

2

Framework for Analyzing
Sounds of Home Environment

for Device Recognition
Svilen Dimitrov

A thesis submitted in partial satisfaction of the

requirements for the degree Master of Science at the

Department of Computer Science at Saarland University

SAARLAND

UNIVERSITY

i

Supervisor

Prof. Dr. Dr. h.c. mult. Wolfgang Wahlster

German Research Center for Artificial Intelligence, DFKI

Reviewers

Prof. Dr. Dr. h.c. mult. Wolfgang Wahlster

German Research Center for Artificial Intelligence, DFKI

Dr. Boris Brandherm

German Research Center for Artificial Intelligence, DFKI

Advisor

Dipl.-Inform. Jochen Frey

German Research Center for Artificial Intelligence, DFKI

Autor

Svilen Dimitrov

Bruchwiesenanlage 4,

D-66125 Saarbrücken, Germany

Submission Date

15. May 2014

ii

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any

other media or materials than the ones referred to in this thesis.

Saarbrücken / 15. May 2014

(Svilen Dimitrov)

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public

by having them added to the library of the Computer Science Department.

Saarbrücken / 15. May 2014

(Svilen Dimitrov)

iii

Abstract
Home environments are one of the subjects of study by Ambient Intelligent Systems for

various purposes, including developments of elderly assistance systems and energy

consumption optimization. Sensing the environment, via different sensors, is the first

and crucial component of every Ambient Intelligent System. In this thesis we design and

develop the Sound-based Device Recognition Framework to investigate the application

of environmental sounds usage for touch-free audio-based device recognition in a home

environment. For this purpose, we study the characteristics of the sounds dispersed by

devices in a home environment. We use the acquired knowledge to implement different

Sound Processing techniques for the extraction of a flexible set of features, which can be

determined both manually and automatically. For the classification of gathered device

acoustic fingerprints we use multiple optimized straightforward techniques of

Supervised Learning as well as integrated established ones. Furthermore, we use a

feedback from the user for creating an incremental learning system. After establishing a

recognition basis for the recognition of fixed length sound buffers on demand, we

implement a live recognition mode for real-time environment monitoring, providing

runtime setup adjustments. These include changing the selected features, switching

between Machine Learning algorithms, and recognition time interval choice, without

interruption for modifications of the trained data. We then extend our work with the

recognition of untrained simultaneously working known devices, utilizing Semi-

supervised Learning. Finally, we create an automatic test utility to evaluate different

aspects of the developed framework, including recognition rate performance for the

different combinations of features and Machine Learning algorithms, as well as to study

the reliability of the automatic mixing of trained data. Our evaluation shows satisfactory

results in all tested aspects. Therefore we consider the development of our Sound-based

Device Recognition Framework as complete and providing a solid base for further

research.

iv

v

Acknowledgements
I would like to express my gratitude to Jochen Frey and Dr. Boris Brandherm for the

admission of this challenging and innovative topic of my thesis, as well as to Prof. Dr.

Wolfgang Wahlster and his chair for the provided research opportunity in my desired

field.

Secondly I want to thank Yavor Kaloyanov, Dr. Bilyana Taneva and Dr. Stefan Popov for

backing me up with useful programming tips and fruitful advices. At this place I am much

obliged also to everyone, who shared his work and experience over the internet.

Finally I am deeply grateful to my Family for their unconditional support, patience and

