective of building up a set of audibly distinguishable entities, most of 

which being devices in active state, without attempting to interpret their further 

meaning. Furthermore in a Sound Processing standpoint, all of the mentioned studies 

use very similar techniques, which represent a small range of the available sound 

transformation techniques for recognition (Müller, Ellis, Klapuri, & Richard, 2011). In this 

context, this study aims to integrate and evaluate also further recognition methods, 

based on refining and tuning of existing Sound Processing techniques and various 

Machine Learning algorithms, for the task of device recognition. 
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1.2. Scenarios of Ambient Intelligent Systems 
Among the many applications of Sound-based Device Recognition in Ambient Intelligent 

Systems, we select two of those scenarios, which we consider as primary use cases for 

designing our framework. The first scenario is in an area called Ambient Assisted Living, 

which aims to assist humans, while they perform different activities in their homes. The 

second scenario is in the area of E-Energy, which aims to optimize the energy usage of 

households based on energy consumption models. 

1.2.1. Ambient Assisted Living 

John, 75, lives alone and suffers from hearing disability. He is active at night time and 

performs normal daily living tasks like cleaning or brushing his teeth. He often forgets to 

turn off the devices he uses, like vacuum cleaner or his electrical toothbrush. He already 

has an Ambient Assisted Living system in his home, but it cannot recognize the state of 

the devices with the conventional sensors like cameras. What John would like to have in 

his assistance system is a microphone to listen and tell him what is happening according 

to the produced sounds. 

1.2.2. E-Energy 

Acme power plants want to optimize the energy allocation for its users. For this purpose 

they have designed a system for energy consumption models based on device 

recognition via energy monitoring sockets. Although the system works fine in the 

general case, there are some deviations, which could not be accurately recognized. So 

they are looking for an unobtrusive way to increase their precision. 

1.3. Problem of Device Recognition Systems without 

Usage of Environmental Sound Information 
In both of the above scenarios we anticipate insufficiency of the installed recognition 

systems. In the first scenario we anticipate an example, where an audio-based 

recognition system is inevitable in order to substitute intelligently human hearing 

awareness. In this case a correct recognition of devices might eventually mean better 

house assistance systems and reduced risk when forgetting dangerous devices turned 

on. Recognition techniques based on video are not suitable to recognize forgotten 

devices in active state, because in most cases, they don’t have motion characteristics. 

For the second scenario there are already available recognition methods, like the 

installation of energy monitoring sockets for each device plugged or using a power 

analyzer (Belley, et al., 2013). However, besides the expensive need of attaching 

multiple energy monitoring sockets or a power analyzer, not all of the electrical devices 

are constantly connected to the power, because they rely on batteries for their 

convenient usage like the electrical toothbrush. So we can see that in both cases there is 

a lack of sensor input to build up the desired knowledge about the environment, which 

can be covered by the integration of a Sound-based Recognition component. 
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1.4. Sound-based Device Recognition Approach 
In both scenarios we observe a demand of a low cost addition to existing recognition 

systems and we identify the problem as a lack of sound-based sensing information of the 

environment. Regarding those points, this study aims to use existing microphones in the 

infrastructure in order to recognize different devices, or if integrated to an existing 

system, to refine its recognition rate. Theoretically thought, one might not need a very 

extensive sound feature extraction and complicated Machine Learning algorithm, 

because the set of devices that are to be recognized is relatively small and the existing 

hardware in every home computer or smartphone is good enough. The goal is to find the 

sufficient combination between set of features and Machine Learning algorithms to 

obtain a robust personalized sound-based device recognizer. 

1.5. Challenges 
The described approach provides an overview of a big system with many facets, which 

originate from different areas. To gather and intelligently combine their knowledge in a 

single system is a challenge in software engineering perspective. So the first design 

requirement, which such system should satisfy, is to be extensible for addition of new 

capabilities, as well as flexible for linking newly integrated modules. The second design 

requirement on the framework, coming from the scenarios, is to be exportable for 

eventual integration into a bigger system. 

In a technical perspective, it is a challenge not only to implement many techniques for 

Sound Processing and Machine Learning, but also to implement them efficiently in order 

to provide a real-time recognition. It is also a hard task to lower the hardware 

requirements to any single microphone, instead of demanding a high-end recording 

setup. 

1.6. Research Questions 
Besides the mentioned challenges in building up the Sound-based Device Recognition 

Framework, we extract some of the main research questions, which are either partially 

or not studied by related works, which this thesis will try to answer. 

1.6.1. Reducing complexity of recognition system with retaining 

recognition rate 

Often reducing the size of a recognition scope leads to better recognition rate and 

reduces the complexity of the system. We are therefore interested, whether within a 

personalized and detailed view of a household setup, one can reduce the complexity of 

its audio recognition system, while maintaining a good recognition rate. We will try to 

solve this problem by implementing multiple sound pattern recognition techniques and 

compare their recognition rate after testing them in a home environment. 
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1.6.2. What are the relevant sound features for recognizing devices? 

We will try to find out, which are the most important features to categorize different 

devices according to their sound. To find those features we will implement multiple 

sound features and will make recognition accuracy test with all of them, as well as 

combinations between them. Finally we will test, whether the system can identify the 

relevant features for recognition automatically, and will try to provide a straightforward 

implementation of automatic feature selection. 

1.6.3. Mixing training data for recognition of unanticipated complex 

activities performed with the usage of known devices 

In our everyday life we often perform complex activities, during which multiple devices 

are used simultaneously, like brushing teeth while showering. We are interested 

whether we can automatize the process of sound mixing and extracting features for the 

recognition task of known parallel working devices, which haven’t been trained by the 

system.  

1.7. Thesis Outline 
The rest of this thesis is structured as follows: 

Chapter 2 starts with essential background in the fields of Ambient Intelligence, Sound 

Processing and Machine Learning. Most of the examples in that chapter are directly 

from our later setup and implementation. 

Chapter 3 reviews related work starting from the general case of Signal Processing for 

recognition, goes through Speech and Music Recognition, and to the case of generalized 

Sound-based Activity Recognition being most related to our case of Sound-based Device 

Recognition. At the end there is a summary and comparison of the mentioned systems. 

In Chapter 4 we study the concept of Sound-based Device Recognition. We look into the 

environment of our use cases and its requirements to our feature design. We then 

define the two major components of a Sound-based Recognition system with their 

desired main functionality.  

In Chapter 5 follows the implementation of a Sound-based Device Recognition 

Framework, which satisfies and extends some of the capabilities defined in the previous 

chapter, as well as, providing further significant developer functionality for tasks, not 

mentioned in Chapter 4, with automated testing of its different aspects being the most 

important. 

After development details follows a detailed evaluation of the system and its core 

functionality in Chapter 6. 
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In Chapter 7 we make a conclusion of this work and its contribution, as well as pointing 

out its possible development followings and mentioning some complex problems in the 

Sound-based Activity Recognition field, which can be a subject of bigger studies. 
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Chapter 2  

Theoretical Background 
In this chapter we introduce three important branches of Artificial Intelligence – 

Ambient Intelligence (Subchapter 2.1), Sound Processing for Recognition (Subchapter 

2.2) and Machine Learning (Subchapter 2.3). All of them are tightly interconnected, 

although representing separate disciplines (as illustrated in Figure 2.1). 

 

Figure 2.1:  Illustration of all three interleaving research areas, 
which are of highest influence in this thesis 

One should note that most of the examples and illustrations which occur in this chapter 

are directly exported from our later architecture, introduced in Chapter 4, and 

implementation, presented in Chapter 5. A few other examples and terminology are 

presented here as well, in order to help us understand the research field of Sound-based 

Activity Recognition with its current state of art, summarized in Chapter 3.  

2.1. Ambient Intelligence 
Ambient Intelligence, as defined by (Weber, Rabaey, & Aarts, 2005), “is the vision of a 

technology that will become invisibly embedded in our natural surroundings, present 

whenever we need it, enabled by simple and effortless interactions, attuned to all our 

senses, adaptive to users and context-sensitive, and autonomous.” Hence one can 

abstractly describe the technology as perceiving and acting in a given environment with 

following characteristics, 

 where technology is embedded, hidden in the background 

 that is sensitive, adaptive, and responsive to the presence of people and objects 

Ambient 
Intelligence 

Machine 
Learning 

Sound 
Processing 
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 that augments activities through smart non-explicit assistance 

 that preserves security, privacy and trustworthiness while utilizing information 

when needed and appropriate (Weber, Rabaey, & Aarts, 2005) 

 
Figure 2.2:  A detailed view of Intelligent System presented in (Aztiria, Izaguirre, & 

Augusto, 2010) 

An overview of an Ambient Intelligent system can be seen in Figure 2.2. The first part, as 

mentioned is the environment, which we already briefly characterized. The second part 

is the environment sensing via different techniques, discussed in Section 2.1.4 after 

clarifying the environments properties and our recognition scope. Next comes, a 

reasoning component, which consists of Activity Recognition, Learning, Knowledge, and 

Decision Making, based on the observations made. Here in this thesis, we will 

investigate the recognition part, which observes the sound dispersing part of the 

environment, as described in Section 2.1.1. More specifically, we will discuss the 

Activities of Daily Living performed with the corresponding devices in Section 2.1.2. and 

the typical zones, where those activities occur, in Section 2.1.3.  

There are different ways in, which we can look at the environment. One way is to look at 

the environment in an Ambient Assisted Living context, as described in the first 

introduction scenario (1.2.1.). Ambient Assisted Living is a scientific area of research in 

order to improve and assist elderly and people with special need in their daily life. 

Example of assistance realization is by anticipating the daily movements of residents in a 

home in order to predict their actions in order to assist or even automate them. Another 

aspect of home environment is its power consumption. Here we have the possibility of 

automating and optimizing the duration of usage of electrical devices, which affects the 

overall power consumption. So in this framework we are interested in concrete 

environmental aspects and designing their improvement. Finally in section 2.1.4., we will 

make an overview of the most popular techniques for recognition of activities of daily 

living. 
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2.1.1. Activity vs. Device Recognition 

Activity Recognition is a wide scientific area that aims to recognize all types of activities, 

mostly performed by an individual or a group of individuals. One should not forget 

activities performed by different devices such as laundry. However, while making an 

implication from activity to the usage of some is ok, the other way round is not 

necessarily true. For example, if we have an activity like cleaning with a vacuum cleaner, 

we can assume that there is a vacuum cleaner device being used, while recognizing a 

sound of a vacuum cleaner doesn’t imply the activity of vacuum cleaning, because it 

might imply the possibility of a forgotten running vacuum cleaner. To make such an 

implication from sounds of devices to the corresponding activity in a confident manner, 

one has to study continuously the patterns of those activities in terms of their complete 

occurrence and characteristics using complex Machine Learning algorithms, which we 

mention in the outlook in Chapter 7. Where probing real-time sound extracts for their 

live recognition is not strong enough to build up generalized statements about the 

entireness of their reason of occurrence, just like taking a small fragment of a picture is 

not enough to build up the whole picture. In relation to this, the scope of this thesis will 

be to investigate the subject of device recognition in a home environment, with a few 

exceptions of non-device recognitions, which will be explained in Chapter 5. 

2.1.2. Activities of Daily Living Performed with Devices in a Home 

Environment 

Activities of daily living are the most frequent tasks, which an individual performs during 

his daily time, and are most studied in terms of personal healthcare (Lawton & Brody, 

1968) (Katz, 1983). In this Section we call activities of daily living in a home environment, 

the most frequent tasks, which an individual performs at his home using different 

devices. Typical examples are brushing teeth or listening to music, while other activities 

like speaking are not necessarily performed with the usage of some device (see Figure 

2.3). Some of those activities can be executed in a combination, creating a new complex 

activity. One can derive deeper knowledge of the activities like recognizing speakers’ 

personality and mood, while he is speaking or guessing the model of a used toothbrush. 
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Figure 2.3:  Illustration of different sample types of activities and the different levels of 

details about those activities. The first type, Speaking, provides information 
about the speaker, his mood and what he is saying. The second type, Tooth-
brushing, provides information about the way one brushes teeth and the device 
and its state he is using. Music Listening as third type reveals information about 
the listened song and its interpreter, as well as the time stamp. The fourth type, 
a combination between Music Listening and Cleaning, is a complex example, 
which reveals information about those activities as well 

In the field of sound-based activity recognition, most studies for recognition of ADLs are 

music listening recognition Speech Recognition (see Section 3.2) and (see Section 3.3). 

Development of general sound-based recognizers started in the last several years (see 

Section 3.3). 

2.1.3. Activity Zones 

Activity Zones are parts of the environment where some set of activities occur. Under 

parts of the environment one can consider different rooms like the kitchen, where one 

typically performs meal preparation and cleaning. One can obtain further assignment of 

activity zones in the kitchen as well, like marking the oven area as activity zone, where 

one usually performs cooking related actions (see Figure 2.4). 

Activity 

Speaking 

Speaker 

Mood 

Sentence 

Music 
Listening 

John Lennon 

Imagine 

Time 

Tooth-
Brushing 

Electrical 
ToothBrush 

Oral-B 

State 

Music 
Listening + 
Cleaning 

Vacuum 
Cleaner 

AEG 

Power 

Freddy 
Mercury 

 I want to 
break free  

Live Version 
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Figure 2.4:  Self-adaptable three-dimensional modeling of Activity Zones in a 

single room occupancy by (Frey, Neurohr, & Brandherm, 2014) 

For us activity zones play an important role, in every level of their detail. For example, in 

a multiple room environment with microphones in every room the recognizer can 

extract the spatial information, in which room is the sound source, and thus reduce the 

set of possible results. A concrete example for this case is the assumption that the 

inhabitant cannot take a shower in the kitchen, so the recognizer removes the shower 

from the list of possible outcomes. From the detailed case of activity zone, we can use 

the knowledge that if one activity occurs in a specific place, its sound characteristics are 

very similar between its different occurrences. The later holds especially in the case, 

where electrical devices with a fixed set of usage programs are mounted stationary, like 

a toilet. 

2.1.4. Techniques for Sensing a Home Environment 

In the previous section we have seen an example of three dimensional modeling of 

activity zones via environmental sensing, performed with Kinect1. However, there are 

many other techniques for activity recognition in a home environment (Tapia, Intille, & 

Larson, 2004), which could be categorized by the chosen sensors for recognition, 

including video cameras, audio microphones, and wearable devices, as well as their 

combinations. A comparison between the different techniques with their most general 

pros and cons is shown in Table 2.1. 

 

 

                                                      
1
 A line of motion sensing input devices providing three-dimensional video output and data from multiple 

audio channels. Online at  http://www.microsoft.com/en-us/kinectforwindows/  

http://www.microsoft.com/en-us/kinectforwindows/
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Sensor Pros Cons 

 
 Good recognition rate 

 Details with multiple cameras or 
3d cameras 

 Problems with bad lighting 

 Exhaustive processing 

 Low refresh rate 

 Expensive 

  High refresh rate 

 Always available 

 Low cost 

 No need of focusing 

 Noise decreases recognition 
 

 
 Easy processing and classification 

 Exact information 

 Annoying 

 Expensive 

Combination 
 Covering weak spots 

 Good recognition rate 

 Complex Machine Learning 

 Exhaustive processing 

Table 2.1 Comparison between the different recognition techniques according to their 
sensor types they use 

2.2. Sound Processing for Recognition 
In the terminology of Pattern Recognition, Sound Processing is a way to transform the 

sound wave in order to emphasize different features. Under the term Sound 

Transformation one understands a wide field of different sound manipulation 

techniques for different purposes (See Figure 2.5). Simple ones include different filters 

often realized also by the recording hardware before digitalization of the sound signal 

(Section 2.2.1.), but usually performed in a preprocessing step (Section 2.2.2.). To 

understand the mechanisms of Sound Processing in this thesis, we explain complex 

mathematical transformations in Section 2.2.3. The latter will help us characterizing the 

sound the way we need in order to extract recognition relevant features (Section 2.2.4). 

 
Figure 2.5:  General dataflow of Signal Processing for every recognition system. Note that 

every of the points can be surpassed except the signal. E.g. one might want to 
skip filtering the signal or skip processing it, since there are enough features, 
which could be extracted out of the raw signal 
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2.2.1. Sound Signal Acquisition by Humans and Machines 

Signals perceived by humans through their hearing system are called audio signals. 

Those signals come from a sound source which vibrates in the audible frequency range 

approximately between 20 Hz and 20 000 Hz. The resulting vibrations are causing 

different pressure (amplitude) in a medium (usually air), which causes the human 

eardrum to vibrate and send the information to the brain for interpretation (see Figure 

2.6). 

 

         
Figure 2.6:  Illustration of the parallel between air pressure waves (level according to 

dots density) and amplitude plot (amplitude on Y-axis and time on X-axis). 
Signal of about 1.6 Hz makes 4 complete cycles (periods) 

Similar to that process, a microphone can act as a sound receiver and send the perceived 

audio signals to a computer, which firstly converts the analog input into digital one. So 

we are firstly speaking of a sample rate, which refers to the number of sample points per 

second, and bits per sample, which refers to the number of bits, which we need to 

encode each sound sample (see Figure 2.7). 

 
Figure 2.7:  Digitized representation of the same wave form from Figure 2.6, 

but with 100 times lower sample rate using 8 bits resolution 
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In this work, the sound signals resulted by different activities are caught by a computer 

and processed as an uncompressed LPCM WAVE (Linear Pulse Code Modulation 

Waveform Audio File Format) sound. It is the pure form of digital sound that the 

computer captures. The most important settings in this format are the number of 

channels, as well as the sample rate and the bits per sample (Figure 2.8 shows detailed 

format layout). By its design and characteristics the WAVE format permits to be used for 

digital storage of any kind of waves with random number of channels and precision (IBM 

Corporation & Microsoft Corporation, 1991) (Microsoft Corporation, 2007). 

 
Figure 2.8:  WAVE format overview. Each segment of the both Header 

and Data chunks is presented with its size in braces 

A further important note on the recording hardware is that it always supports a high 

sample rate of at least 44100 Hz, which is also the standard for CD quality. This means 

not only covering the human hearing frequency range, by any low cost system, but a 

high refresh rate as well. So we have practically the possibility to exploit every recording 

system for our recognition purposes, which is a huge advantage compared to standard 

built-in cameras, which offer refresh rate between 24 and 30 Hz, and are far from 

covering the visible range of humans, aside from being more expensive. 