understanding

vi

vii

Contents

ABSTRACT .. III

ACKNOWLEDGEMENTS ... V

CONTENTS ..VII

1. INTRODUCTION ... 1

1.1. MOTIVATION OF SOUND-BASED RECOGNITION RESEARCH ... 2

1.2. SCENARIOS OF AMBIENT INTELLIGENT SYSTEMS ... 3

1.2.1. Ambient Assisted Living ... 3

1.2.2. E-Energy ... 3

1.3. PROBLEM OF DEVICE RECOGNITION SYSTEMS WITHOUT USAGE OF ENVIRONMENTAL SOUND INFORMATION....... 3

1.4. SOUND-BASED DEVICE RECOGNITION APPROACH .. 4

1.5. CHALLENGES ... 4

1.6. RESEARCH QUESTIONS .. 4

1.6.1. Reducing complexity of recognition system with retaining recognition rate 4

1.6.2. What are the relevant sound features for recognizing devices? .. 5

1.6.3. Mixing training data for recognition of unanticipated complex activities performed with the

usage of known devices ... 5

1.7. THESIS OUTLINE .. 5

2. THEORETICAL BACKGROUND .. 7

2.1. AMBIENT INTELLIGENCE .. 7

2.1.1. Activity vs. Device Recognition ... 9

2.1.2. Activities of Daily Living Performed with Devices in a Home Environment 9

2.1.3. Activity Zones ... 10

2.1.4. Techniques for Sensing a Home Environment .. 11

2.2. SOUND PROCESSING FOR RECOGNITION ... 12

2.2.1. Sound Signal Acquisition by Humans and Machines .. 13

2.2.2. Sound Filtering ... 14

2.2.3. Sound Spectrum Representation .. 17

2.2.4. Sound Features .. 23

2.3. MACHINE LEARNING .. 25

2.3.1. Supervised and Semi-Supervised Learning ... 26

2.3.2. Nearest Neighbor Methods .. 26

2.3.3. Bayes Classification .. 27

2.3.4. Feature Selection ... 29

2.3.5. Feature Normalization ... 30

viii

3. RELATED WORK ... 31

3.1. SIGNAL PROCESSING .. 32

3.2. SPEECH RECOGNITION .. 33

3.3. MUSIC RECOGNITION ... 34

3.4. ACTIVITY RECOGNITION .. 36

3.5. DEVICE RECOGNITION .. 38

3.6. OVERVIEW OF RELATED WORK .. 39

3.6.1. Comparison of Related Works in Terms of Functionality ... 39

3.6.2. Detailed Comparison of Activity Recognition Systems ... 41

3.6.3. Overview of Recognition Capabilities of Related Works .. 42

4. CONCEPT OF SOUND-BASED DEVICE RECOGNITION .. 43

4.1. ARCHITECTURE .. 44

4.1.1. Abstract Architecture ... 44

4.1.2. Concrete Architecture .. 44

4.1.3. Spiral Development Process Model ... 45

4.2. ENVIRONMENT AND INSTALLATION REQUIREMENTS ... 46

4.2.1. Environment Characteristics .. 46

4.2.2. Recording Setup ... 47

4.2.3. Installation from a Software Perspective ... 47

4.3. SOUND UNIT .. 48

4.3.1. Sound Processing ... 48

4.3.2. Features Choice .. 48

4.4. MACHINE LEARNING ELEMENT ... 49

4.4.1. Implementation Considerations ... 49

4.4.2. Adaptivity ... 49

4.5. INTEGRATION .. 51

4.5.1. As a Class Library ... 51

4.5.2. As a Running Service .. 52

4.6. PRIVACY ISSUES ... 52

ix

5. SOUND-BASED DEVICE RECOGNITION FRAMEWORK .. 53

5.1. ENVIRONMENT AND HARDWARE SETUP ... 53

5.2. FRAMEWORK SOLUTION IN VS2012 ... 55

5.3. FRAMEWORK GRAPHIC USER INTERFACE .. 55

5.4. SOUND CLASS ... 57

5.4.1. Sound Transformation ... 57

5.4.2. Sound Filtering ... 60

5.4.3. Features Extraction .. 62

5.4.4. Sound Mixing ... 66

5.5. MACHINE LEARNING CLASS ... 68

5.5.1. Activity Class .. 68

5.5.2. Automatic Feature Selection and Priority Determination .. 71

5.5.3. Feature Metrics and Normalization ... 72

5.5.4. Implemented Classifying Algorithms ... 73

5.5.5. Imported External Libraries.. 76

5.6. PROCESS FROM ACTIVITY TO ITS DEVICE RECOGNITION ... 78

5.6.1. Training .. 78

5.6.2. Recognition .. 79

5.6.3. Real-Time Recognition ... 79

5.6.4. Integration Interface .. 80

6. EVALUATION ... 83

6.1. TEST SETUP .. 83

6.1.1. Test Environment Setup and Corpus .. 83

6.1.2. Software Test Module .. 85

6.2. TEST RESULTS ... 88

6.2.1. Identifying the Best Feature Set for the Tests .. 88

6.2.2. Running Detailed Tests .. 90

6.2.3. Test of Mixing .. 92

6.2.4. Comparison between NNMD and Infer.NET .. 93

7. CONCLUSION & OUTLOOK .. 95

7.1. CONTRIBUTIONS .. 95

7.2. REVIEW OF RESEARCH QUESTIONS .. 96

7.2.1. Could we reduce the complexity of a recognition system, while maintaining the recognition

rate?...... ... 96