2.2.2. Sound Filtering 

Often the audio recording and playback equipment has some deviations in its frequency 

response2. In order to fix those deviations we need to filter the signal with a set of Filters 

to obtain the desired frequency response. We need Filters also when we want to 

operate in a special range of frequencies, cutting all rest frequencies off. So summarized, 

a Filter is a function, which changes the audio signal characteristics. In the following 

                                                      
2
  Response to different frequencies by the audio equipment 

Header 
ChunkId (4), ChunkSize (4), Format (4) 

SubChunk1Id (4), SubChunkSize (4), AudioFormat (2), NumChannels (2), SampleRate (4), 
ByteRate (4), BlockAlign (2), BitsPerSample (2) 

SubChunk2Id (4), SubChunk2Size (4) 

Data 
(Number of channels  

*  
Sample Rate 

* 
Byte Rate) 

... 
Data 

(Number of channels 
*  

Sample Rate 
* 

Byte Rate) 
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subchapters we define High- and Low-pass Filters for equalization of sound3, noise 

reduction and volume normalization. 

 
Figure 2.9:  Illustration of multiple Filters applied often by various hardware components 

(listed as analog) and software components (listed as digital) before some actual 

application like VoIP4 receives the sound. Although such setup might seem 

advanced, one should consider modern audio systems, which often include 

multiple audio inputs and outputs, which opens the door to intelligent usage of 

their combined functionality for different purposes. 

One should note that often different hardware apply Filters as well as some operating 

systems (see Figure 2.9), before actual applications, like our framework, receives the 

signal. Hardware Filters often include noise or echo cancelation using supplement 

microphones to subtract the environment noise from the source, as well as automatic 

equalization of the frequency response for a given setup. Digital Filters often perform 

similar tasks to the Analog Filters, often considering weaker hardware setup, where 

various tasks like beam forming5 might mean expensive hardware. Often various 

software apps might turn on different features of those, which can change recognition 

over time. So one should recognize such changes and re-extract features. 

                                                      
3
  Process of adjusting the balance between different frequencies of a sound signal 

4
  Technology to deliver voice communications and multimedia sessions over Internet Protocol networks 

5
 Technique used in microphone arrays for directional signal reception, which takes into account the 

position of the sound sources and amplifies them, while attenuating signals from other directions. This 
eventually leads to accurate feature extraction for the case that one tries to recognize the information of 
the main sources ignoring the rest of the environment, which is not the case of this thesis, since we 
consider secondary sources as important too. 
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High- and Low-Pass Filters 

Filters for audio equalization are widely used in all disciplines of audio recognition. Most 

used are High- and Low-pass Filters to cut off (or silent) frequencies below (Low-pass) or 

respectively beyond (High-pass) given frequency (see Figure 2.10). This is a useful 

technique, if the recognizer uses only part of the signal spectrum for its recognition. E.g. 

if there is a speaker recognizer, which considers only the human speech pitch, which is 

around 80-300 Hz, one should consider cutting all irrelevant frequencies, to ease the 

extraction and recognition process. Further important usage of low-pass filters is to 

avoid aliasing6 when downsampling a signal.  

 
Figure 2.10:  Illustration of first order Filters: High-pass (left), which cuts the frequencies 

beyond some frequency and Low-pass (right), which cuts frequencies below 

given frequency. The blue marked area with amplitudes passed by the Filter, 

while the white marked, doesn’t. A Band-pass Filter is a combination of both 

Filters, while a Band-stop filter is the inverse of the later 

One should note that the frequency cut doesn’t happen immediately. This is clearly 

illustrated by the so called transition band, which is the range of frequencies between 

the pass band and the stop band of the signal (visually “where it turns the corner”) and 

represents important characteristic of the particular Filter, which we will later use to 

smooth the signal deviations in its lower frequencies. 

A combination of applying both High- and Low-pass Filters is called Band-pass Filter. In 

general there are more types of filters, which are applied for different purposes, but find 

seldom application in sound pattern recognition field. 

                                                      
6
 Distortion of the signal, which makes it different from the original one after some operation like 

downsampling. Example of this is when we need to lower the frequency from 20 kHz to 10 kHz we first 
need to cut off all frequencies beyond 5 kHz from the source signal, because they cannot be realized in the 
target signal, and thus result in distortions after downsampling. 
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Noise Reduction 

Techniques for reducing the noise from the audio signal are called Noise Reduction 

techniques. Such techniques are of particular interest in the case where one has one 

important source like a speaker in a noisy environment. Reducing the noise from the 

environment, without affecting the speaker`s signal would eventually mean better signal 

for recognition. So despite for some cases Noise Reduction can pay off with increasing 

the recognition rate, for other cases it might worsen it, because some important sounds 

might be “noise like”. For example in a home environment a vacuum cleaner sound is 

considered as noise in the context of Speech Recognition, which is not feasible in the 

context of this thesis. However, some processing steps like those of next section are not 

that precise due to their nature, so removing signal noise in an equally distributed 

manner is available in this framework. Further techniques for better Noise Cancellation 

include the usage of multiple microphones, which enables subtracting noise signals from 

the important ones. However, in our setup we would like to use single microphone to 

cover the most general case audio input, such techniques are not of particular interest in 

this work. 

Volume Normalization 

When same source performs different sounds at different locations it results in different 

overall amplitude in the recordings by a static microphone. This translates in difference 

in all further processing steps. A way to overcome this problem is to normalize all sound 

input buffers to some amplitude. However, doing so might affect further processing 

steps in negative way too. Since in our setup we assume that most of the activities occur 

in specific places, thus having similar loudness related characteristics, we will avoid 

Volume Normalization. 

2.2.3. Sound Spectrum Representation 

Sound Spectrum is an important derivation of the sound, which provides detailed 

information about the nature of the sound wave, in particular its frequency domain. It is 

usually via Short-time Fourier Transform in combination with Window Function, both 

described in this section. It transforms small signal frames from the Time / Power 

domain into Power / Frequency domain. Mel Frequency Cepstrum Coefficients represent 

another popular transformation obtaining vectors of features, which are derived from 

the Spectrum and are often used in related works despite the increase of the 

computational complexity for their extraction.  

Short Fast Fourier Transformation 

The Fourier transform is a way to represent a sampled signal via mixture of sinusoid 

waves, called bins. In Sound Processing the Fourier transformation is used to convert the 

raw sampled signal from its original Time / Intensity representation into the Frequency / 

Intensity domain called Spectrum (see Figure 2.11). 
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Figure 2.11:  Illustration of a complex wave (left) consisting of three waves of periods π, π/2 

and π/4 in its Time (ms) / Intensity representation, and its Frequency / 

Intensity representation (right). 

As we already mentioned most signals we encounter in practice, such as sounds in home 

environment, are changing over time and have no periodic nature. However, if we take a 

closer look at these signals by cutting them into frames consisting of several 

milliseconds, we can see that for those time intervals, they appear to have some pattern 

or look as if they are periodic. This means that for those short excerpts of the signal we 

can assume the audio signal being a periodic signal, which could be represented by the 

sum of sin waves via Fourier transform, which for this case is called short-time (see 

Figure 2.12). The mathematical definition for this transformation is shown in the 

definition below. 

    { ( )}  ∫  ( ) (   )         
 

  

 

Where w is a Window Function, such as those discussed in the next section,  ( ) is the 

signal at time   of total time length  , which is to be transformed. It is important to 

mention that the discrete version of this formula is by replacing the integral with the 

sum over the discrete values in a buffer, also in the above definition by replacing signal 

with buffer and   with buffer index. This means that choosing both, the samplling rate 

and the buffer size, plays an important role for the precision and the outcome of the 

Fourier transformation. 
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Figure 2.12:  Plots of waveform (above) with buffer length of 4096 values (X-axis) recorded 

with sampling rate of 44100 Hz (meaning time duration of 10.76 ms), and its 

short-time Fourier transform (below) in frequencies between 80 and 5000 Hz 

(X-axis). 

Short-time Fourier Transformation is the most commonly used Fourier Transformation 

and is obtained via the algorithm called Fast Fourier Transformation (Cooley & Tukey, 

1965), which we discuss in the implementation part of this thesis (see Section 5.4.1.). 

However, there are more similar transformations in this domain. Another recent and a 

popular transformation are the Wavelets (most used in image processing), which are still 

not used for this activity recognition based on sounds, but had shown promising results 

in the speech and Music Recognition fields (Kronland-Martinet, Morlet, & Grossmann, 

1987) (Tzanetakis, Essl, & Cook, 2001). 
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Window Functions 

The Short-time Fourier Transformation described in last section assumes that the input 

signal is periodic, but as we have seen, a real record isn’t such, despite our assumption. 

This leads to so called leakage, which causes erroneous intensities near some peak in the 

spectrum (see Figure 2.13). This is mostly due to the nature of buffering, which takes 

fragments of sounds at particular time intervals, without sensing their completeness 

(which exists only for periodic signals). 

 
Figure 2.13:  Plots of first 32 bins of a spectrum of same periodic function – one with leakage 

(left) and other with smaller leakage (right) due to usage of Hamming window. 

To overcome this problem one uses Window Functions in order to smooth the buffer at 

its ends. By doing so, one forces the completion of all significant periods in a signal. In 

this thesis we apply three of the most commonly used Window Functions for sound 

signals – Hamming Window (Def. 2), Hann Window (Def. 3) and Blackmann-Harris 

Window (Def. 4). 

Def 2:                      ( )              (
   

          
) 

Def 3:                   ( )     (     ( 
   

          
)  ) 

Def 4:                              ( )                    (
   

          
)  

          (
   

          
)            (

   

          
)  

Where   is the current sample from a buffer of size           . 

A sample plots with the Window Functions can be seen at Figure 2.14 together with an 

example of how a simple signal buffer of 512 samples is windowed. 
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Figure 2.14:  Plots of Hamming, Hann and Blackmann-Harris Window Functions with the 

original signal. At left we can see constant signal with amplitude 1 and at the 

right se see signal with period π/2,  both sampled at 10 ms. 

Mel Frequency Cepstrum Coefficients 

Mel Frequency Ceptrum Coefficients (short MFCCs) represent also a popular sound 

transformation mainly used in the speech and speaker recognition fields. Their purpose 

is to extract information from the whole spectrum by mapping it from its original 

multidimensional domain into usually 12, 24 or 48 dimensional domain. 

They are obtained after taking a FFT of the signal as described in the previous section. 

Then follows mapping of the obtained spectrum powers into a Mel Scale7 using 

triangular functions. Then we take the log of each of the Mel frequencies powers and 

take their Discrete Cosine Transform8. The resulted amplitudes in the newly transformed 

spectrum (also called cepstrum) are the Mel Frequency Ceptrum Coefficients (see the 

three main steps in Figure 2.15). 

                                                      
7
 Mapping the recorded frequencies to Mel scale frequencies in parallel to the human hearing perception 

of pitch converting         to       with the formula            (  
 

   
). Similar logarithmic 

representations of the frequencies are often used to simulate the human perception of tones in order to 
simulate the humans art of recognition. 
8
 Used to break sounds into different frequencies, or sum of cosine functions, to approximate them 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400

Signal Hamming

Hann Blackmann-Harris

0 200 400

No window Hamming

Hann Blackmann-Harris



 

22 

 
Figure 2.15:  Derivation steps of the Mel frequency cepstrum (Yuk, 

1999). Above we can see the waveform input of the sound, 

in the middle its spectrogram9 and down below we can see 

the resulted Mel Frequency Cepstral Features 

Similar derivations to the Mel Frequency Cepstral Coefficients are the Linear Frequency 

Cepstral Coefficients and the Antimel Frequency Cepstral Cofficients, which differ 

essentially by their filter banks and thus produce different recognition results. With 

those three one can obtain different precision at different frequencies. E.g. with same 

number of filter banks one would have higher precision at the lower frequencies and 

lower precision in high frequencies when using MFCCs, while the opposite is true for the 

AFCCs. LFCCs would have same balanced precision over all frequencies. One can make 

the LFCCs to have same precision like MFCCs in lower frequencies by choosing more 

filter banks to represent the cepstrum, which is of course more computationally 

exhaustive both for processing and later recognition. 

There are lots of discussions, which cepstral coefficient features could be best used for 

speech and speaker recognition (Lei & Lopez-Gonzalo, 2009), which led research in 

                                                      
9
 Three-dimensional visual representation of the spectrum of a sound and its evolution over time. In the 

current example with displaying the amplitude of the different frequencies using the gray scale 
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Sound-based Activity Recognition to go in two separate directions – one using the LFCCs 

(Stäger, 2006), the other using MFCCs (Temko, Malkin, Zieger, Macho, & Nadeu, 2006), 

while others intend using a combination of both (Vuegen, Karsmakers, & Vanrumste, 

2013) for their recognition. However one should note that due to the nature of the 

features presented in this section, they represent large vectors, which imply slower 

classification, while some research propose selecting different sets of features for 

different tasks to obtain better recognition (Zhuang, Zhou, Huang, & Hasegawa-Johnson, 

2008) (Karbasi, Ahadi, & Bahmanian, 2011).  

2.2.4. Sound Features 

As we have seen in the previous sections, the sound curve is a complex function, which 

one can transform in different ways in order to obtain the form he would like. In our 

case we would like to concentrate on different aspects of the sound and highlight them 

for the usage as recognition features. In the following we describe features from the raw 

sound signal representation (Time / Amplitude), spectral representation (Power / 

Frequency) and the temporal representation of the spectrum (Time / Frequency) (see 

Figure 2.16). One should note that those representations are sorted in order of their 

complexity and computational power starting from the less demanding. 

 
Figure 2.16:  Illustration of the different features sorted in three 

categories according to their derivation method 

Features from Time/Amplitude Representation of the Sound 

Features from the raw representation of the sound, which is in Time / Amplitude 

domain, are usually not much telling features. However they enjoy literally immediate 

processing time, which makes them very handy. Those include sound power and zero 

crossing rate, which are presented in following subsections with examples of their 

meaning and application. 

Sound Power 

One of the most obvious sound features is the power. There are different metrics of 

measuring the loudness of the sound at certain point of time or for a certain period of 

time. We discriminate between power of a current sample, which is the digital value of 

this sample, and average power over period of time, by taking the average of the local 

maximum and minimums of the sound function during this period. 

•Sound Power 

•Zero Crossing Rate 
Time / Amplitude 

•Pitch Frequency and Energy, F0 

•Spectral Flatness and Roll Off 
Power / Frequency 

•Pitch Span 
Time / Frequency 
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Although the power might seem a very uncertain feature, since there are a lot of 

different tasks that have similar loudness, one might think of the E-Energy scenario 

discussed in the introduction, where there might be a problem with deciding between 

two electric consumption models, which have very similar parameters (see Figure 2.17). 

In such a problem a single loudness criteria might be enough to recognize the correct 

device. 

 
Figure 2.17:  Plots of the energy consumption of toaster (left) and kettle (right). One 

can clearly see the similarity in the patterns of both devices, despite the 

actual difference in the exact power consumption (Y-axis) and runtime 

(X-axis), both factors dependent of the heating elements of both devices 

and the chosen operating function. 

Zero Crossing Rate 

The number of times the signal crosses the zero point for a certain period of time is 

called Zero Cross Rate. In a simple periodic function, the Zero Cross Rate is also the 

signal frequency by the factor of two. For example the function at Figure 2.9 has 9 zero 

crossings for 3 seconds meaning zero crossing rate of 3 crosses per second. The practical 

meaning of zero crossing rate is that if it is relatively high, it usually means a noisy 

record. 

Features from Amplitude/Frequency Transformation of the Sound 

In this section we discuss the features from the spectrum of the sound, by studying its 

concrete peaks and its overall form and characteristics. One should note that not all 

sounds have the presented features, while in other cases they are not distinguishable. 

Pitch, First Formant and Pitch Energy 

The pitch is also called Fundamental Frequency (short F0) and represents the lowest 

frequency of a sound wave. It can be measured by looking at the first local maximum in 

the spectrum. In Figure 2.9 we can see that since the lowest frequency of the sound 

wave is of period of π, it is also the fundamental frequency of the signal, while in the 

vacuum cleaner example in Figure 2.10 the pitch is at 576 Hz. 
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The first formant (short F1) is the second peak after the pitch in the spectrum. In Figure 

2.9 it is of period    , while in the vacuum cleaner example the first formant is not very 

clear, but using our definition it is at 2040 Hz. 

Further information about the pitch can be derived by looking at the pitch’s energy. This 

is the sum of the energies of the spectrum bins near the pitch. In Figure 2.9 there is no 

energy near the pitch, so the pitch’s energy is only contained in the pitch, while in the 

vacuum cleaner example we can see that the bins around the pitch contain energy as 

well. 

Spectral Roll Off 

The point where the spectral function falls turns down is called Spectral Roll off, and 

provides important information about the main energy concentration over the 

frequencies. It is measured by looking at the frequency point, where the spectrum 

contains a significant part of its energy, like 95% of it. In the vacuum cleaner example it 

is around the last significant peak at 4613 Hz. 

Spectral Flatness 

The meaning of spectral flatness is that if it approaches 0, then the signal consists of 

pure tones, while approaching 1 would mean equal distribution over all bands of the 

spectrum, similar to noise. In Figure 2.9 we anticipate three pure tones, which means 

spectral flatness of 0, while the vacuum cleaner example from Figure 2.11 has spectral 

flatness of 0.6696. 

Temporal Features from the Time/Frequency Sound Domain 

In this section we mention the single used temporal feature in this thesis – the pitch 

span over time. One should note that most of the mentioned features in the last section 

can be considered as temporal too, because they are often averaged for a period of time 

in cases where the recognition window is larger than the buffering window. 

Pitch Span over Time 

The difference between the maximal and minimal value of the pitch over time is called 

pitch span. It is a straightforward measure for the variation of the pitch, which is a good 

feature to distinguish between monotone and melody-like sounds. One can clearly study 

this feature using spectrogram like the one showed in Figure 2.15. 

2.3. Machine Learning 
In Ambient Intelligence perspective Machine Learning can be used to automatize the 

process of extracting knowledge about a given environment from measured data with 

the goal to understand better the underlying processes. In this chapter we will introduce 

the notion of supervised learning methodology (Section 2.3.1.) used in this thesis and 

one of the most popular classification methods called Nearest Neighbor.  We will discuss 

then another popular family of recognition techniques called Bayes classifiers (Section 
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2.3.3.) and at the end we will discuss the terms of feature selection (Section 2.3.4.) and 

normalization (Section 2.3.5.), which both play an important role when working with 

bigger sets of features of different types, although in a slightly different way. 

2.3.1. Supervised and Semi-Supervised Learning 

The task of inferring a recognition result from labelled training data is called Supervised 

Learning and consists of two steps. In the first step, the Training Phase, the classifier 

gathers data and labels it with the help of supplementary input. In our case the user will 

label his performed activities and the respective devices to perform them. In the second 

step, the Recognition Phase, the classifier tries without external help to find the correct 

label, which in our case is a device recognition attempt. The two steps of supervised 

learning are repeating over time, which means the user can still provide feedback in 

order to improve the knowledge of the classifier. 

Cases where the recognizer is able to additionally provide correct recognition of 

untrained data are called Semi-Supervised Learning. In our study such cases include the 

Machine Learning element training itself by automatic unsupervised mixing of records 

for their combined recognition.  

2.3.2. Nearest Neighbor Methods 

In general, there is no established single Machine Learning algorithm or methodology in 

the field of activity recognition (Aztiria, Izaguirre, & Augusto, 2010). One of the most 

established family of methods for finding correct class of given set of features are the 

Nearest Neighbor methods. One of their most straight forward implementations consists 

of classifying an unknown object by the majority vote of its neighbors found using some 

distance metric in feature space like Euclidean distance10. One should consider that if 

   , then the object is simply assigned to the class of that single nearest neighbor. By 

using this property, in order to improve classification runtime in Section 5.5.4., we 

reduce the Nearest Neighbor algorithm to one nearest neighbor search by averaging the 

trained data through the classes or by selecting a single reference value for recognition. 

We then implement further optimization of reducing the dimension of feature space, by 

prioritizing the different features. 

                                                      
10

 Distance  (   ) between each reference feature    and the sampled feature    measured by the 

Pythagorean formula using following equation  (   )  √∑(      )
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Figure 2.18:  15 nearest neighbors and 1 nearest neighbor algorithm 

distributions by (Hastie, Tibshirani, & Friedman, 2009). Purple line 

represents the optimal Bayes decision boundary. 

2.3.3. Bayes Classification 

Bayes classifiers are a family of classifiers that are based on applying Bayes' theorem for 

conditional probabilities11. A classifier, which applies Bayes' theorem with strong 

independence12 assumptions, is called naïve Bayes classifier. Such a classifier relies on 

priori and posteriori knowledge about the data in order to assign class probabilities for 

some test data. For example if one brushes his teeth every day, but cleans his room with 

vacuum cleaner once a week, and does only those two activities. So after three weeks 

we would have 21 occurrences of Tooth Brushing against three occurrences of Vacuum 

Cleaning. In Figure 2.19 we can see a plot of this knowledge in terms of two features – 

zero crossing rate and average loudness. So we have a prior probability of Tooth 

Brushing activity of 7/8, while for Vacuum Cleaning it would be 1/8. A simple way of 

computing a posterior probability is if we draw a circle around the unknown occurrence 

to compute in straightforward way its’ likelihood13, by counting the members of each 

class inside the circle. We can see that in the chosen circle in the likelihood of the 

unknown activity there are two occurrences of Vacuum Cleaning and one of Tooth 

Brushing meaning a posterior probability for Tooth Brushing of 1/21, while for Vacuum 

Cleaning it is 2/3. So by applying the Bayes rule we assign probabilities for both classes 

to the unknown sample: 

                                
 

 
 
 

 
 
 

  
 

                                     
 

 
 
 

  
 
 

  
 

                                                      
11

 Probability of some class to be the correct result based on given set of features 
12

 Assumption that any feature is independent from each combination of other features 
13

 Function of how likely is the occurrence of some class, which is weaker than its probability 
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Thus, by having the probability of the unknown sample to be vacuum cleaning twice 

larger compared to its probability to be tooth brushing, according to our rules we assign 

it a label of Vacuum Cleaning. 

 
Figure 2.19:  Naïve Bayes classifier example showing two-class problem (Vacuum Cleaning 

and Tooth Brushing) with two dimensional feature space (Zero Crossing Rate on 

X-axis, and Average Loudness on the Y-axis). The classifier is attempting to guess 

the appropriate label of unknown event by knowing its features. 

There are numerous possible improvements of this “naïve” approach. One improvement 

is about how to look at the distribution of the trained data for the different classes to 

build up a so called distribution models, which will eventually be used to compute the 

likelihood. In our example we assume uniform distribution14, and therefore add the 

different probabilities in the likelihood computation. However, the most popular 

distribution model is the Gaussian mixture model, where the feature vectors associated 

with each class are distributed according to a Gaussian distribution15. In this thesis we 

use a so called Bayes Point Machine Linear Classifier16, which approximates the optimal 

Bayes decision17 by the center of mass of version space18 (Herbrich, Graepel, & 

Campbell, 2001). 

                                                      
14

 Distribution, where all types of classes are equally likely to be observed 
15

 Family of distributions, which measure the probability that any real valued observation will fall in the 
interval of two real numbers. For multidimensional cases, like ours with multiple features, their complexity 
increases rapidly 
16

 Linear Classifier makes a classification decision based linear combination of the input feature vectors 
17

 A case, where the probability model underlying the classes is known perfectly. The Bayes optimal 
decision boundary is drawn with purple line in Figure 2.18. 
18

 Set of all hypotheses that have not been eliminated as a result of being in conflict with observed data 
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2.3.4. Feature Selection 

In the last few sections we explained how to make good predictions, even for unseen 

cases, with successful recognition being our main goal. However we still have not 

discussed one of the main factors for recognition – the features. Namely, from a 

Machine Learning perspective, how to find out which are the relevant features in order 

to make good predictions? 

The answer of this question is hard and overall there is a lot of research on this topic 

with many different proposed solutions (Guyon & Elisseeff, 2003) (Hastie, Tibshirani, & 

Friedman, 2009), some of which theoretically optimal, but unpractical to implement 

(Koller & Sahami, 1996). So here we will first discuss the benefits of feature selection for 

certain problems and then will briefly explain couple of ways to perform it in our 

framework, while the exact implementation will follow later in Section 5.5.2. 

The first benefit, which comes in mind after discussing a couple of Machine Learning 

classification approaches, is that selecting the relevant features for recognition and 

removing the irrelevant makes for faster result search, thus optimizing the runtime 

performance. 

Further issues with larger a set of features arise, when some of those features are 

dependent variables19, which steers the recognizer in wrong direction by introducing the 

possibility of replicated erroneous information overwhelming the correct information. 

Similar problems might occur when one tries to use same feature types from different 

sound representations, for example computing average loudness from the waveform 

representation and from the spectrum. So despite both variables not being exactly 

dependent, they still have very similar behavior. 

Another problem occurs when some feature is very similar for large number of different 

classes, thus providing no meaningful information. In our case, many electrical devices 

had a large subset of similar cepstral coefficients, which was one of the reasons for the 

decision to leave their integration into the framework for its current version. 

The various listed redundant or irrelevant features above give us first ideas of how to 

select features automatically. One straightforward way is to measure the relative 

distance between the feature vectors of the different classes and remove those 

features, which doesn’t change much through the classes. Another way is to look at how 

“stable” the features are for the recorded samples of same class, e.g. their variation. 

An exhaustive feature selection for a given setup environment can be done by running a 

test with all feature combinations to unveil what would be the best feature combination 

for the particular test, and depending on how much the test approximates real-life 

conditions, we can make statements on how good the computed feature subset is. 

                                                      
19

 Variables are called dependent if one can find a functional mapping between them  
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2.3.5. Feature Normalization 

Since there are many components in a big recognition system one needs to normalize 

their inputs into a common metric at each abstraction level (see Figure 2.20). The lowest 

normalization level is for the different features. Sometimes they have different metrics, 

which need to be normalized in a common feature vector. An example of different 

feature metrics is the zero cross rate and the pitch. The next normalization level is for 

the feature vectors produced by the different sensor instances. This is needed, because 

different sensors might have different characteristics, like different microphones having 

different sensitivity or frequency response. The next normalization step is at sensor 

level, where one needs further synthesis of the gathered feature vectors, which are not 

necessarily of the same metrics or dimension. This can occur when the extracted 

features is specific for the given sensor, despite being of the same type. The last 

normalization step is at component level, where the different sensor types are being 

normalized to merge in a single feature vector. 

 
Figure 2.20:  Feature normalization at different levels in order to extract a feature vector from 

all components and the features from their sensors. In the example at first we 

have sound component with two microphones and their according feature 

vectors consisting of different features like those mentioned in 2.2.4. The second 

component is a video with one camera and its feature vector. The third 

component is for the remaining sensors, like light sensors all together with the 

power of the light in a common vector, or heat sensors and a common vector for 

the measured temperatures. Note that at each level there should be a 

normalization procedure. 
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Chapter 3  

Related Work 
 

In the field of Signal Processing (Subchapter 3.1 and Figure 3.1), a lot of studies have 

been carried out in its branch of Sound Pattern Recognition. Their focus was mainly on 

building systems for Speech or Speaker Recognition (mostly non-commercial) 

(Subchapter 3.2) and Music Recognition (mostly commercial) (Subchapter 3.3). In 

general, one can separate those two types of related works from the general case of 

Activity Recognition using sound, which have a similar setup to this thesis (Subchapter 

3.4). 

 
Figure 3.1:  Illustration of the creation of related disciplines over time with the reason of 

their establishment. Signal Processing for Recognition being the general case 

and the root of both Speech and Music Recognition, out of which originate all of 

the later used sound pattern recognition methodologies for the general case of 

Activity Recognition. 

In the following subchapters we will get familiar with the mentioned main branches of 

sound pattern recognition. We introduce their purpose, technology and achievements in 

their corresponding subfields. We make then parallel to the case of study of this thesis. 

At the end of each subchapter we will generalize what their recognition capability means 

from the perspective of general Activity Recognition. Finally, we provide an overview 

with a comparison of the introduced related works and we make a composition of their 

capabilities. 
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3.1. Signal Processing 
The area of Digital Signal Processing, which is the root of Sound Signal Processing, 

exploded around the Second World War mainly with applications like radar Signal 

Processing for automatic detection of enemy or telecommunications encoding. In terms 

of activity recognition, using those early Signal Processing techniques we could 

determine, whether there is activity occurring or not (see Figure 3.2 for a three-wise 

illustration). The rebirth of Signal Processing came with the invention of digital 

computers around the 50s (Nebeker, 1998). 

 
Figure 3.2:  Three-wise illustration of the automatic activity distinctiveness 

that could be done by Signal Processing from the early years 

Up to date Signal Processing has been a very wide scientific area covering whole areas 

itself like Image Processing, Sound Processing, Video Processing, and many more. What 

we can learn from this is that all subfields often have very similar processing algorithms 

despite having different purposes. So developments in those related subfields could 

often be translated to the whole area. Examples include the invention of wavelets and 

their immediate translation into different areas (Daubechies, 1992), or the development 

of fast Fourier algorithm (Cooley & Tukey, 1965). In general, all signal recognizers share 

the same workflow consisting of three main components: Signal Acquiring, Signal 

Processing, and Signal Recognition (see Figure 3.3). 

 
Figure 3.3:  The three main steps in signal recognition: signal acquiring, Signal 

Processing, and signal recognition, common in all signal recognition systems 
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3.2. Speech Recognition 
Despite speaking being a special kind of activity, its recognition development started a 

lot earlier than the general case of Activity Recognition or other Sound Pattern 

Recognition fields like Music Recognition. First studies for Speech Recognition started six 

decades ago with recognizing strings of digits with pauses in between (K. H. Davis, 1952). 

The next milestone was set five decades ago recognizing small set of words – IBM 

system 16 words (Dersch, 1962). Note the similarity between size of the word set and 

the approximate activities of daily living, which typically occur in home. Another 

similarity represents the pauses between commands. Typically activities are also 

separated by pauses, since one cannot immediately switch between brushing his teeth 

and cleaning his house. 

 
Figure 3.4:  Illustration of the main components of Speech Recognition 

system (Yuk, 1999) 

Later on there are numerical improvements including numerous acoustic feature 

representations, which try to emulate the human perception of speech and are coming 

closer in recognition accuracy to humans (Lippmann, 1997) (Scharenborg & Cooke, 

2008). One of the most studied and accomplished recognition techniques are the 

MFCCs, which are performing for both speech (Young, Kershaw, Odell, Ollason, Valtchev, 

& Woodland, 2000) and speaker recognition tasks (Feld, 2011) (Beigi, 2011). In the face 

of Speech and Speaker Recognition we anticipate first accomplishments in direction 

activity recognition (see Figure 3.5). This is also of particular importance since most of 

the current research of activity recognition based on sounds has its origins from the 

Speech and Speaker Recognition fields and use MFCCs as main feature vector part, 

which means a lack of testing other techniques, which might eventually be performing 

even better. For the recognition however, most of the modern Speech and Speaker 

Recognition works apply advanced models like the Hidden Markov Models (Yuk, 1999) 

(Feld, 2011), which are still beyond the research state of our closely related works. 
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Figure 3.5:  Illustration of the Activity distinctiveness that could be done using 

a combination of speech and speaker recognizers like (Yuk, 1999) 

(Feld, 2011) 

3.3. Music Recognition 
The beginning of Music Signal Processing could be set around the early 20s with the 

invention of a musical instrument called Theremin20 (Glinsky, 2000). Later with the 

mentioned Signal Processing improvements around the 40s and 50s composers such as 

Karlheinz Stockhausen created music using signal generators or ring modulators. Then 

with the boom of general purpose digital computers in 70s and 80s came a new era of 

synthetizing and modifying sounds (Müller, Ellis, Klapuri, & Richard, 2011). 

Despite the big progress in sound synthesis, the field of sound information retrieval 

started in the mid-70s (Moorer, 1975), while the first International Symposium on Music 

Information Retrieval was held in 200021. First big applications include automatic sound 

description, like The CUIDADO Project (Content-based Unified Interfaces and Descriptors 

for Audio/music Databases available Online) (Vinet, Herrera, & Pachet, 2002).  It 

produced the first entirely automatic chain for extracting and exploiting musical 

metadata for browsing music using large set of sound features (Peeters, 2004). 

To date, depending on the task, there are numerous of established techniques for Music 

Recognition besides Mel Frequency Cepstral Coefficients, most notable of which are the 

Chroma-based audio features22 (Fujishima, 1999). The most notable Music Recognition 

systems are Shazam (Wang A. L.-C., 2003) (commercial) and Echoprint (Ellis, Whitman, & 

Porter, 2011) (non-commercial). 

                                                      
20

 Theremin is the first electronic musical instrument and is played by the musician without physical 
contact. The capacitance of player’s hands near antennae controls an oscillation, which is later 
transformed to sound. 
21

 Online at http://www.ismir.net/ 
22

 Initially proposed for Chord recognition, are audio features, which closely correlate to the aspect of 
harmony 
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Here we will have a closer look at Shazam, because it realizes our idea of recognizer, 

which incorporates a client / server architecture. The client issues a recognition using a 

mobile application, which connects to a server for a result. Furthermore it provides 

different personalization and discovery features for already tagged music or a similar 

music search based on that (see Figure 3.6 for an overview of Shazams interface). Similar 

to that in our setup we will also rely on the user to tag his activities first in a training 

phase and provide random feedback about the recognition. 

 
Figure 3.6:  Collage of screenshots23 of Shazam illustrating different states 

of the phone application. Besides the offered recognition 

service one can see a high level of personalization 

Shazam works by taking 10 second recordings and analyzing their spectrum for intensity 

peaks. Then those peaks are grouped in a hash for a result lookup. We should note that 

such a straightforward search method can provide a successful search of over 11 million 

records with a constant time lookup. Other qualities of the method include noise 

robustness and room acoustics independence, both very important in our case. This 

leads to considerations about using similar methods to those proposed by the authors 

and attempting to modify them for our setup. 

 

                                                      
23

 http://vlatte.net/2011/01/shazam-app-review/ 

http://vlatte.net/2011/01/shazam-app-review/
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Bottom line is that although the described systems are often commercially based and 

may seem distant relatives to our subject, they are also in the subject of Sound Pattern 

Recognition and they are dealing with databases, which contain millions of songs. 

Furthermore, some of the systems also aim to recognize radio and television shows as 

well, which increases their complexity. In terms of Activity Recognition there is already a 

high degree of activity details, which can be obtained using the presented recognizers, 

despite the small set of recognizable activities (see Figure 3.7). 

 
Figure 3.7:  Illustration of the Activity distinctiveness that could be done using a Music 

Recognition service like Shazam combined with instrument and chord 

recognition system. Note that one could make an additional tree level for 

clustering the music in terms of different genres or for similar clustering 

television and radio shows, which might be important for different context. Also 

we are distinguishing the activities of music listening, radio listening and 

television watching, although they might all come from same source (or device). 

An interesting fact is that there are no similar algorithms used for Sound-based Activity 

Recognition. This is quite unexplainable since one can think of an electrical device as a 

musical instrument with a specific timbre, which produces specific sound when being 

operated by a human, in parallel to the musical sounds, which are more dynamic. 

3.4. Activity Recognition 
First works of general activity recognition based on sounds started with (Wang, Wang, 

Huang, & Hsu, 2003), who tried out “Home environmental sound recognition based on 

MPEG-7 features” and (Stager, Lukowicz, & Troster, 2004) and their work of 

“Implementation and Evaluation of a Low-Power Sound-Based User Activity Recognition 

System”, which tests three sound features and searches for result using nearest 

neighbor algorithm. Later refined in Stägers PhD thesis “Low-Power Sound-Based User 

Activity Recognition” (Stäger, 2006), turning into a complete solution including hardware 

installation of a microphone with three accelerometers (on hand) and software written 
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recognizer. What we can learn from this work is that even a small set of straight-forward 

features and search algorithms can obtain good recognition results for a small set of 

activities. Also it is important to mention that this collaboration of authors are the only 

ones concerned with the trade-off between power and accuracy later described in 

details after empirical improvements in (Stager, Lukowicz, & Troster, 2007). An 

optimized usage of the resources is an important consideration in a bigger setup and 

could be done automatically as well (Lombriser, Amft, Zappi, Benini, & Tröster, 2011). 