7.2.2. Which are the relevant sound features for the task of device recognition, and can we choose

these automatically? .. 96

7.2.3. Could we automatically mix activities for their untrained recognition? 96

7.3. OUTLOOK... 96

7.4. OPEN PROBLEMS ... 97

x

BIBLIOGRAPHY .. 99

APPENDIX ... 105

A. CLASS ORGANIZATION ... 105

B. ACTIVITY TYPE AND DEVICE TYPE ... 106

C. MULTI-DIMENSIONAL NEAREST NEIGHBOR ... 107

D. TEST RECORDS SPECTROGRAMS .. 108

E. MIXED RECORDS SPECTROGRAMS ... 114

1

Chapter 1

Introduction

In our modern way of life we are surrounded by an increasing number of devices, which

we use to perform large variety of activities. Some of those activities are not always

straightforward and we often need some assistance to perform them. To make this

happen, one has to give some intelligence to the devices to make them able to

understand our intentions and fit into our needs. In other words: making those devices

sensitive and responsive to our presence, instead of relying on us to learn how to

operate them. Making the devices more sensitive to human actions is one of the goals in

Activity Recognition. This is the first step of designing a so called Ambient Intelligent

System, which at first anticipates human actions with their purpose in a given

environment, and then acts in an intelligent manner by predicting and assisting future

actions. This should hold especially in the case, where humans are experiencing

difficulties in performing those actions, but there are many further applications, such as

optimizing electrical energy consumption.

In this thesis we study the sensing component of an Ambient Intelligent System. For this

purpose we introduce our Sound-based Device Recognition Framework – a fully

developed system for device recognition based on analyzing environmental sounds. Our

environment consists of a normal home. Its devices, which are to be recognized, are

commonly used for performing daily tasks, like electrical toothbrush or shaver. Most of

those devices create or disperse sounds, while being used to perform different activities.

We study the most frequently used devices and the nature of the sounds, which

accompany their usage. We then use this knowledge to transform those sounds to the

selected different acoustic representations in order to extract their most telling

characteristics for the purpose of sound-based device fingerprinting. For the gathering

of acoustic fingerprints we build a database, which is later used as a knowledgebase for

further classification tasks. The latter are performed by trying out different Machine

Learning algorithms and evaluating their performance in terms of complexity,

recognition accuracy and adaptation capability. We then expand our work by adding

further system capabilities, like live recognition using buffers of variable length or

automatic mixing of different sounds for recognition of untrained combination of known

devices. Finally, we create a module for automatic testing and use it to evaluate

different aspects of the implemented recognition techniques in a home setup.

2

1.1. Motivation of Sound-based Recognition Research
Ambient Intelligence has become a trending field in computer science as a natural

consequence of high instrumented environments, where each device is a target to

embedding a microchip with increasing computational power. However, not all devices

possess some sort of intelligence, nor need they. Furthermore, the so called intelligent

devices are often not meant to be intelligent in a way besides accomplishing their

function in a constant manner, regardless of its environmental effects and regardless of

potential improvement possibilities. From this standpoint, Ambient Intelligence is about

providing an intelligent interaction between different environmental parts, to integrate

them in a whole intelligent system, which acts as one and adapts to further

environmental changes and increases its knowledge (Weber, Rabaey, & Aarts, 2005)

(Cook, Augusto, & Jakkula, 2009).