The next important development in the field is “Embedded Implementation of Distress 

Situation Identification through Sound Analysis” (Istrate, Vacher, & Serignat, 2008), 

which is a complete solution for an elderly care system that produces alarm if something 

goes wrong. It includes an early distinguishment of the sounds between speech and 

other acoustic events before making a recognition attempt. If the recognition results in a 

situation where the user might be in danger it forwards an alarm with the signal to an 

operator and sends message to close relatives of the user (see Figure 3.8). As we can see 

this shows a complete example of Sound-based Recognition system for home 

environments in practice. 

 
Figure 3.8:  Illustration of the system developed by (Istrate, Vacher, & Serignat, 2008) 

Most recent developments include “Sound Environment Analysis in Smart Home” (Sehili, 

et al., 2012), which is a work that installs a microphone to an existing recognition 

environment, consisting of three rooms (e.g. with installed different types of sensors in 

each room already) (see Figure 3.9). It is a good example of setup, since we naturally 

perform different activities in different rooms, thus having less activity types in each 
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room. Also interesting is the high number of installed microphones and their 

combination with other sensors. 

 

Figure 3.9:  Setup environment consisting of three rooms and multiple 

sensors of different types (Sehili, et al., 2012) 

Another approach worth mentioning is “Audio Classification Techniques in Home 

Environments for Elderly/Dependant People” (Lozano, Hernáez, Picón, Camarena, & 

Navas, 2010), which besides the conventional used techniques in the fields, studies 

multi-resolution analysis to include temporal information from the sound data. Also a 

couple of other studies use temporal information – (Wang, Lee, Wang, & Lin, 2008) and 

(Karbasi, Ahadi, & Bahmanian, 2011), who similar to this thesis identifies the problem of 

most Activity Recognition systems deriving their Sound Pattern Recognition techniques 

from the Speech Recognition field. 

 
Figure 3.10:  Illustration of the Activity distinctiveness that could be done using a general 

activity recognizer like the one developed by (Istrate, Vacher, & Serignat, 2008) 

3.5. Device Recognition 
Usually under device recognition one understands recognizing different devices 

according to their interface. E.g. a recognizer scans the environment using different 

communication protocols like Wi-Fi or Bluetooth and relies on the devices to support 

those protocols. However, not all devices had to support such communication protocols. 

Another recent research trend is to recognize electrical devices via a series of methods 

like using energy monitoring sockets, power analyzer (Hart, 1989) (Belley, Gaboury, 
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Bouchard, & Bouzouane, 2013), and electromagnetic interference (Gupta, Reynolds, & 

Patel, 2010). The problem is that all of those devices should not only be electrical, but 

should be connected to the power supply. First of all not all of the devices are electrical, 

nor should they be. Examples include toilet flush or a tooth brush. Some toothbrushes 

are electrical but they rely on batteries for their function, which makes them “invisible” 

for the mentioned technologies in their acting time. A natural way of recognizing 

devices, according to the human sense would be by analyzing their sounds. This includes 

the case where someone is using them to perform some activities, as well as the case, 

where they perform some periodic miscellaneous tasks without being operated directly 

by humans. 

It is also interesting that in the mentioned related works the authors apply the 

interference that a noise by some device would mean a human producing that noise, 

while operating with that device. As already mentioned here as well as in Section 2.1.1., 

this is not necessarily true. There is no system known to us, which defines a set of 

devices and aims to recognize their activities by monitoring the sounds which they 

produce. 

3.6. Overview of Related Work 
In this Subchapter we first summarize the different types of related works in terms of 

their functionality in Section 3.6.1. Then, in Section 3.6.2., we make a comparison of the 

activity recognition systems and their capabilities presented in Subchapter 3.4. Finally, in 

Section 3.6.3., we make first thoughts as to what kind of sound-based information a 

system, consisting of the related works, should be able to extract. 

3.6.1. Comparison of Related Works in Terms of Functionality 

In this section we will make an overview of the related works, which we have presented. 

We group them according to their appearance in this Chapter and show their main 

attributes in Table 3.1 in the context of a device recognition system, which we will 

design in the next Chapter. 

The first relevant column is the number of entities over which the recognition system 

operates (Column 2). For the Speech Recognition case it is usually the size of the 

vocabulary, while for the Music Recognition case it is the number of songs, which the 

system can recognize. It is an important factor, because the less entities one aims to 

recognize, the less sophisticated methods one needs to implement, which results in 

higher processing speed, while retaining recognition accuracy. 

For the feature choice (Column 3), most of the closely related works use primary Mel 

and Linear Frequency Cepstral Coefficients, which as stated is the primary feature source 

in Speech and Speaker Recognition too. Other often used features in combination with 
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the previous include zero crossing rate, spectral roll off or frequency centroid24. For 

Music Recognition the melody plays an important role, thus in systems, like Shazam, 

peak intensities and their duration is the base feature, while other systems use bigger 

feature vectors for detailed recognition. In our work however, a slightly different set of 

features was chosen, which was found to play an important role for our recognition use 

case, explained in detail in the next couple of Chapters. 

Some of the described Music Recognition services enjoy user input (Column 4), similar to 

ours, while other systems use static databases, where the user plays no active role in 

improving the recognizer via feedback. 

Another characteristic of a recognition system is its adaptation capability (Column 5), 

which we consider as an important property of a system, which aims to make better 

recognitions over time. Under the adaptation it is meant the adaptation scale of the 

recognition rather than the user’s preferences or his interface design personalization. 

Usually Speech Recognition systems have a high rate of adaptability for the purpose of 

tuning the recognizer to a specific person and his pronunciation in order to obtain a 

better recognition rate. Services like Shazam don’t need an adaptation property, since 

they consider music songs in exact time and melody. 

The last property of the recognition systems is whether they rely on Machine Learning 

algorithms for finding a result. For example some of the early Speech Recognition 

systems described in Section 3.2, use straight forward matching of the closest solution, 

while all modern Speech Recognition systems use sophisticated Machine Learning 

techniques. In an interesting contrast, Shazam uses straightforward hash table lookups 

over 11000000 records for a result. 

Method Entities Count Features Count User Input Adaptability ML 

Speech Up to 100000 ~24 Depending High Yes 

Music ~10000000 ~3 Essential Not needed Depends 

Activity ~10 ~8 None None Yes 

Table 3.1: A table comparing the related works from subchapters 3.2 to 3.4 

 

 

 

                                                      
24

  A measure defining middle point of a spectrum according to its amplitudes in different frequencies 



 

41 

3.6.2. Detailed Comparison of Activity Recognition Systems 

In this section we will make a summarized comparison of the presented activity 

recognition systems (see Table 3.2) in the context of the intended capabilities, which our 

framework should possess as mentioned in the introduction. 

AR 
System 

Sound-based 
Only 

Easy 
Installation 

Optimization 
Friendly 

Feature 
Selection 

Mixing Adaptability 

Stäger 
et al. 

Sometimes in 
combination 

with 
accelerometers 

Setup relies 
on 

wearable 
sensors 

Performed in 
both hard- 

and software 

Studied 
features. No 

automatic 
selection 

Not 
performed 

Not 
performed 

Istrate 
et al. 

Separate 
sound event 

detection and 
extraction 

Flexible 
setup 

Complex 
techniques 

No 
automatic 
selection 

Not 
performed 

Not 
performed 

Sehili 
et al. 

Multiple 
sensors in the 

full setup 
Big setup 

Complex 
techniques 

No 
automatic 
selection 

Not 
performed 

Not 
performed 

Table 3.2: A table comparing the related works from subchapters 3.2 to 3.4 

As we can see on the comparison table, the most competing work has been done by 

Stäger et al. They have studied into detail different aspects of an activity recognition 

system, which we consider as important too, like making an optimization friendly 

installation with carefully selected feature sets. However their biggest difference to our 

intended framework is that their recognition setup relies on wearable sensors, which is 

an uncomfortable way of sensing information, as mentioned in Section 2.1.4. The second 

most competing work has been done by Istrate et al. They perform a large variety of 

Sound Processing techniques for their recognition, but in their tests they used data from 

multiple environments and trained the recognizer with 90% of it. In both points our work 

intends to do completely opposite. We first intend to make a personalized setup, and 

second to use less training data. Other interesting capabilities, which are out of the 

scope of this thesis, but are implemented in by them, include sound event detection25 

and an attempt to recognize rare short-time events like glass breaking. The third related 

work collective also made an excellent job in placing a multiple microphones and 

exploiting their installation, but we consider their setup too overwhelming for our 

purposes. 

 

 

                                                      
25

 Acoustic Event Detection means to label temporal regions, such that each represents a single event of a 
specific activity 
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3.6.3. Overview of Recognition Capabilities of Related Works 

After summarizing the related works we can make first thoughts, as to what kind of 

capabilities a generalized Activity Recognition system should possess, consisting of the 

presented sound pattern recognition works. Those include Music, Speech and Speaker 

Recognition, and Activities of Daily Living Recognition (see Figure 3.11). 

 
Figure 3.11:  Illustration of the Activity distinctiveness that could be done using 

a personalized adaptable activity recognizer 

  

Activity 

Music 
Listening 

Imagine 

John 
Lennon 

Speaking 

John 

Imagine all 

Tooth 
Brushing 

Electrical 
Device 

Oral-B 

Conventional 
Way 



 

43 

Chapter 4  

Concept of Sound-based 

Device Recognition 
In this chapter we merge and extend the gathered knowledge from Chapters 2 and 3 to 

introduce the concept of Sound-based Device Recognition. To summarize briefly, in a 

typical home, individuals perform various Activities of Daily Living often with the usage 

of specific devices. Some of those devices produce distinguishable sounds, which could 

be captured by existing microphones in the home (e.g. personal computer microphone 

or smartphone microphone). Usually the performed activities are bound to a certain 

place in space. This means that from our sound perspective this would “sound” very 

similar every time. So our feature extraction module should provide us with smartly 

chosen features that make it possible for us to distinguish the different running devices 

in a home and send those to a classifier for a further processing and issuing a recognition 

result (see Figure 4.1). 

 

 
Figure 4.1:  The whole process from user activity to its device recognition attempt by the 

Sound-based Device Recognition Framework. A separation done within three 

components – Environment, Sound Processing, and Machine Learning  

In this chapter we first create an abstract architecture of a system for Sound-based 

Device Recognition. Then we will study its concept starting from the environment, 

where different activities occur and their acoustics signals are captured. Then we will go 

through the Sound Processing component and its purpose of extracting audio 

characteristics. The next step is to get familiar with the Machine Learning component, 

which is responsible for providing a recognition result after it is supplied with 

appropriate feature information. After creating the structure of our desired Sound-

Environment Sound Processing Machine Learning 
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based Device Recognition system, we define its intended possibilities for integration 

from a software perspective. 

4.1. Architecture 
After introducing the recognition process, in this subchapter we introduce the 

architecture of a Sound-based Recognition system at both abstract and concrete levels. 

Then we define the development process model, which will be used to implement the 

architecture. 

4.1.1. Abstract Architecture 

From a high level architecture point of view (see Figure 4.2), a Sound-based Device 

Recognition system, deals with the sounds after they have been digitalized and 

streamed in some way to the recognition system. Ways of digitalizing and streaming 

include the system doing this with its hardware and microphone input, or within mobile 

application, which records and streams the information to the system. Then such a 

system consults its own database for appropriate classification of the input data, while 

eventually using specialized services for detailed recogtnition information for concrete 

cases beyond its knowledgebase. 

             
Figure 4.2:  Illustration of the Client / Server (or Agent / Recognition System) architecture. 

The server in the middle receives sound data either from external device like 
smartphone, or from its sensors. For the recognition task if own DB lookup is 
not sufficient the server might use further knowledge from external resources. 

4.1.2. Concrete Architecture 

In abstract perspective the work of the illustrated device recognition system is to 

analyze and classify audio input. So aside from the environment, which we introduce in 

Subchapter 4.2, there are another two important components, the synthesis of which 

establish the basis of a Sound-based Device Recognition system. One is the Sound 

Processing component, which we design in Subchapter 4.3, which employs various 

mathematical transformations on the sound, already introduced in Subchapter 2.2. The 

other is the Machine Learning component, described in Subchapter 4.4, which employs 

different classifying techniques for the device recognition tasks. See Figure 4.3 for 
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illustration of the introduced components of a Sound-base Recognition System, similar 

to the models in Chapter 3, with respect to their main functionality, as introduced in 

Chapter 2. One should note that all components are tightly dependable of each other. 

E.g. the better the chosen features are, the less sophisticated the Machine Learning has 

to be in order to classify the sounds. The same goes for the connection between Sound 

Processing and Hardware Setup, the more adjusted a setup is – the clearer the Sound 

Processing can be. However, as we will see in the next subchapter, we make loose 

requirements about its setup. 

  
Figure 4.3:  Illustration of the components of the recognition system from 

software perspective with some of their typical functions 

4.1.3. Spiral Development Process Model 

The most suitable development process to implement the described architecture of 

Sound-based Recognition system among the different development process models 

introduced in (Pressman, 2009) is the Spiral Development Process Model proposed by 

(Boehm, 1988) (see Figure 4.4). It describes a standard Evolutionary Process Model and 

provides the potential for rapid development of increasingly more complete versions of 

the software. The process iterates through standard steps of cyclic process – 

Communication, Planning and Designing, Implementation and Testing, and Deployment, 

described in (Pressman, 2009). In addition, each finished iteration sits on the top of the 

last iteration and describes a more complete and valuable system. 
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Figure 4.4:  Illustration of the Spiral Process Model (Boehm, 1988) by (Pressman, 2009) 

For example we have first anticipated the need of a Sound-based Recognition system 

and its most basic functionality, through Subchapters 1.2. and 1.3. Then we estimated 

their development costs and time to develop. Then we made a model consisting of a 

hardware and software design in 1.4., which were the basis of our first implementation. 

After making first functional tests we built a first installation, which covers the process 

from activity to its device recognition attempt. On that basis we defined what the main 

fallacies of the system are and decided in which direction the development should 

continue and so on. This all led to the current version of the Sound-based Recognition 

Framework implemented in Chapter 5, evaluated in Chapter 6 and to the outlook in 

Chapter 7. 

4.2. Environment and Installation Requirements 
In this subchapter we characterize the environment of the recognition system (Section 

4.2.1.) and then we describe the recording setup from both Hardware (Section 4.2.2.) 

and Software (Section 4.2.3.) perspectives. 

4.2.1. Environment Characteristics 

As a target environment of our framework we choose an average single occupancy 

(household with single inhabitant). As such it is supposed to have a lot of useful sound 

properties, like environmental noise usually generate sounds within a broad frequency 

range (Passchier-Vermeer & Passchier, 2000), speaking of the noises coming from 

outside our setup environment. 
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4.2.2. Recording Setup 

We choose a single generic sound recording device, e.g. we make no assumption about 

its capability. There are a few possible setups regarding its placement. One is to choose 

wearable microphone, and other is to choose static microphone. In order to supply the 

Sound Processing unit with consistent input one should consider restarting the system 

when changing the placement setup. Otherwise, it might require complex preprocessing 

steps like those mentioned in Section 2.2.1. A further note is that for activities, where a 

wearable setup is not suitable, like showering, we assume static placement. 

 
Figure 4.5:  Illustration of laptop that can act as a possible sound recognizer in a 

kitchen  (Frey, Stahl, Röfer, Krieg-Brückner, & Alexandersson, 2010) 

4.2.3. Installation from a Software Perspective 

From a software perspective in a static setup, the main processing unit should monitor 

the sound environment and be able to guess what is happening (similar to Figure 4.5). 

While a wearable sound sensor would require the client to wear it while performing 

different daily living tasks and stream the data to the server. In abstraction, the different 

sounds produced by different activities are captured by the microphone for recognition 

as shown in Figure 4.6. 
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Figure 4.6:  Illustration of different sounds produced by corresponding activities 

are captured by the microphone and sent to the recognizer 

4.3. Sound Unit 
One of the main goals of the Sound Processing Unit is to provide daily activity specific 

Sound-based Recognition. E.g. to study the existing sound pattern recognition 

techniques, together with their application in the current setup, and eventually develop 

their variations to optimize runtime and recognition rate. As a result one should be able 

to obtain real-time recognition with a good tradeoff between recognition rate and 

resources used. For this purpose we first discuss the Sound Processing techniques in 

Section 4.3.1. and then we introduce features choice considerations in Section 4.3.2. 

4.3.1. Sound Processing 

Initially when developing the Sound Processing unit, one should ask oneself the 

question, how humans are distinguishing different devices or activities by their sound. A 

similar research start point has been done in Speech Recognition field, with the 

derivation of the Mel Frequency Cepstral Coefficients, which are according to the human 

hearing system. Another similar research start has been done in the Music Recognition 

field, when the human ability to distinguish a melody, was automated to fingerprint 

different songs. 

4.3.2. Features Choice 

As already mentioned in the previous chapter, the main techniques for activity 

recognition derive from the Speech Recognition and Music Recognition fields. However, 

there are a vast number of other sound characteristics used to categorize the sound, 

despite their inability to provide important information either for Speech or for Music 

Recognition. Other features are not obtainable from tiny sound extracts, thus often 

ignored for sound recognition tasks. Nevertheless, they play an important role in the 

context of testing the quality of a music instruments and categorizing songs (Peeters, 

2004) (Müller, Ellis, Klapuri, & Richard, 2011), as well as for environmental sounds 

recognition (Chu, Narayanan, & Kuo, 2009), as mentioned in Subchapter 2.2. 
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4.4. Machine Learning Element 
Knowing that there are a different number of features to be evaluated one should 

consider appropriate classifying techniques to combine the gathered information. When 

designing a new system it is important to build up the Machine Learning algorithms from 

the scratch, instead of running the best overall classifier according to the current 

research. This enables evaluation of the benefits (such as better recognition rate) and 

drawbacks (such as slower runtime) on each step of classifiers refinement. 

4.4.1. Implementation Considerations 

So with an incremental development, we can obtain the important knowledge, whether 

we can apply less demanding Machine Learning algorithms for recognition in terms of 

having less training data and user feedback. One should think of the practical application 

of the framework, which should not count on the user to take a shower ten times in a 

row or clean his room ten times straight as well as to train the recognizer. In the same 

manner an unobtrusive system, which won’t demand the user to evaluate it constantly, 

is also a priority in the development. Various algorithms that satisfy this demand are 

described in Subchapter 2.3. 

As we learned in Subchapter 2.2., some features are better for categorizing certain 

sounds than other. So it is an interesting capability is to decide, which of the 

implemented features are the most “telling” in terms of recognition reliability. This 

demands the implementation and test of algorithm, which prioritizes the different 

features, and according to those priorities calculates a result. Furthermore, it could be 

the case that in different environments, different features are important to recognize 

activities, so a system should be able to assign priorities automatically. 

Further consideration regarding the features rises when choosing their common metric. 

One know that by translating the features to some metric in the nearest neighbor 

algorithm, one could simulate the priorities of the different features, but this won’t 

change the fact that the algorithm would run with all features together. As mentioned in 

the previous paragraph, a smart algorithm might look at the top priority feature(s) and if 

those return a confident recognition result, it might not even bother to test the rest of 

the features. Furthermore, one could be able to automate the process of issuing 

priorities of the different features in the training phase, by looking at their distributions 

in space.  

4.4.2. Adaptivity 

Aside from the classification algorithm one should think of an incremental learning 

system, which is an important property that the Machine Learning unit should possess. 

An abstract illustration of a learning system, displaying its incremental learning 

approach, which aims to make better recognitions over time, can be seen in Figure 4.7. 

In particular, the system should be able to add new activities and to accept user 
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feedback for its recognitions. In a personalized setup, from the client or user perspective 

one should also be able to start from scratch and help the system build its Activity 

Database via Supervised Learning. Over time this will steadily increase the systems 

knowledgebase for accurate recognitions. 

 
Figure 4.7:  Illustration of a learning agent (Russell & Norvig, 2010) 

When speaking of greater knowledgebase and intelligent incremental learning system, 

importing established sophisticated classifiers becomes inevitable. Examples of such 

libraries include Infer.NET (Minka, Winn, Guiver, & Knowles, 2012), WEKA (Mark Hall, 

2009), and  Accord.NET (Souza, April 2012) (see Figure 4.8). 

 
Figure 4.8:  Logos of the most accomplished Machine Learning libraries - WEKA 

(Mark Hall, 2009), Infer.NET (Minka, Winn, Guiver, & Knowles, 2012) 
and  Accord.NET (Souza, April 2012) 

A further Machine Learning aspect is creating a personalized recognition model for 

larger multidimensional training data. Afterwards, a comparison with the implemented 
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optimized classifiers will provide significant information about the tradeoff between 

speed and recognition accuracy. 

Another fundamental reason for making a comparison between different Machine 

Learning algorithms is that it can serve as a justification of the chosen features and their 

implementation. The latter means that if the recognition rates of both recognizers are 

almost the same then the feature sets are categorizing the activities in clearly 

distinguishable classes, which speaks for their right choice. 

4.5. Integration 
During the implementation of a Sound-based Recognition Framework one should not 

only think of it as a standalone system, but should prepare its integration into a bigger 

system. In this Thesis we prototype an integration as a Class Library (Section 4.5.1.) or as 

a running Service (Section 4.5.2.) into the AdAPT Project (Frey, 2013) (see Figure 4.9).  

 
Figure 4.9:  Illustration of Multi-Agent-based Smart Service Platform used in AdAPT (Frey, 

2013), where Sound-based Recognition with its components provide acoustic 
audio-based knowledge about a given environment. 

4.5.1. As a Class Library 

Integrating the whole Sound-based Recognition Framework as a component into a 

bigger system, or providing its classes as self-deployable units, is a direct way to 

integrate it directly into a bigger system. Therefore, the framework itself and its classes, 

discussed in Subchapters 4.3. and 4.4., should be exportable as libraries to ease their 

importing. Integration as a component provides many benefits like real-time debugging 
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and optimized runtime. However, it might increase the complexity of the system and its 

deployment. 

4.5.2. As a Running Service 

Developing a connection protocol to offer a running service provides a convenient way 

for external systems to access the knowledge of the Sound-based Activity Recognition 

Framework. For example a running recognition system might require supplement 

acoustic information, for cases, where it has doubts in recognizing some event.  

Furthermore, using the framework as a service has the advantage of easy integration. 

E.g. only through some interface, without bothering what is on the other side. 

Depending on the development intentions, the latter can be considered a flaw in cases, 

where one might want to have detailed view of the ongoing computations. 

4.6. Privacy Issues 
Since Ambient Intelligence is tightly embedded in everyday life, it brings fears to both 

users and developers about “a future in which all of our moves, actions, and decisions 

are recorded by tireless electronic devices, from the kitchen and living room of our 

homes to our weekend trips in our cars” (Weber, Rabaey, & Aarts, March, 2005), where 

“Ambient Intelligence, though often designed to enhance freedom and control, has the 

potential to limit freedom and autonomy as well” (Brey, 2005). So when designing a 

system, which monitors the sounds in a private life environment, one should always 

consider meeting the owner’s acceptance instead of forcing him to accept intrusive 

privacy policies in cases where he needs the system for some reason like health care. 

In our current design case, the Sound-based Device Recognition Framework should erase 

all records after extracting the desired features. An option for storing the records could 

be acceptable only during the development period for testing purposes, like changing 

the sound setup and re-extracting the sound characteristics. Furthermore, in a 

deployment phase, it makes sense to provide the user with the choice to hide certain 

activities from the recognizer. 

Another issue arises with centralized server architecture26 and the eventual user 

reluctance to accept being monitored externally, despite promises of data trust. Further 

problems are the breakable security systems, which are often the target of third parties, 

which have great interest of acquiring personal information for reasons including legal 

enforcements (like the possibility to recognize listening of unauthorized music songs and 

forcing a payment for them). So a standalone home system capable of performing all 

designed tasks should be a major priority of development. 

  

                                                      
26

 If parts of the system are outside of users reach, like a cloud recognition service for multiple households 
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Chapter 5  

Sound-based Device 

Recognition Framework 
 

In this chapter we discuss in detail the implementation of a Sound-based Device 

Recognition Framework. We first describe its environment with its characteristics in 

Subchapter 5.1. Then we introduce the framework solution with its concrete 

architecture (Subchapter 5.2.) and the developed Graphical User Interface (Subchapter 

5.2.), which will help us put implementation fragments in the overall development 

picture throughout the implementation details of the Sound Processing (Subchapter 

5.4.) and the Machine Learning (Subchapter 5.5.) components. Finally in Subchapter 5.6., 

we carry out a demonstration, how we cover the process from activity to its device 

recognition. 

5.1. Environment and Hardware Setup 
Since the main goal of this study is to provide device recognition in the home, the 

architecture, implementation and the tests are centralized on this infrastructure. For the 

setup we have a home environment consisting of a single room (see Figure 5.1). For the 

sound monitoring a single microphone is used. We assume there is only one activity 

running at time, with a single user that performs it. However as mentioned in the 

introduction, during certain activities, there may be multiple devices running at the 

same time, like showering and shaving. We call such activities, which consist of 

simultaneous occurring activities, complex activities, and we will try to recognize the 

used devices during them. 
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Figure 5.1:  Illustration of a typical one room home environment27 with its typical 

devices and corresponding locations. One should note that we are 
interested in those devices, which produce sounds. 

The placement of the microphone can be static or wearable, with the first being less 

obtrusive and the second providing cleaner input. In terms of acoustics both placements 

provide similar respective features, as the source is related to the computer or the 

actuator. However switching between static and wearable setup, as well as other 

changes in the placement of the microphone in runtime might affect the recognition as 

well. The reason is that different placement and angles give different frequency 

responses, which are crucial for recognition. One can compare the displacement of the 

microphone in audio recognition setup to installing a distortion lens in front of a camera 

and trust its input data for test after a learning phase before distortion. It is good after 

every new setup to erase the old training data for accurate recognition. 

 

                                                      
27
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5.2. Framework Solution in VS2012 
Our framework is written using C# under Visual Studio 2012. It allows easy transition 

between phone and desktop applications, which is an important feature and provides 

the possibility of transition to a smartphone application or creating a client/server 

architecture, aside from the conventional PC implementation. A drawback in the 

development under VS is the lack of libraries and examples for the specific task of sound 

transformation compared to other languages and platforms like Matlab, but the solid 

.NET framework, which is very useful in other tasks, together with the good debugger 

that Visual Studio offers are making up for the loss. 

Before becoming familiar with all components of the system we will study their 

organization in the main framework project. At first we look at the abstract class 

diagram in Figure 5.2, showing the primary components of the framework, which are 

necessary to complete the process from activity to device recognition. On the top of the 

framework there is a graphical user interface to control all other elements and to 

provide an environment to connect different modules and test them (see Subchapter 5.3 

for details). The two main classes are the Sound Class (Subchapter 5.4) and Machine 

Learning Class (Subchapter 5.5). For a detailed class organization see Appendix A. 

 
Figure 5.2:  Abstract class diagram of the primary part of Sound-based Device Recognition 

Framework. On top sits the GUI, which connects both Sound and Machine 
Learning classes and gives operating power to the user. Both main classes 
have abstract subclasses for their main capabilities and concrete 
implementations of those abstract classes 

5.3. Framework Graphic User Interface 
Writing a GUI to accompany some software development process is nowadays a natural 

consequence and brings dozens of benefits. It provides fast access to all functions and 

combinations of them, and keeps all together in one window. It is also of big importance 

in visualizing some of the sound derivations or to keep live tracking of the features while 

testing. Afterwards, it is the best way to share the work and its results with the public. 

For this reason a GUI was developed in parallel to the main goals and served as a pointer 

to the current development progress. A snapshot of the GUI in live recognition mode 

can be seen in Figure 5.3. 
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Figure 5.3:  Snapshot of the GUI in Live Recognition Mode. On the upper part one can see 
the sound panel for sound related operations and settings. On the lower part 
the recognizer panel with its related operations and settings. Most important 
settings like features set and Machine Learning algorithm are always available 
to enable runtime changes. The rest of the operations are encapsulated in 
different tabs in the recognition tab control 

The GUI is divided in two panels, one for the sound related functions, such as recording 

or visualizing, and second for the recognizer related functions, like its setup and output. 

The GUI parts are also meant to be accessed consequentially. E.g. firstly setting up the 

sound and testing, whether it works. Then choosing the feature set for recognition, 

together with the Machine Learning algorithm. Finally starting recognition, with further 

advanced properties available. 

In order to provide in runtime enabling / disabling of features, also switching between 

different Machine Learning algorithms, both Features and Machine Learning panels are 

outside the Recognition panel tab control, where everything else is encapsulated for its 

concrete usage. 
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5.4. Sound Class 
The Sound Class encapsulates all classes and methods responsible for Sound 

Transformation (Section 5.4.1.). In particular Spectrum Derivation and Feature 

Extraction (Section 5.4.3.). Further important capabilities are Sound Preprocessing for 

Noise Cancellation and Equalization (Section 5.4.2.), Wave File Mixing for dealing with 

multiple activities at same time (Section 5.4.4.), and Wave Recording and File Parsing for 

enabling a flexible input. Less important functions of the sound unit in terms of 

recognition, but important for testing, include sound playback and visualization. Since 

the native sound related libraries provided by Microsoft are not very consistent in time 

in terms of their interfaces and usage, we use an additional library for basic audio 

features, like recording and stream handling, called NAudio28. 

In this subchapter we describe all steps from Preprocessing through to Filtering and 

finally extracting features as illustrated in Figure 5.4. At the end we introduce the mixing 

of sounds for recognition of multiple used devices in complex activities. 

 
Figure 5.4:  Illustration of the main steps of the  Sound Processing unit pipeline 

5.4.1. Sound Transformation 

Here we will get details in Sound Transformation and in particular the performed short-

time Fourier transform, but first we need to describe the buffering and its setup. 

Buffering Setup 

Besides setting up the hardware there is a need to setup the software and its recording 

parameters. When one chooses flexible recording settings, one still has to convert those 

unified metrics for the later transformation, which always results in data loss. So instead 

of bothering with conversion, we fix the recording parameters to unified supported 

constants, which satisfy our needs. Furthermore, our choice will help us to analyze the 

recorded data and the produced features for consistency and effectiveness. 

 

                                                      
28
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The sampling frequency of the recorded sound is set to the most common used 44100 

Hz (also used in Compact Disks). It has been chosen because any hardware supports this 

rate. Not all of the microphones support stereo recording though, which might produce 

some deviations during the hardware setup as well, so the number of channels is 

reduced to one (mono recording). For the sound transformations it is useful to have high 

precision variables, so the bit depth is set to 32 bit signed integer per sample, which 

doubles the standard bit depth value of 16 and is uniformly supported as well. Overall 

the user setup is reduced to choosing the sound input and options for standard time 

recording, recording storage confirmation, and visualization modes (see Figure 5.5). 

A further feature of the sound unit and its visualization is triggered by clicking the 

graphic, which makes a snapshot of all chart data points and saves them to the database 

in snapshot section as XLSX29 and RAW30 formats. The later can be used for in depth 

analyzing and visualization using different tools, like Microsoft Excel or Matlab. For 

example, all image examples in this thesis are imported in this way. 

 
Figure 5.5:  Illustration of standard time recording of 10 seconds using microphone input and 

displaying the intensity in the graphic (Y-axis amplitude, X-axis time in 
deciseconds) 

To obtain better FFT precision we set the FFT buffer to 4096 samples. For record frames 

we’ve chosen a variable time length, which is at least twice the FFT buffer size. However 

to standardize data for tests there is a standard record length checkbox for 10 seconds. 

Short-Time Fourier Transform Implementation 

For the Short-Time Fourier Transform we use a C# translation of the C++ implementation 

by S.M. Bernsee (Bernsee, September 21, 1999) with the exact implementation adapted 

for C# by Mark Heath in NAudio. Since the algorithm provides imaginary valued output 

we map it to real numbers using Euclidean distance to obtain the absolute values of the 

complex numbers. We use overlapped buffering to overcome the loss of sound data at 

the edges of the windows (See Figure 5.6). 

                                                      
29
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Figure 5.6:  Illustration of window overlapping to overcome buffer leaks after windowing. 

Line above is the source buffer, while the redline represents the three 
overlapping buffers sent for FFT. 

For a Window Function we use primary Hamming Window with two supplement choices 

– Blackmann-Harris and Hann Windows shown in Section 2.2.3. One can also skip usage 

of Window Function. After the transformation, the resulted spectrum is displayed in the 

sound related part (see Figure 5.7). 

 

 

Figure 5.7:  Screenshot of spectrum visualization using Hamming window of frequencies 
between 80 and 5000 Hz (X-axis) with their relative energies (Y-axis) 

After making the Fourier transformation we extract the frequency range between 80 Hz 

and 5000 Hz for further recognition. This frequency range contains the most 

distinguishable features in the spectrum, according to our manual study and automated 

evaluation of different signals. Further reasoning for this choice is the unsteady behavior 

of the frequency response, which different microphones provide (see Figure 5.8). For 

further disturbances in frequency response of our chosen range we implement various 

Filters at spectrum level, as explained in the next section. 
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Figure 5.8:  Frequency response plot for build in microphones of different 

iPhone series31 displays large deviations in lower and higher 
frequencies. 

5.4.2. Sound Filtering 

Sound Filtering is important step to overcome some issues with microphone or 

environment noise, which often occur in practice. We will first describe the importance 

and implementation of a High-Pass Filter to overcome irregular deviations in frequency 

response for some microphones and then we introduce straight forward Noise 

Cancelation to eliminate low level and evenly distributed environment noise. 

 
Figure 5.9:  Filter tab screenshot with options for, Noise Cancelation, High-pass Filter 

setting with visualization option, and Window Function choice. Note, that after 
making changes to some on those options there is usually a need to extract all 
features again from their source sound and save them 

                                                      
31 By Faber Acoustical LLC at http://blog.faberacoustical.com/2010/ios/iphone/iphone-4-audio-and-

frequency-response-limitations/ 

 

http://blog.faberacoustical.com/2010/ios/iphone/iphone-4-audio-and-frequency-response-limitations/
http://blog.faberacoustical.com/2010/ios/iphone/iphone-4-audio-and-frequency-response-limitations/
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High-Pass Filter 

Most microphones are very prone to deviations in lower frequencies (see Figure 5.10 

above), which made us implement a High-pass Filter to overcome those problems.  

 

 
Figure 5.10:  Plots of the spectrum between 80 Hz and 5000 Hz of the microphone used for 

later for tests with and without High-pass Filter 

In this work we implement a discrete version of a so called First Order High-pass Filter 

using the following formula: 

        [     ]           [     ]
 

  ((                       )             )
 

The effect of applying the filter with                   of 100 and Coefficient of 0.02 

can be seen in Figure 5.10. 

Noise Cancelation 

As mentioned in Section 4.2.1., our recognition is in indoor environment with single 

inhabitant, so we assume that the single inhabitant and his actions are the main source 

of sound signals. The other sources are the devices performing periodic tasks, like air 

conditioner while normalizing the room temperature. In this development phase we 

assume, that there are no sound signals outside our home environment, which are 

louder than those occurring inside. 

After changing the High-pass Filter, Noise Cancelation, or the Window Function, one 

should reconsider extracting all features, which use the spectrum domain, from the 

recorded test data again. Most affected features are Average Loudness, Pitch Energy, 

Spectral Flatness and Spectral Roll Off. For Zero Cross Rate it makes no change, while for 
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the rest of the features one might perceive small deviation in the feature values, which 

still could make a big difference, especially for the silent activities. 

5.4.3. Features Extraction 

After transforming and filtering the sound it is time to extract features. First we will 

study different sound spectrums and then we will justify the decision of which features 

are worth implementing. Then we will explain the chosen features from in the context of 

device recognition with their implementation. 

Acoustic Characteristics of Activities and Devices 

In order to make a decision which features we should select we first studied the nature 

of the sounds produced by devices using speech and music analysis software (see Figure 

5.11) (see Appendix D. and E. for further spectrograms of device sounds). The first 

notable difference from the mentioned domains was that our signals were most noise-

like, similar to the environmental sounds studied by (Chu, Narayanan, & Kuo, 2009). So 

we had to consider a specific feature choice, different from the one used by speech and 

Music Recognition fields. 