The first component of such system is the environment sensing component, which has

as a function to recognize all types of activities, ranging from long to short term and

from large scale to small scale activities. Video cameras are a popular choice for a sensor

when it comes to recognizing user activities (Tapia, Intille, & Larson, 2004), because they

can provide a detailed knowledge about the ongoing activities in a home environment.

On the other hand, cameras have some fallacies such as being obtrusive for its

inhabitants regarding their presence (Brey, 2005), and usually suffer from bad

recognition in sub-optimal light conditions. In addition, cameras are expensive and

require computationally intensive algorithms for recognition (Ke, et al., 2013).

Another touch-free technique of recognition, regarding the human perception, is based

on analyzing the audible sounds in a given environment. However, most of the sound-

based recognizers are limited in recognizing human speech, together with some of its

characteristics like speaker recognition and his emotional state in order to obtain

detailed information about their subject of interest. On the other hand there are very

few studies, which aim to examine in abstract way the daily human activities in a home

environment according to their acoustic characteristics (Stager, et al., 2004) (Temko, et

al., 2006) (Istrate, et al., 2008) (Wang, et al., 2008) (Lozano, et al., 2010) (Karbasi, et al.,

Dec 2011) (Sehili, et al., 2012). Despite their generalized way of analyzing sounds, they

are all developed in a healthcare perspective and often make the implication that

certain sound implies certain activity, which is not necessarily true. This slightly differs

from our perspective of building up a set of audibly distinguishable entities, most of

which being devices in active state, without attempting to interpret their further

meaning. Furthermore in a Sound Processing standpoint, all of the mentioned studies

use very similar techniques, which represent a small range of the available sound

transformation techniques for recognition (Müller, Ellis, Klapuri, & Richard, 2011). In this

context, this study aims to integrate and evaluate also further recognition methods,

based on refining and tuning of existing Sound Processing techniques and various

Machine Learning algorithms, for the task of device recognition.

3

1.2. Scenarios of Ambient Intelligent Systems
Among the many applications of Sound-based Device Recognition in Ambient Intelligent

Systems, we select two of those scenarios, which we consider as primary use cases for

designing our framework. The first scenario is in an area called Ambient Assisted Living,

which aims to assist humans, while they perform different activities in their homes. The

second scenario is in the area of E-Energy, which aims to optimize the energy usage of

households based on energy consumption models.

1.2.1. Ambient Assisted Living

John, 75, lives alone and suffers from hearing disability. He is active at night time and

performs normal daily living tasks like cleaning or brushing his teeth. He often forgets to

turn off the devices he uses, like vacuum cleaner or his electrical toothbrush. He already

has an Ambient Assisted Living system in his home, but it cannot recognize the state of

the devices with the conventional sensors like cameras. What John would like to have in

his assistance system is a microphone to listen and tell him what is happening according

to the produced sounds.

1.2.2. E-Energy

Acme power plants want to optimize the energy allocation for its users. For this purpose

they have designed a system for energy consumption models based on device

recognition via energy monitoring sockets. Although the system works fine in the

general case, there are some deviations, which could not be accurately recognized. So

they are looking for an unobtrusive way to increase their precision.

1.3. Problem of Device Recognition Systems without

Usage of Environmental Sound Information
In both of the above scenarios we anticipate insufficiency of the installed recognition

systems. In the first scenario we anticipate an example, where an audio-based

recognition system is inevitable in order to substitute intelligently human hearing

awareness. In this case a correct recognition of devices might eventually mean better

house assistance systems and reduced risk when forgetting dangerous devices turned

on. Recognition techniques based on video are not suitable to recognize forgotten

devices in active state, because in most cases, they don’t have motion characteristics.

For the second scenario there are already available recognition methods, like the

installation of energy monitoring sockets for each device plugged or using a power

analyzer (Belley, et al., 2013). However, besides the expensive need of attaching

multiple energy monitoring sockets or a power analyzer, not all of the electrical devices

are constantly connected to the power, because they rely on batteries for their

convenient usage like the electrical toothbrush. So we can see that in both cases there is

a lack of sensor input to build up the desired knowledge about the environment, which

can be covered by the integration of a Sound-based Recognition component.