 
Figure 5.11:  Plot of 10 second recording of speech (first quarter), music (second quarter), 

epilator (third quarter) and hair trimmer (last quarter). Above we see the 
waveform of the recording and below its spectrogram between 80 Hz and 
5000 Hz. 

A further remark we made is that, for activities performed with electrical devices it is 

typical that most of the defining part of the sound comes from its electrical motor, 

which is the actual sound source. Also interesting was that other activities performed 

with non-electrical device, like showering, had spectrograms similar looking to electrical 

ones. 
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Overall, we made the conclusion that most of the devices produce monotonic sounds, 

which are noise-like. Their further characteristics are not steady and are very 

implementation dependable. For example, calculating the pitch of a speaker is not a 

hard task compared to calculating pitch of a hair trimmer, as evident in the spectrogram 

in Figure 5.11. So after changing the feature derivation method, one should re-extract 

the updated feature from the training data to avoid classifier confusion. 

Implemented Features 

After getting familiar with the nature of sounds produced by devices, we introduce the 

implemented features in the Sound-based Device Recognition Framework (see Figure 

5.12), also previously explained in Section 2.2.4. 

 

Figure 5.12:  Features panel screenshot displaying the enabled 
features for recognition together with their current 
value in the according local recognition metrics (see 
the list of features below for details over the metrics) 

We present the features this time in order of their addition to the Framework over the 

implementation process, which was influenced by our perception of sound and the 

conclusion from the last subsection. For example, the first perceivable feature of a 

sound is its loudness, so we chose to start with it. Then, in a mathematical perspective, 

zero crossings are one of the most important characteristics of a function, together with 

its maximums and minimums. Subsequently, we implemented a set of 8 features, for the 

task of audio-based device fingerprinting. 

Loudness 

We compute it by calculating the average cumulative energy of the spectrum over the 

recognition interval. Note that this is a relative measure and is very dependent of any 

Filters and especially Noise Cancelation algorithms. 

Zero Crossing Rate 

Zero Crossing Rate is the only feature derived from the time/amplitude domain (e.g. 

without processing the raw signal), after deciding to compute loudness after the 

filtering. To count zero crossings we check whether we have a zero crossing after each 
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received sample. In order to compute the Zero Crossing Rate for a given time interval 

and number of zero crossings we use following formula: 

    
 

 
(              ( )) 

Where               ( ) is the number of zero rrosses over time period  . For 

example if we have zero cross count                         for time         , for 

our zero cross rate we obtain                         . Furthermore, for a simple 

periodic signal, this will mean a frequency         , which is the fundamental 

frequency    as well (recall that two zero crosses build one period of the signal, so for 

the frequency   of a simple signal we have                for a     measured in 

zero crosses per second). We use this loose relation later, when defining common metric 

for the different feature metrics. 

Furthermore, in order to obtain bigger floating point precision and at same time to 

minimize floating point error, the exact computation of     is different than straight 

translation of its formula. 

Pitch Detection  

To detect the Pitch we scan the spectrum for the highest value there. Its functionality 

was tested via frequency tests. The measure of the Pitch is in Hertz. 

Again, since we are dealing with variable size buffers, which are discrete representation 

of the frequency band, we need to make couple of calculations to compute obtain the 

frequency value in Hertz using following formula:  

             
           

           
 

Where             is the index where the maximum value occurred in the buffer, 

which has size of            . Together                         build up the 

relative position in frequency between   and           . Note that the value at the 

            might be different according to the chosen Window Function and the 

exact FFT computation. Furthermore, due to the discrete representation of the 

spectrum, the computation of the Pitch is exact with possible error of          

                      . 

Pitch Span 

Straight pitch produces monotone sound. Varying pitch with steady average value 

sounds like whirring. This is also the only feature, which is highly dependent of the 

recognition buffer length, since the smaller the recognition buffer length, the smaller the 

chance to observe bigger pitch span. One can think of this feature also as a temporal 

feature. The future inclusion of further temporal features is also of high interest as 

stated later in the conclusion (7.2). The measure of the pitch span is in Hertz. 
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Figure 5.13:  Plot of spectrum of a hair trimmer illustrating that determination of the Pitch 

and the First Formant are hard task. For the current snapshot the Pitch would 
be calculated as 1975 Hz, while the First Formant, would be 2234 Hz. One 
should note that over time those peaks switch, making the pitch vary between 
the mentioned two values, which is the way we compute the Pitch Span. Red 
points represent the beginning and the end of the interval for computing the 
Pitch Energy. 

For some devices, like a vacuum cleaner (see Figure 2.12), the Pitch is steady and doesn’t 

vary over time, while for some other devices, like a toothbrush, the pitch varies over 

time. In some cases, Pitch Span refers to the distance between the Pitch and the First 

Formant over time, due to ambiguity of automatic distinction between local maximums 

(see Figure 5.13). 

Pitch Energy 

This is the amount of energy as part of the whole energy, which surrounds the pitch in a 

10% rectangular window (e.g. the 10% of the signal around the pitch as middle point). In 

Figure 5.13 Pitch Energy refers to computing the energy between two local peaks left 

from the pitch and two peaks right from it, which is between 1729 Hz and 2221 Hz as 

marked with red points. 

First Formant  

We compute the First Formant by finding the first local maxima in the spectrum after 

the pitch. We start the search after skipping some indexes from the spectrum array in 

order not to misinterpret parts near the Pitch as First Formant. The metric of the First 

Formant is in Hertz. As we can see in Figures 5.11 and 5.13, for some devices like a hair 

trimmer, this feature is hard to obtain and provides often ambiguous results. 
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Spectral Flatness 

This is an important measure, which is very useful to distinguish meaningful sound from 

noise.  The formula to compute Spectral Flatness is: 

                 
√∏         (     ) 

 
 

∑         (     ) 
 

 

 

Where   is the size of the spectrum buffer         (     ) is the bin value at the 

given       position. 

Again due to possible floating point precision problems occurring in computation of the 

product the exact computation of the Spectral Flatness is done via intermediate 

calculations of the product chunks by using the following mathematical formula 

√  
   √ 

 
√ 
 

 

Where   and   represent two positive real numbers. We should also note that since 

some of the spectrum indexes might be zero values, we exclude from the overall 

calculation, because their presence might lead to division by zero in the intermediate 

computations. 

Spectral Roll Off  

As mentioned in Section 2.2.4., Spectral Roll Off is important measure about the energy 

distribution over the spectrum. For its computation, we determine the point where we 

have 95% of spectrums total energy. We measure the Spectral Roll Off in Hertz. 

5.4.4. Sound Mixing 

Mixing sounds for their recognition is a novel approach in the field of Sound-based 

Activity Recognition. It has been discussed in the field of Music Recognition for mixing 

different instruments in order to attempt their combined recognition (Wieczorkowska, 

Kolczyńska, & Raś, 2008). However the technique used here is slightly different and 

avoids volume normalization (see Section 2.2.2.), which is important for musical 

instruments, since they can play at different intensity, but mostly irrelevant for devices, 

which often have steady loudness. We are aware that defining which activities can occur 

simultaneously is a hard task. That’s why in our Framework we implement up to three 

mixing possibilities, mostly for research purposes. Each mix consists of at most three 

records (see Figure 5.14). 
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Figure 5.14:  Sound Mixing Tab, which enables mixing of two or three of 

the available activities. 

To create a mix of recordings we iterate through their values and add them. Often when 

mixing signals there occurs a problem called Audio Clipping (see Figure 5.15). It happens 

when the sum of the mixed values exceeds its range. A way to avoid clipping is by 

lowering the amplitude of the whole mix, but by doing this, one obtains erroneous 

information in some features like Loudness. We overcome the problem of clipping in our 

audio setup by adjusting the recording levels in the installation step. Furthermore, 

mixing sounds with lower overall amplitudes might introduce lower precision, due to 

rounding error of the chosen bit dept. However, our choice of 32 bit depth provides 

plenty of resolution even at lower recording levels. 

 
Figure 5.15:  Plot of single period of the function from Figure 2.6 added with itself (blue 

line). The discretization of its mix is out of the interval [-1,1], so all values 
out of the interval will be lost (Red Part) and we will obtain only the 
rounded discretization  (Green). 
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A further benefit of sound mixing for recognition can be seen if we compare it with 

video-based recognition, where one needs complex modelling in order to simulate or 

recreate how someone would look like when performing simultaneously multiple 

activities, in order to recognize them. 

5.5. Machine Learning Class 
Unlike the pipe process nature of the Sound Class, which constantly transforms the 

incoming sound signal, the Machine Learning Class evolves with time in terms of its 

knowledge and capability (see Figure 5.16). In this subchapter we introduce the Activity 

Class, which encapsulates information for the different types of activities and the 

devices used to perform them (Section 5.5.1.). Then we discuss automatic prioritizing 

and selecting features (Section 5.5.2.), as well as their metrics and normalization 

(Section 5.5.3.). Finally after introducing the different activities and their feature sets, 

we study the implemented Machine Learning algorithms for classification (Section 

5.5.4.), together with the imported Machine Learning techniques (Section 5.5.5.). 

 
Figure 5.16:  Illustration of the evolving nature of the Machine Learning 

unit, which increases its knowledge with the occurring 
training and tests, and the feedback by the user 

5.5.1. Activity Class 

In this section we define our activity class, which comprehends different types of 

activities, which are of interest in this thesis, due to the various device types used to 

perform them. Afterwards we explain the way we store the gathered information. 
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Activity and Device Types 

In our Framework the Activity Type encapsulates all types of activities, which produce 

sounds for time intervals bigger than our smallest recognition window of 0.1 s. Since we 

are interested in recognizing the devices used in activities we introduce a Device Type 

for devices used to perform the according activity (see Appendix B for mapping between 

those two type). One should also note that, not all of the activities are performed by 

humans. For example, a heating element starts heating alone, when the temperature 

falls beyond given threshold. We define the state of device as active, if they disperse 

sounds. According to the heater example, it is on standby or inactive while measuring 

the temperature and active while heating. 

To enable deeper knowledge about the used devices there is a checkbox to determine 

whether the activity is performed with electrical device. On this basis one can make 

statements in recognition whether the recorded activity is performed with electrical 

device. For example if we have five activities like brushing teeth with an electrical 

toothbrush, cleaning using a vacuum cleaner, coffee making using a moka pot, 

showering and speaking, we can separate those activities into three categories – 

performed with an electrical device (first two), performed with non-electrical device 

(second two)32 and the last one performed without any device at all (see Figure 5.17). So 

after issuing recognition the recognizer assigns different probabilities for the occurrence 

of each activity, and by those probabilities, one can make statements as to which of the 

currently defined three activity categories this was. A sample formula to determine this 

could be, by looking, whether all electrical devices score probability over some 

threshold, like 0.5, while all other activities score probability below this threshold (see 

sample mathematical definition below). 

                 ( {  }     )   ( {   }     ) 

 
Figure 5.17:  Example of possible activity division into three categories – using electrical-, non-

electrical-, and no-device. At the lowest level we see the concrete activities with 
their current occurrence probability. One can clearly make the conclusion from 
those probabilities, that the occurring activity is most likely performed with 
electrical device, because both listed electrical devices obtain much higher 
probability according to the classifier, while making a distinction between non-
electrical device and no device at all is ineligible since both classes obtain similar 
probability. 

                                                      
32

 Indeed, one usually heats the moka pot with a hot-plate, and the water for the shower with a boiler 
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Activity Database 

The Sound-based Device Recognition Framework builds up its Activity Database with the 

user assistance via Supervised Learning, as explained in Section 2.3.1. So we rely on the 

user to supply the recognizer with sufficient information about his activities. We should 

note regarding the difference between activity and its devices, discussed in Section 

2.1.1., that the user still labels an Activity Type and Device Type combination. This is so, 

because from user’s perspective the actual activity is known, while from Sound-based 

Recognition perspective we cannot apply an inference from device to activity with 

confidence. 

 

Figure 5.18:  Snapshot of the process of labeling an activity after making a record and 
computing its features. The user first chooses the activity type from the 
provided list of activities or he defines it himself. Then he enters further 
information, whether there is a device used to perform this activity and enters 
information about the device. 

In the Frameworks user interface after recording some activity, there is given the 

possibility to label it with its information details such as used device to perform it (see 

Figure 5.18). To simplify the addition process the user can choose between listed 

activities. 

After gathering different activity sounds and extracting their features, it makes sense to 

have them organized in some way (see Figure 5.19). In Speech Recognition there are 

collections of spoken texts and their transcription, usually called Speech Corpus. 

Similarly we gather labeled recordings together with extracted features, in a corpus 

called Activity Database. It stores all activities with their corresponding fields and stats in 

a single file, which is synchronized after changes. The file format is either raw text file or 

Excel Worksheet. In order to meet the Privacy criteria from Subchapter 4.6 one might 

consider encrypting those when it comes to eventual deployment. 
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Figure 5.19:  Snapshot of the setup tab, where one can browse current activities 

and Add/Edit/Erase the selected (only single selection possible). 
Further setup capabilities include choosing the database storage type 
between raw text file or Microsoft Excel file, as well as the possibility 
to open the storage with the corresponding default software. 

In our frameworks GUI we provide database access with basic functions. Such include 

erasing activities, which are not performed anymore the way they were trained. While 

other advanced operations, such as editing the activities by altering their feature values, 

or adding activities with providing exact feature values, remain only for functionality 

purposes and are thus not enabled in run mode. One can also choose to view the 

database in a convenient way according to the selected export type, which is very handy 

for applying analytical operations on it. 

5.5.2. Automatic Feature Selection and Priority Determination 

We implement Automatic Feature Selection and Feature Priority Determination in a 

similar way. However they both have different usage scope – Feature Priorities are used 

only by the Most Confident Algorithm, discussed in Section 5.5.4.  

In our implementation we iterate through the features check whether they remain static 

for different activities, thus making them unimportant for categorizing a concrete set of 

activities (see Algorithm 1).  
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FeatureSelection (SpanThresholdCoefficient STC, DistanceThreshold DT) 

Enable all features 

For each Feature F 

Find the largest distance LD of F between all activities 

Calculate and store |LD – DT| in FC 

 if (FC < STC) 

  Disable F 

 

if all features are disabled 

 Set the feature F with largest corresponding FC 

 if there are multiple such features 

  Choose the one with less computation steps 

 

end  
Algorithm 1: Pseudo code of Automatic Feature Selection 

Another way to implement feature selection is to look for features, which vary a lot 

between different records of same activity, thus providing erroneous information. 

However, for this case one needs bigger training data for each activity type, which is the 

reason why we stick to the first variation of feature selection. 

5.5.3. Feature Metrics and Normalization 

For manually implemented Machine Learning algorithms it is important to define mutual 

metrics for all the features in order to measure them. Another concern is that by 

converting features to common metrics, one also associates different importance or 

weight with the choice of the conversion coefficient. For our choice of metrics we use 

the knowledge that all our sound features share the same source. The latter provides 

information about the connection between the features, which can be obtained by 

studying their derivation method and their role in defining the sound. In the GUI one can 

define his own set of metrics different to the displayed default one like shown in Figure 

5.20. 
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Figure 5.20:  Screenshot of the metrics tab with the metrics 

default values and the priorities default values 

One should note that priority is used only for the Most Confident Algorithm described in 

next section. It is about the priority of the feature alone, since we are aware of the 

possibility that combination of features with lower priorities might perform better than 

combination of same size consisting of features with higher priorities. 

5.5.4. Implemented Classifying Algorithms 

After introducing our activity database and the different features with their common 

metric, in this section we describe the two implemented classifying algorithms, both 

with intension of high efficiency recognition. 

Nearest neighbor 

As we first described in Section 2.3.2, we implement the Nearest Neighbor algorithm 

with single reference search. E.g., either having only one reference in the training set for 

some class, or averaging multiple references to obtain single reference value. We do this 

in order to enable rapid search for result, knowing that the number of classes is 

relatively small and relying on the feature choice to be suitable. 

With a single reference set a possible behavior for false recognition might be to replace 

the activity stats with the new one, or to replace only those selected for the recognition, 

which appeared false. One can use the feedback as training data too and compute an 

average value for the reference values, or cleanup the largest deviations from an 

average value. 

One-Dimensional 

In the one dimensional case of Nearest Neighbor we look for the activity with feature 

statistics having smallest distance from the measured reference feature (see Algorithm 

2). 
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NearestNeighbor1D (Feature F) 

Create a sorted list L of activities according to their distance in statistics 

from reference F. 

return L // first element of L is the nearest neighbor  
Algorithm 2: Pseudo code of one-dimensional Nearest Neighbor, which returns a sorted 

list of activities according to their distance in given feature from a 
measured reference 

In the runtime computation we exclude the runtime for returning a full sorted list 

neighbors according to their distance, because it is done only for debugging reasons. So 

the total runtime for the one-dimensional Nearest Neighbor is  ( ) for   number of 

activities. The latter could be optimized to  (    ), with utilizing binary search and 

keeping the statistics sorted. 

Multi-Dimensional 

In the multi-dimensional Nearest Neighbor we run single dimensional search for all 

features according to common metrics (see Algorithm 3) (see Appendix C for a sample 

implementation). 

NearestNeighborMD (Statistics S) 

Convert all features in S to unified metrics and sum them in S’ 

Create an empty sorted list SL of activities according to distance from S 

for each activity A 

 Convert all features from A into unified metrics and sum them in F’ 

 Compute the distance D between F’ and the features from S’ 

 Add D and A into SL 

return SL // first element of SL is the nearest neighbor  
Algorithm 3: Pseudo code of multidimensional Nearest Neighbor algorithm 

The runtime of multi-dimensional Nearest Neighbor  (  ) for   number of activities 

and   number of enabled features. 

Most Confident 

As we will later see in the evaluation, some features are more trustworthy than others. 

In order to exploit this property, we developed further optimization of the Nearest 

Neighbor algorithm, which breaks it and returns an intermediate result according to 

applied confidence criteria. We call this type of algorithm Most Confident33. We 

considered a couple of possible implementations of such algorithm. The first one is to 

return intermediate result of NNMD after being confident enough. The second one is to 

                                                      
33

 Not to be confused with some name conventions, which use the word confidence for probability 
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return the NN1D according to only one prioritized confident feature. We chose the 

second variation, since the first one requires knowledge not only about the different 

features alone, but also about their combination. With deeper knowledge about the 

feature and their behavior in combinations with other features, one might implement a 

combination of the both mentioned variations. 