4

1.4. Sound-based Device Recognition Approach
In both scenarios we observe a demand of a low cost addition to existing recognition

systems and we identify the problem as a lack of sound-based sensing information of the

environment. Regarding those points, this study aims to use existing microphones in the

infrastructure in order to recognize different devices, or if integrated to an existing

system, to refine its recognition rate. Theoretically thought, one might not need a very

extensive sound feature extraction and complicated Machine Learning algorithm,

because the set of devices that are to be recognized is relatively small and the existing

hardware in every home computer or smartphone is good enough. The goal is to find the

sufficient combination between set of features and Machine Learning algorithms to

obtain a robust personalized sound-based device recognizer.

1.5. Challenges
The described approach provides an overview of a big system with many facets, which

originate from different areas. To gather and intelligently combine their knowledge in a

single system is a challenge in software engineering perspective. So the first design

requirement, which such system should satisfy, is to be extensible for addition of new

capabilities, as well as flexible for linking newly integrated modules. The second design

requirement on the framework, coming from the scenarios, is to be exportable for

eventual integration into a bigger system.

In a technical perspective, it is a challenge not only to implement many techniques for

Sound Processing and Machine Learning, but also to implement them efficiently in order

to provide a real-time recognition. It is also a hard task to lower the hardware

requirements to any single microphone, instead of demanding a high-end recording

setup.

1.6. Research Questions
Besides the mentioned challenges in building up the Sound-based Device Recognition

Framework, we extract some of the main research questions, which are either partially

or not studied by related works, which this thesis will try to answer.

1.6.1. Reducing complexity of recognition system with retaining

recognition rate

Often reducing the size of a recognition scope leads to better recognition rate and

reduces the complexity of the system. We are therefore interested, whether within a

personalized and detailed view of a household setup, one can reduce the complexity of

its audio recognition system, while maintaining a good recognition rate. We will try to

solve this problem by implementing multiple sound pattern recognition techniques and

compare their recognition rate after testing them in a home environment.

5

1.6.2. What are the relevant sound features for recognizing devices?

We will try to find out, which are the most important features to categorize different

devices according to their sound. To find those features we will implement multiple

sound features and will make recognition accuracy test with all of them, as well as

combinations between them. Finally we will test, whether the system can identify the

relevant features for recognition automatically, and will try to provide a straightforward

implementation of automatic feature selection.

1.6.3. Mixing training data for recognition of unanticipated complex

activities performed with the usage of known devices

In our everyday life we often perform complex activities, during which multiple devices

are used simultaneously, like brushing teeth while showering. We are interested

whether we can automatize the process of sound mixing and extracting features for the

recognition task of known parallel working devices, which haven’t been trained by the

system.

1.7. Thesis Outline
The rest of this thesis is structured as follows:

Chapter 2 starts with essential background in the fields of Ambient Intelligence, Sound

Processing and Machine Learning. Most of the examples in that chapter are directly

from our later setup and implementation.

Chapter 3 reviews related work starting from the general case of Signal Processing for

recognition, goes through Speech and Music Recognition, and to the case of generalized

Sound-based Activity Recognition being most related to our case of Sound-based Device

Recognition. At the end there is a summary and comparison of the mentioned systems.

In Chapter 4 we study the concept of Sound-based Device Recognition. We look into the

environment of our use cases and its requirements to our feature design. We then

define the two major components of a Sound-based Recognition system with their

desired main functionality.

In Chapter 5 follows the implementation of a Sound-based Device Recognition

Framework, which satisfies and extends some of the capabilities defined in the previous

chapter, as well as, providing further significant developer functionality for tasks, not

mentioned in Chapter 4, with automated testing of its different aspects being the most

important.

After development details follows a detailed evaluation of the system and its core

functionality in Chapter 6.

6

In Chapter 7 we make a conclusion of this work and its contribution, as well as pointing

out its possible development followings and mentioning some complex problems in the

Sound-based Activity Recognition field, which can be a subject of bigger studies.