In detailed view (see Algorithm 4), the implemented Most Confident algorithm runs a 

sequence of one-dimensional Nearest Neighbor algorithm. After each run it computes 

relative confidence check, whether the intermediate result is trustworthy. In case none 

of the intermediate results met the criteria, it returns simply the multi-dimensional case 

of the Nearest Neighbor algorithm built up with the intermediate computations. 

MostConfident (Statistics S, ConfidenceThreshold T) 

Sort the list of features from S according to their priority in LF 

while (LF is not empty) 

 Take first feature F from LF 

 Run NearestNeighbor1D(F) and store recocnition result in RR 

// measure the relation of distances between F 

  // and its two Nearest Neighbors (or first two elements of RR) 

 Run CalculateConfidence(F, RR) and store confidence in C 

 if (C > T) 

  return first element of RR  // e.g. current result 

 

// none of the features passed the confidence test 

return multi-dimensional Nearest Neighbor computed using all stored RR  
Algorithm 4: Pseudo code of Most Confident algorithm which iterates through the 

different feature types according to their priorities and returns a result 
if being confident enough. If not the case it eventually returns the 
multidimensional version of Nearest Neighbor. 

This algorithm makes it possible to compute fast results in runtime of  ( ) for best case 

scenario of positive confidence check, where   is the number of activities. For taking 

average values the runtime will be  (  ), where m is the maximum count of stats for 

some activity (taking the average of those would be  ( ), thus the total runtime of 

 (  )). Worst case will be as the Multi-Dimensional Nearest Neighbor, which 

is  (   ), where l is the number of selected features. 

One should note that there are further optimizations possible with intelligent choice of 

the data structures. Such include pre-computation of the average statistics during 

training to get rid of the   factor. With keeping the data sorted, one can reduce the   
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factor to     . With even a bigger redundancy, consisting of sorting the training data for 

every set of features, one can get rid of   factor too. Overall, we provide a possibility of 

worst case total result search time of  (    ) and best case with direct search hit of 

 ( ). 

5.5.5. Imported External Libraries 

In both of the implemented algorithms we exploited the setup to boost the runtime of 

result search. However, there are numerous interesting Machine Learning tasks like 

building an incremental learning system, which smartly uses large sets of training data. 

The latter can be used to build up distribution models, out of which one can make 

precise predictions about some unknown input and its probability to be some of the 

known classes (recall Figure 5.17). For such advanced purposes we import Infer.NET 

(Minka, Winn, Guiver, & Knowles, 2012), a state of the art Machine Learning library. 

Further reason to include external library is to test the efficiency of the implemented 

algorithms. 

Infer.NET 

The Infer.NET library implements the Bayes Point Machine algorithm (Herbrich, Graepel, 

& Campbell, 2001)(introduced Section 4.4.) in a standard Supervised Learning setting 

and is trained via Expectation Propagation (Minka T. P., 2001). 

Infer.NET works by compiling a model definition into the source code needed to 

compute a set of inference queries on the model (see Figure 5.21), therefore providing 

numerous integration advantages over other established libraries, such as those 

mentioned in Section 4.4.2. WEKA or Accord.NET, including runtime optimization, 

detailed debugging, code transparency, model exporting. 

 
Figure 5.21:  Diagram summarizing the inference process of Infer.NET (Minka, Winn, 

Guiver, & Knowles, 2012) 

In our multi-class setting for device classification, every device class has an associated 

weight vector with standard Gaussian vector priors. The device class with a 

corresponding feature vector is defined by the arg-max of its score under each class. The 

score is defined as the inner product between the features of the data point and the 
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weight vector plus some added noise. The factor graph corresponding to Bayes Point 

machine is shown in Figure 5.22. 

 

Figure 5.22:  Illustration of the multi-class classification with Bayes Point Machines 
(Minka, Winn, Guiver, & Knowles, 2012) 

Furthermore, Infer.NET is a perfect choice to satisfy the Adaptivity criteria described in 

Section 4.4.2. To build an incremental learning system we connect the feedback from 

the user and use it to obtain posterior distribution of learned data. 

We should note that the integration of several classifiers has the potential of interesting 

opportunities for their usage. Besides combining features for recognition one might also 

consider combining the Machine Learning algorithms as well. According to (Provost & 

Fawcett, 2001), a wise choice of classifiers beats the recognition rate of any of them 

separately. 
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5.6. Process from Activity to its Device Recognition 
After getting familiar with the Sound-based Device Recognition Framework and its inner 

mechanisms, in this subchapter we provide a revision of the process from activity to its 

device recognition introduced in Chapter 4 (see Figure 5.23). 

 

Figure 5.23:  Revision of the process from occurring activity to its device recognition 
based processing and classification of captured acoustic signals 

For this purpose the user first has to train the recognizer (Section 5.6.1.) and then we 

can use it for static recognition (Section 5.6.2), as well as for real-time recognition 

(Section 5.6.3.). At the end of this subchapter in Section 5.6.4., we explain also the 

interface for integration, which satisfies the concept from Subchapter 4.5.  

5.6.1. Training 

In the training phase the user labels his recorded activities (See Figure 5.24). This is a 

form of manual event detection, meaning that the user identifies his activity timing 

alone and provides the information to the recognizer. 

 
Figure 5.24:  In training phase the user makes records and labels them 

If the added record already exist in the database, the recognizer uses it as further 

training information for the selected class. 
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5.6.2. Recognition 

In the recognition phase the user asks the recognizer to make a guess about some 

recording as shown in Figure 5.25. After attempting recognition, the user can provide 

feedback to the recognizer and correct him if he decides to do so. 

 
Figure 5.25:  Snapshot of a recognition attempt. We can see on the label right the 

recognition result, and upon what features it is based. The user is given 
a chance to provide a feedback whether the recognition was good. If 
the recognition was bad, the user may also correct the recognizer. 

5.6.3. Real-Time Recognition 

Real-time recognition is an important characteristic of every pattern recognition system 

(see Figure 5.26). Here we have a flexible system for real-time recognition, which 

enables changing the feature set for recognition with the Machine Learning algorithm 

while running. The recognition intervals are between 0.1 s and 10 s. Note, that the 

training data is usually recorded with 10 s intervals as mentioned. Furthermore, for time 

intervals below one second pitch span feature is automatically disabled, because of the 

impossibility to gather sufficient and reliable temporal information of this type in such 

small periods of time. 

 
Figure 5.26:  Live Recognition mode enabling feature and Machine Leaning algorithm 

selection, during a real-time recognition with time intervals between 0.5 s 
and 10 s. 
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Viewed in depth, the real-time recognition is a non-stop interaction between the two 

main components of the software system – Sound Unit and Machine Learning Unit. The 

first one constantly buffering the incoming input from the environment and extracting 

different features, while the second one periodically pulls the current state of the 

features and issues recognition (see Figure 5.27).  

 
Figure 5.27:  Live recognition dataflow diagram showing the interaction between the 

Sound Processing unit, which is constantly buffering the recorded sound and 
extracts features, while the Machine Learning component starts recognition 
after some point of time 

5.6.4. Integration Interface 

Here we describe our integration interface, which satisfies the described one in 

Subchapter 4.5. We first provide the integration possibilities as Class Library, then as a 

Running Service. 

Class Library 

In order to integrate the project to class library, one has to change its output type to a 

class library as shown in Figure 5.28. 

 

Figure 5.28:  Changing the output type of the project to class library for integration 
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After compiling to class library one can access the whole framework as a complete 

solution, as well as both of its namespaces for Sound Processing and Machine Learning 

separately (see Figure 5.29). 

 
Figure 5.29:  Illustration of best exporting opportunities of the Framework and its 

namespaces – Sound Namespace for Sound related operations and ML 
Namespace for Machine Learning related operations. 

Service 

Since the described Sound-based Device Recognition Framework encapsulates all the 

logic for Sound Processing and Machine Learning, we rely on the client providing sound 

recordings via TCP/IP a connection34. So the first step is to establish connection, after 

which the GUI acting as a server starts to listen for commands. There are two 

commands, which the user has to choose – one for training and one for recognition. 

They are defined as follows: 

 Train <Activity, WAVE File> 

 OK    // Confirmation

 

 Recognize <WAVE File> 

 Activity    // Recognition Result  

One should note that according to the definition of those commands, obtaining a real-

time recognition requires a connection of at least 176400 bytes per second for the wave 

data plus the additional bytes for the commands and the WAVE File headers (recall 

Figure 2.8). One can loosen up such connection requirements if he considers a mixed 

integration. For example, by integrating the Sound Class into a device in order to send 

only the features to the Framework for recognition. 

                                                      
34

 Group of communications protocols used for the Internet and similar networks 

SoundRecognizer 

ML Sound 
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Chapter 6  

Evaluation 
In the evaluation of the Sound-based Device Recognition Framework, we evaluate all 

important aspects of the developed system, such as its recognition accuracy, automatic 

mixing and automatic feature selection. We concentrate on the functionality of the 

framework at its current development stage, and show that our system provides a solid 

base for further developments. In Subchapter 6.1., we define our test environment and 

its setup, as well as our test corpus and software test module. Then, in Subchapter 6.2., 

we present our experimental results. 

6.1. Test Setup 
In our tests, we cover a large variety of devices that produce different noise in a home 

environment. In Section 6.1.1 we introduce these devices and we specify our hardware 

setup. In Section 6.1.2 we present our software module for automatic testing. 

6.1.1. Test Environment Setup and Corpus 

We perform our test in a home environment. We select a 25 class problem consisting of 

20 devices, three complex activities with two devices, speaking and silence. In 

comparison, most of the related works, with similar test environment to ours from 

Subchapter 3.4., are usually dealing with classes of a size between 10 and 15 entities. 

Similarly to other works, we perform 6 records per device and use one record for 

reference, while the other 5 are for tests. 

Zone-wise our environment can be separated into three activity zones – zone for 

personal hygiene, zone for preparing meals and zone for relaxing and socializing (see 

Figure 6.1). Zones can be separated either in separate rooms or locations in one big 

room. Furthermore, almost all tested activities are performed at their corresponding 

place, excluding vacuum cleaning (moving around the room), hedge cutting (also at 

different locations). Devices, which had strongly bounded locations were Fridge, Coffee 

Maker (Moka Pot), Kettle, Shaker (Blender), Washing Machine, Toilet, Absorber, 

Microwave, Heater and Music Centre. 
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Figure 6.1: Visualization of our simulated environment with three activity zones 

and their corresponding devices. Hedgecutter is in brackets, because it 
occurred outside, despite being captured indoors. Similar to that the 
Chain Cleaning occurred in the corridor. 

Besides the conventional devices used in a home, we tried to make the recognition 

problem harder by adding a Hedgecutting activity, which occurred outside of our test 

environment, but still was captured indoors. We also included a Chain Cleaning activity, 

in order to increase the number of non-electrical devices and the variety of the devices. 

Mixed1 is a complex activity of simultaneous Showering and Toothbrushing with usage 

of respective Shower and electrical Toothbrush. Mixed2 is cleaning while blending at 

same time, with Vacuum Cleaner and Blender. Mixed3 is actually performed by a person 

cutting hedges from outside with a Hedgecutter and by a person trimming hair with 

Hairtrimmer. 

The only activity without device was the speaking activity, which should be correctly 

identified for future developments of the framework, where it might include Speech 

Recognition components. In parallel, the music listening activity can be used to 

recognize the songs listened to with an external library, besides providing information 

about the usage of a HiFi system. Furthermore we added a silence entity despite being 

neither device nor activity itself, due to the fact that with an average microphone, like 

the one we used, the recordings of Fridge and Shaving were almost the same as those of 

silence in terms of their volume levels and spectrum shape. Furthermore in integration 

of the system into a bigger recognition system recognizing silence as a separate entity 
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might present some vital information, which might be crucial for differentiating some 

entities, like mentioned in Section 2.2.4. 

For our recordings we use a single microphone. We make 10 second mono records at 

44100 Hz rate and use FFT Buffer size of 4096 samples. It is also important, that the 

sounds are actually recorded from activity that really occurs. E.g. no playback recordings 

were indexed.  In out tests, we made all records with manual event detection using our 

framework. 

6.1.2. Software Test Module 

In our software module for automatic testing we provide different opportunities to test 

various aspects of the system (See Figure 6.2), including: 

 Test all combinations of features for a given test corpus via computing their power 

set. This provides important information about the best feature combination, as well 

as the worst. Furthermore, it can be used to identify the best performing derivation 

method. 

 Test different permutations for given number feature set size in order to find out the 

best performing. Indeed, this is a subset of the feature power set of all features, but 

sometimes with larger test corpus it takes a lot of time to compute the power set of 

all features. 

 Test different provided algorithms for finding the best algorithm. 

 Provide automatic feedback, as if the user would. This is an option, which makes bin 

sense with less training data, where the single reference is vital. 

 Provide spatial information to the recognizer, as if there are multiple microphones 

installed, or tracking. 

 After tests the test module cleans all information from the Activity Database, but 

there is an option not to do so. Such an option is important to see how real-time 

recognition performs. 

 If none of the options is selected, the test module runs the tests with the selected 

features and algorithm, as if the user ran them. 

It is also worth noting, that before each test, besides setting up the Machine Learning 

parameter, one can change Sound Processing settings as well. 

We perform our experiments in two steps. First we identify the feature set with the 

highest recognition accuracy. Second, we run detailed tests with the set in order to 

study in details its obtained results. 
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Figure 6.2: Test for power set of all features to identify the best combination. In 

the first column of the list we see the feature combination in a decimal 
notation, while its selected bits represent the enabled features. In the 
second column we see the number of correct recognitions. In the 
current snapshot we see Total Tests Size of 150 and Training Size of 
25, meaning 125 performed tests. So 122 hits means recognition 
accuracy of 97.6%. 

As mentioned, in our current tests we first test power set of all features to determine 

the best performing set (see Figures 6.2 and 6.3). If some features have the same 

recognition accuracy then we choose the minimized set of features for best result. In 

case of a conflict for the number of selected features, we choose those with minimal 

costs similarly to (Bolón-Canedo, Porto-Díaz, Sánchez-Maroño, & Alonso-Betanzos, 

2014). 

 

Figure 6.3: Detailed view of the tests after being performed for further statistical 
operations. 
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After identifying the best performing feature set, we run specific tests with it in order to 

obtain detailed information about each recognition attempt (see Figure 6.4). 

 
Figure 6.4: Test environment snapshot while performing concrete test 

Again, we can see details about the recognition in an automatically generated sheet 

shown in Figure 6.5. 

 

Figure 6.5: Excel Export of the detailed test results for a chosen feature combination. 
We can see in the first column the actual activity compared to the 
recognition result in the second column. In the next two columns we see 
the selected features and the used Machine Learning algorithm for 
recognition, followed by the values for each selected feature. 

All tests and their results are stored in the database. This includes all intermediate 

computation steps, as well as the used Sound Processing and Machine Learning 

parameters. One can use the results on his own for performing further evaluations with 

Excel or Matlab. Such evaluations and visualizations are those which follow in the next 

sub chapters with concrete tests. Other evaluations, which are not of particular interest 

in this chapter`s performance evaluation, but represent interesting input for solving the 

introduced use cases in Subchapter 1.2., are evaluations of the users schedule, for 

creating his activity profile, based on different activities which he performs at a different 

time. One can also import the computed features from the intermediate steps in his 

own program and tryout different Machine Learning algorithms, or use the features as 

additional information for his existing recognition software (e.g. skipping to include the 

Sound-based Device Recognition Framework as library). 
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6.2. Test Results 
In this subchapter we perform our tests which were introduced in Section 6.1.3., with 

hardware setup and environment explained in Section 6.1.2. 

6.2.1. Identifying the Best Feature Set for the Tests  

As mentioned in Section 6.1.1., our Test Corpus consists of 25 Class problem, out of 

which 20 Classes represent devices, 3 Classes are mixes of two devices, and the other 

two Classes are Speaker and Silence. We run the implemented multi-dimensional 

Nearest Neighbor algorithm with single training for the task of recognizing 125 activities 

consisting of 5 occurrences from each of the 25 classes. We test the power set of all 

features. This means, with our implemented 8 features we test 255 combinations, 

excluding the empty set. The results of best and worst performing feature combinations 

together with the average recognition results are shown in Table 6.1. 

Feature 
Count 

Best Set Result Worst Set Result 
Average 

Result 

1 LA, (ZCR, PA) 52% FF 30.4% 44.6% 

2 LA, SRO 81.6% SRO, FF 49.6% 67.49% 

3 LA, SF, FF 93.6% PV, FF, PE (PV,SRO,PE) 62.4% 76.69% 

4 
LA,PA,SF,FF 

(LA,SF,SRO,FF) 
97.6% PV,SRO,FF,PE 64% 79.97% 

5 LA,PA,SF,SRO,FF 97.6% 
ZCR,PV,SF,SRO,FF 
PA,PV,SRO,FF,PE 

68.8% 80.66% 

6 
LA,ZCR,PA,SF,SRO,FF 
LA,ZCR,SF,SRO,FF,PE 
LA,PA,SF,SRO,FF,PE 

94.4% 
ZCR,PA,PV,SF,SRO,FF,PE 

(ZCR,PA,PV,SRO,FF,PE) 
(ZCR,PA,PV,SF,SRO,FF) 

72% 80.06% 

7 LA,ZCR,PA,SF,SRO,FF,PE 93.6% 
PA,PV,SF,SRO,FF,PE 

(ZCR,PA,PV,SRO,FF,PE) 
74.4% 79% 

8 All Features 77.6% All Features 77.6% 77.6% 

  85.9%  62.4% 73.26% 

Table 6.1: Best, Worst and Average results for all different feature combinations of 
different set sizes. The results in brackets were up to 1 recognition close to 
the provided result 

With a single feature for recognition we obtained best results for Loudness Average (LA), 

directly followed by Zero Crossing Rate (ZCR) and Pitch Average (PA). They were also the 

first three implemented features. It is interesting, that the combination of those three 

was nowhere near to matching the performance of the winners in the next two 

categories. 