7

Chapter 2

Theoretical Background
In this chapter we introduce three important branches of Artificial Intelligence –

Ambient Intelligence (Subchapter 2.1), Sound Processing for Recognition (Subchapter

2.2) and Machine Learning (Subchapter 2.3). All of them are tightly interconnected,

although representing separate disciplines (as illustrated in Figure 2.1).

Figure 2.1: Illustration of all three interleaving research areas,
which are of highest influence in this thesis

One should note that most of the examples and illustrations which occur in this chapter

are directly exported from our later architecture, introduced in Chapter 4, and

implementation, presented in Chapter 5. A few other examples and terminology are

presented here as well, in order to help us understand the research field of Sound-based

Activity Recognition with its current state of art, summarized in Chapter 3.

2.1. Ambient Intelligence
Ambient Intelligence, as defined by (Weber, Rabaey, & Aarts, 2005), “is the vision of a

technology that will become invisibly embedded in our natural surroundings, present

whenever we need it, enabled by simple and effortless interactions, attuned to all our

senses, adaptive to users and context-sensitive, and autonomous.” Hence one can

abstractly describe the technology as perceiving and acting in a given environment with

following characteristics,

 where technology is embedded, hidden in the background

 that is sensitive, adaptive, and responsive to the presence of people and objects

Ambient
Intelligence

Machine
Learning

Sound
Processing

8

 that augments activities through smart non-explicit assistance

 that preserves security, privacy and trustworthiness while utilizing information

when needed and appropriate (Weber, Rabaey, & Aarts, 2005)

Figure 2.2: A detailed view of Intelligent System presented in (Aztiria, Izaguirre, &

Augusto, 2010)

An overview of an Ambient Intelligent system can be seen in Figure 2.2. The first part, as

mentioned is the environment, which we already briefly characterized. The second part

is the environment sensing via different techniques, discussed in Section 2.1.4 after

clarifying the environments properties and our recognition scope. Next comes, a

reasoning component, which consists of Activity Recognition, Learning, Knowledge, and

Decision Making, based on the observations made. Here in this thesis, we will

investigate the recognition part, which observes the sound dispersing part of the

environment, as described in Section 2.1.1. More specifically, we will discuss the

Activities of Daily Living performed with the corresponding devices in Section 2.1.2. and

the typical zones, where those activities occur, in Section 2.1.3.

There are different ways in, which we can look at the environment. One way is to look at

the environment in an Ambient Assisted Living context, as described in the first

introduction scenario (1.2.1.). Ambient Assisted Living is a scientific area of research in

order to improve and assist elderly and people with special need in their daily life.

Example of assistance realization is by anticipating the daily movements of residents in a

home in order to predict their actions in order to assist or even automate them. Another

aspect of home environment is its power consumption. Here we have the possibility of

automating and optimizing the duration of usage of electrical devices, which affects the

overall power consumption. So in this framework we are interested in concrete

environmental aspects and designing their improvement. Finally in section 2.1.4., we will

make an overview of the most popular techniques for recognition of activities of daily

living.

9

2.1.1. Activity vs. Device Recognition

Activity Recognition is a wide scientific area that aims to recognize all types of activities,

mostly performed by an individual or a group of individuals. One should not forget

activities performed by different devices such as laundry. However, while making an

implication from activity to the usage of some is ok, the other way round is not

necessarily true. For example, if we have an activity like cleaning with a vacuum cleaner,

we can assume that there is a vacuum cleaner device being used, while recognizing a

sound of a vacuum cleaner doesn’t imply the activity of vacuum cleaning, because it

might imply the possibility of a forgotten running vacuum cleaner. To make such an

implication from sounds of devices to the corresponding activity in a confident manner,

one has to study continuously the patterns of those activities in terms of their complete

occurrence and characteristics using complex Machine Learning algorithms, which we

mention in the outlook in Chapter 7. Where probing real-time sound extracts for their

live recognition is not strong enough to build up generalized statements about the

entireness of their reason of occurrence, just like taking a small fragment of a picture is

not enough to build up the whole picture. In relation to this, the scope of this thesis will

be to investigate the subject of device recognition in a home environment, with a few

exceptions of non-device recognitions, which will be explained in Chapter 5.