For feature couple, we anticipate also an interesting result having Spectral Roll Off (SRO) 

in the best combination as well as in the worst combination. Similar to that the First 

Formant (FF) is constantly in all best results and worst results together – clear evidence 

that the combination of features is crucial for recognition, rather than having single 

strong features, supporting our claims from Section 5.5.4. 
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We can see also that Loudness Average (LA) performs well and could not be found in any 

of the worst results. This supports our pre-study of sounds in the theoretical background 

Chapter 2, where we claimed that electrical devices have a nice property of being bound 

to some loudness level. Also, doing most of the activities at their specific places also 

played an important role. For example deciding to regroup all devices and their 

locations, will have a tremendous effect on the LA feature. 

For best recognition set we identified two combinations, which beat the 97% rate and 

one not far behind – <LA,PA,SF,FF> (97.6%), <LA,PA,SF,SRO,FF> (97.6%), and 

<LA,SF,SRO,FF> (96.8%). We identify the reason for these exceptional good results being 

the Sound Processing setup for the environment, as well as most of the devices being 

tested throughout the development, thus enabling the precise extraction of their 

characteristics. 

Our average results between 4 and 7 feature sizes was about 80%, which is also a same 

feature count, where the best results peaked. We tested our automatic feature selection 

algorithm and it chose a set of 6 features to obtain 91.2% recognition accuracy. Thus we 

conclude that the feature count range between 4 and 7 features is the best performing. 

In Figure 6.6 we can see a visualization of the results from Table 6.1. We can see that 

both best and average cases increase their accuracy for feature count up to 4 and 5, and 

from that point on we see a declining. Thus we observe that the increasing number of 

features doesn’t necessarily mean better recognition, as mentioned in Section 2.2.4. 

However if one wants to be on the safe side, one should implement more features, 

because as we see the worst case recognition rate increases with each new feature 

addition. 

 
Figure 6.6: A plot of best (blue) vs. average (green) vs. worst (red) results in terms of 

the different recognition rates (y-axis) according to the different feature 
set size (x-axis). The violet point represents the automatic feature 
selection, which selected 6 features and obtained 91.2% recognition 
accuracy. 
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This evaluation can serve also as a test for correct identification of important features - 

e.g. threshold for those features and feature selection method justification. 

6.2.2. Running Detailed Tests 

In this section we provide a confusion table for the best feature sets identified in the last 

section, as well as a detailed test the of the performance with our automatic selected 

feature set by supplying the recognizer with special information about the activities. We 

should also note that the devices and their locations are according to Section 6.1.1. 

Testing the Best Feature Set 

In Table 6.2 we provide a confusion matrix of the device predictions of the two best 

performing sets, identified in the previous section, compared with the actual device. 

        Predicted 
Actual Class 

1 2 3 4 5 6 7 8 9 
1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

2
0 

2
1 

2
2 

2
3 

2
4 

2
5 

1 Absorber 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 ChainC 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 Cleaner 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 Coffee 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 Epilator 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 Fridge 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 HairD 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 HairT 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 Heater 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 HedgeC 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 Kettle 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 MicroW 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 Mixed1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 

14 Mixed2 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 1 0 0 0 0 0 0 0 

15 Mixed3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 

16 Mixer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 

17 Music 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 

18 Shaker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 

19 Shaver 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 

20 Shower 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 

21 Silence 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 

22 Speech 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 

23 Toilet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 

24 ToothB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 

25 Washer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

Table 6.2: Confusion matrix for best results displaying the actual class of some device, 
and its prediction by the classifier (the two best results have same matrix) 
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We can see surprisingly good results for the automatically mixed data for recognition. 

Also it was surprising that the Hedgecutter was misrecognized three times, while its 

combination with the Hairtrimmer was all correctly identified. The only misrecognized 

indoor device was the Shaker. However, it got confused with its combination with the 

Vacuum Cleaner, thus not being an entirely erroneous recognition. 

Testing the Feature Set with Automatic Feature Selection 

Our automatic feature selection algorithm chose a 6 feature set consisting of 

<LA,ZCR,PA,SF,SRO,PE>, which obtained recognition accuracy of 91.2%. Most of the 

wrong recognitions were of devices, which do not belong to the same Activity Zone 

according to Section 6.1.1., like the erroneous recognition of Hedgecutter as Absorber. 

So we conducted an experiment by supplying the recognizer with information about the 

location of the device. The experiment then achieved a recognition result of 97.6% (see 

Table 6.3). 

        Predicted 
Actual Class 

1 2 3 4 5 6 7 8 9 
1
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1
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1
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1
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1
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1
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1
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1
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1
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1
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2
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2
1 

2
2 

2
3 

2
4 

2
5 

1 Absorber 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 ChainC 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 Cleaner 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 Coffee 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 Epilator 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 Fridge 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 HairD 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 HairT 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 Heater 0 0 0 0 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 HedgeC 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 Kettle 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 MicroW 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 Mixed1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 

14 Mixed2 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 

15 Mixed3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 

16 Mixer 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0 

17 Music 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 

18 Shaker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  5 0 0 0 0 0 0 0 

19 Shaver 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 

20 Shower 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 

21 Silence 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 

22 Speech 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 

23 Toilet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 

24 ToothB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 

25 Washer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

Table 6.3: Confusion matrix for the automatic feature selection and its prediction by 
the classifier with the help of spatial information 
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6.2.3. Test of Mixing 

In order to test the mixing component we record two activities and their combination, 

and then we mix automatically the recorded activities and compare them according to 

the obtained features (see Figure 6.7). 

 
Figure 6.7: Illustration of the mixing process of two device records and its feature-wise 

comparison with the real mix 

We use the tests from the previous section to compare 6 records of Toothbrushing, 

Showering, together with their automatic and real mixes, to illustrate in Figure 6.8 their 

similarity in terms of the first implemented and most robust single features. For 

spectrogram comparison of the tests see Appendix E. 

 
Figure 6.8: Three-dimensional plot with real (Red) and automatic (Green) mix of 

Showering (Blue) and Toothbrushing (Orange) according to their of 6 
experiment distribution over Loudness, Zero Crossing Rate and Pitch. 
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We obtained similar results when mixing other devices, except while mixing Shaker and 

Vacuum Cleaner, which shared almost same features between the automatic mixing and 

real mixing, except the average pitch. E.g. in the mixed version the pitch of the shaker 

was perceived to be stronger, so it dominated and produced similar values throughout 

the tests. While in the real mixes of both devices we measured average pitch ranging 

between 586 Hz and 915 Hz with one occurrence of 1531 Hz. Such deviations can be 

explained by the occurrence of acoustic resonance and seriously affect pitch-based 

recognition. 

6.2.4. Comparison between NNMD and Infer.NET 

We also made a comparison between the Infer.NET classifier and our implementation of 

the multi-dimensional Nearest Neighbor for our test corpus. We selected the full feature 

set to check, whether Infer.NET can handle better multiple features. Our results showed 

that for testing with single training, both recognizers achieved the same recognition 

accuracy. The drawback of Infer.NET was that it ran about 10 times slower, which is 

understandable, considering the much larger number of computations it has to perform. 

However, with the increasing number of training data Infer.NET steadily increases its 

recognition rate, while our optimized implementation had virtually the same recognition 

rate (either a bit higher or a bit lower). So we anticipate a tradeoff, between runtime 

and recognition rate, where one might choose the best option for his setup. 

 



 

94 

  



 

95 

Chapter 7  

Conclusion & Outlook 
In this Thesis we designed and developed the Sound-based Device Recognition 

Framework for classifying sounds occurring in a home environment. In the development 

process, we first studied the nature of the sounds produced by different devices. Then 

we incrementally determined a set of features, which distinguishes them from one 

another. We extracted these features by applying various Sound Processing techniques. 

For the final phase of classification, we optimized the Nearest Neighbor algorithm and 

imported the Bayes Point Machine. After implementing all steps of the full process from 

activity to recognition with multiple solution choices at each phase, we performed a 

detailed evaluation of the system by testing its multiple facets. Our tests showed robust 

recognition results and helped us to identify a sufficient set of features and Machine 

Learning algorithms to build a robust personalized recognizer. Thus, we consider this 

stage of development of the Sound-based Device Framework as complete. Furthermore, 

it provides a solid base for further developments. 

7.1. Contributions 
Despite its early development stage, there are many contributions in the field of Sound-

based Device Recognition provided in this work. The study of specific characteristics of 

the sounds produced by devices alone has not been investigated in any related work. In 

contrast, we first performed a manual study of them and then made a full testing of all 

combinations to identify the best performing set. Most of those characteristics were 

overseen by the majority of related works for the case of general activity recognition, 

since they are not applicable for Speech Recognition, which is their conventional 

research starting point. However, according to our evaluation, combinations of our 

chosen features are definitely important for classification of activities in a home 

environment. We also adopted different Machine Learning techniques and optimized a 

couple of them for our purpose. We also introduced the only system in the field, 

designed to learn over time using a feedback from the user and to adapt its recognition 

settings such as automatically choosing its feature set. A further contribution from a 

software engineering standpoint is the flexible development of the Framework, which 

incrementally increases its capabilities carrying out a spiral development process. 
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7.2. Review of Research Questions 
Here we review the research questions from Subchapter 1.6., which represent a further 

contributions of our work. 

7.2.1. Could we reduce the complexity of a recognition system, while 

maintaining the recognition rate? 

We have not only shown that we can significantly reduce the complexity of a recognition 

setup in a personalized setup, but also implemented different ways to do this in both 

Sound Processing and Machine Learning Classes. 

7.2.2. Which are the relevant sound features for the task of device 

recognition, and can we choose these automatically? 

We investigated the feature selection from many different perspectives. We first studied 

the feature selection manually with sound analyzing software and then we incrementally 

built the desired set of features in our Sound Processing Class. Then in our Machine 

Learning Class we implemented automatic feature selection. Both, the chosen feature 

set for implementation, as well as their automatic selection for recognition, performed 

well in our evaluation. 

7.2.3. Could we automatically mix activities for their untrained 

recognition? 

We obtained very good results in mixing automatically activities for their untrained 

recognition. Furthermore, we made a detailed comparison between automatically mixed 

records of some activities and their real simultaneous occurrence. 

7.3. Outlook 
There are several possible improvements that could be done in our Sound-based Device 

Recognition Framework in the near future. The first and most important is to develop 

automatic acoustic event detection. This will enable creating a smart continuous 

monitoring of the environment, without the drawback of fixed size frames, where one 

might buffer only partial acoustic information. This opens the door to modelling the 

environment using Dynamic Bayesian Networks, which relate states to each other over 

adjacent time steps. Among the most popular choices are the Hidden Markov Models, 

which represent a simplified version of a Dynamic Bayesian Network. They observe the 

state of the environment as the only information source to predict the next occurring 

state. The state transition probabilities are then computed via observations. In our case 

this will allow us to recognize activities as processes, instead of making partial 

momentarily recognitions. For example, by monitoring the sounds produced by some 

device over time, we could create a model to predict, what kind of activity was 

performed with the device. 

 



 

97 

Another way to confidently recognize activities is to go one step further in the direction 

of automatic event detection. Then, we could wisely extract meaningful audio intervals 

by applying envelope35 modeling (Jensen, 1999). After extracting the features from the 

extracted sound intervals, one could seek for similarities with trained data using the 

Dynamic Time Warping algorithm36 (Müller, Ellis, Klapuri, & Richard, 2011). For example, 

both described techniques could provide a meaningful differentiation between the 

activity of cleaning with a vacuum cleaner and leaving the vacuum cleaner running 

uncontrolled, beyond the recognition of the vacuum cleaner device itself. 

For cases where one has multiple available sound inputs, one could adopt Sound 

Processing techniques to exploit their presence in terms of combining their information 

for obtaining in depth knowledge about the environment. It would also be interesting, 

whether one could exploit unconventional audio inputs as well. Such an unconventional 

audio input could be the musical instrument called Theremin, which produces different 

sounds according to the presence of humans and has successfully been tested for 

gesture recognition (Endres & Dimitrov, 2010). 

7.4. Open Problems 
Here we select three major complex problems that are still not investigated by any 

research collective. Each of those problems represents an interesting challenge in the 

domain of Sound-based Activity Recognition: 

Environment with multiple inhabitants – it would be interesting to investigate an 

environment, where multiple persons are acting and producing different sounds. It is 

indeed a challenge to recognize them and their actions. One possible solution of the 

problem is after recording all sounds to mix them automatically and extract the features 

from the mix in the conventional way, as successfully incorporated in this thesis for 

multiple device recognition. A complicated scenario here might be the case, when 

dealing with architecture of centralized server and multiple clients, having thousands of 

records, where mixing all those records might not be practical, so one has to be able to 

make good automatic decisions, which activities could occur concurrently and at what 

place. There is a similar challenge in the Speaker and Speech Recognition field to 

discriminate, which person is talking, besides the actual Speech Recognition. However, 

there is often a good concern that both speakers usually don’t speak at same time, 

which is not feasible in activity context. 

 

                                                      
35

  The evolution over time of the amplitude of a sound 
36

  Algorithm for measuring similarity between two temporal sequences which may vary in time or speed. 
Finds numerous applications in Music Recognition in measuring similarity between music pieces, which 
are played with different tempo. 
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Rare activities – activities, which seldom happen like repairing a house or house 

accidents. A recognizer could not cover all those activities in a learning phase. However, 

an appropriate reaction should present, especially in case of an accident, one can 

consider high level abstraction, in which a central server processes a large database of 

rare activities listed with their features to run a lookup when the personalized 

recognizer fails to provide a recognition answer. 

Transition to Unsupervised Learning - when receiving features, which are deviating from 

all current references, many times the same way, the system should be able to note, 

that there might be new activity happening. We could eventually tryout completely 

unsupervised activity recognition using activity models and common sense similar to 

(Wyatt, Philipose, & Choudhury, 2005) (Marszalek, Laptev, & Schmid, 2009). 
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Appendix 
A. Class Organization 
In Figure A.1 we see a full class diagram containing most important classes in the project 

and their corresponding place (in parallel to Subchapter 5.2). 

 
Figure A.1 Full Class Diagram of the Sound-based Device Recognition 

Solution in Visual Studio 2012 
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B. Activity Type and Device Type 
When the user annotates some Activity Type we infer Device Type as follows: 

public enum ActivityType 
{ 
    Absorbing,          // -> Absorber 
    BikeMaintenance,    // -> Chain Cleaner 
    Cleaning,           // -> Vacuum Cleaner 
    CoffeeMaking,       // -> Moka Pot        
    Epilating,          // -> Epilator 
    FridgeCooling,      // -> Fridge 
    HairDrying,         // -> Hairdryer 
    Hairtrimming,       // -> Hairtrimmer 
    Heating,            // -> Heater 
    Hedgecutting,       // -> Hedgecutter      
    Microwaving,        // -> Microwave 
    Mixing,             // -> Mixer 
    MusicListening,     // -> Music Centre         
    ShakerPreparation,  // -> Shaker 
    Shaving,            // -> Shaver 
    Showering,          // -> Shower 
    Speaking,           // -> Speaker 
    ToiletFlush,        // -> Toilet 
    Toothbrushing,      // -> Electrical Toothbrush 
    Washing,            // -> Washing Machine 
    WaterBoiling,       // -> Kettle 
    Test,               // -> Test Device 
    Mixed1,             // -> <Device1,Device2,(Device3)> 
    Mixed2,             // -> <Device1,Device2,(Device3)> 
    Mixed3,             // -> <Device1,Device2,(Device3)> 
    Unknown,            // -> {...} 
} 

 

Where         is fixed to unknown activities, like those which the user has not 

defined or decided to hide,      is for test purposes of unlisted activity types, 

                     are for three available mix choices.  
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C. Multi-dimensional Nearest Neighbor 
Here we compute the Nearest Neighbor and return a sorted list with the nearest 

neighbors, according to Section 5.5.4. One should note that this is a simplified version, 

where logic for averaged statistics and common metrics is omitted. 

public SortedDictionary<double, int> NearestNeighbourMD(Stats currentStats) 
{ 
    SortedDictionary<double, int> distanceToFeature = new SortedDictionary<double, int>(); 
 
    for (int activityIndex = 0; activityIndex < activities.Count; activityIndex++) 
    { 
        double distance = 0.0; 
 
        for (int featureIndex = 0; featureIndex < MLFeaturesCount; featureIndex++) 
        { 
            double reference = activities[activityIndex].stats.array[featureIndex]); 
            double current = currentStats.array[featureIndex]; 
 
            if (!currentStats.ignore[featureIndex]) 
            { 
                distance += Math.Pow(reference - current, 2.0); 
            } 
        } 
                 
        distanceToFeature.Add(Math.Sqrt(distance), activityIndex); 
    } 
 
    return distanceToFeature; 
} 
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D. Test Records Spectrograms 
Here we show 10 second spectrocrograms of all 22 test records: 

 
Figure D.1 Absorber 

 
Figure D.2 Chain Cleaner 

 
Figure D.3 Vacuum Cleaner 

 
Figure D.4 Moka Pot 
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Figure D.5 Epilator 

 
Figure D.6 Fridge 

 
Figure D.7 Hairdryer 

 
Figure D.8 Hairtrimmer 
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Figure D.9 Heater 

 
Figure D.10 Hedgecutter 

 
Figure D.11 Kettle 

 
Figure D.12 Microwave 
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Figure D.13 Mixer 

 
Figure D.14 Music 

 
Figure D.15 Shaker 

 

Figure D.16 Shaver 
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Figure D.17 Shower 

 
Figure D.18 Silence 

 
Figure D.19 Speaking 

 
Figure D.20 Toilet Flush 
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Figure D.21 Toothbrush 

 
Figure D.22 Washing Machine 
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E. Mixed Records Spectrograms 
Here we compare automatically generated mixes with their corresponding real records 

of complex activities. 

 
Figure E.1 Original Mix Toothbrush and Shower (Mixed 1) 

 
Figure E.2 Automatic Mix Toothbrush and Shower (Mixed 1) 

 

 
Figure E.3 Original Mix Shaker and Vacuum Cleaner (Mixed 2) 

 
Figure E.4 Automatic Mix Shaker and Vacuum Cleaner (Mixed 2) 
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Figure E.5 Original Mix Hedgecutter and Hairtrimmer (Mixed 3) 

 
Figure E.6 Automatic Mix Hedgecutter and Hairtrimmer (Mixed 3) 

 

 

 