2.1.2. Activities of Daily Living Performed with Devices in a Home

Environment

Activities of daily living are the most frequent tasks, which an individual performs during

his daily time, and are most studied in terms of personal healthcare (Lawton & Brody,

1968) (Katz, 1983). In this Section we call activities of daily living in a home environment,

the most frequent tasks, which an individual performs at his home using different

devices. Typical examples are brushing teeth or listening to music, while other activities

like speaking are not necessarily performed with the usage of some device (see Figure

2.3). Some of those activities can be executed in a combination, creating a new complex

activity. One can derive deeper knowledge of the activities like recognizing speakers’

personality and mood, while he is speaking or guessing the model of a used toothbrush.

10

Figure 2.3: Illustration of different sample types of activities and the different levels of

details about those activities. The first type, Speaking, provides information
about the speaker, his mood and what he is saying. The second type, Tooth-
brushing, provides information about the way one brushes teeth and the device
and its state he is using. Music Listening as third type reveals information about
the listened song and its interpreter, as well as the time stamp. The fourth type,
a combination between Music Listening and Cleaning, is a complex example,
which reveals information about those activities as well

In the field of sound-based activity recognition, most studies for recognition of ADLs are

music listening recognition Speech Recognition (see Section 3.2) and (see Section 3.3).

Development of general sound-based recognizers started in the last several years (see

Section 3.3).

2.1.3. Activity Zones

Activity Zones are parts of the environment where some set of activities occur. Under

parts of the environment one can consider different rooms like the kitchen, where one

typically performs meal preparation and cleaning. One can obtain further assignment of

activity zones in the kitchen as well, like marking the oven area as activity zone, where

one usually performs cooking related actions (see Figure 2.4).

Activity

Speaking

Speaker

Mood

Sentence

Music
Listening

John Lennon

Imagine

Time

Tooth-
Brushing

Electrical
ToothBrush

Oral-B

State

Music
Listening +
Cleaning

Vacuum
Cleaner

AEG

Power

Freddy
Mercury

 I want to
break free

Live Version

11

Figure 2.4: Self-adaptable three-dimensional modeling of Activity Zones in a

single room occupancy by (Frey, Neurohr, & Brandherm, 2014)

For us activity zones play an important role, in every level of their detail. For example, in

a multiple room environment with microphones in every room the recognizer can

extract the spatial information, in which room is the sound source, and thus reduce the

set of possible results. A concrete example for this case is the assumption that the

inhabitant cannot take a shower in the kitchen, so the recognizer removes the shower

from the list of possible outcomes. From the detailed case of activity zone, we can use

the knowledge that if one activity occurs in a specific place, its sound characteristics are

very similar between its different occurrences. The later holds especially in the case,

where electrical devices with a fixed set of usage programs are mounted stationary, like

a toilet.

2.1.4. Techniques for Sensing a Home Environment

In the previous section we have seen an example of three dimensional modeling of

activity zones via environmental sensing, performed with Kinect1. However, there are

many other techniques for activity recognition in a home environment (Tapia, Intille, &

Larson, 2004), which could be categorized by the chosen sensors for recognition,

including video cameras, audio microphones, and wearable devices, as well as their

combinations. A comparison between the different techniques with their most general

pros and cons is shown in Table 2.1.

1
 A line of motion sensing input devices providing three-dimensional video output and data from multiple

audio channels. Online at http://www.microsoft.com/en-us/kinectforwindows/

http://www.microsoft.com/en-us/kinectforwindows/

12

Sensor Pros Cons

 Good recognition rate

 Details with multiple cameras or
3d cameras

 Problems with bad lighting

 Exhaustive processing

 Low refresh rate

 Expensive

 High refresh rate

 Always available

 Low cost

 No need of focusing

 Noise decreases recognition

 Easy processing and classification

 Exact information

 Annoying

 Expensive

Combination
 Covering weak spots

 Good recognition rate

 Complex Machine Learning

 Exhaustive processing

Table 2.1 Comparison between the different recognition techniques according to their
sensor types they use

2.2. Sound Processing for Recognition
In the terminology of Pattern Recognition, Sound Processing is a way to transform the

sound wave in order to emphasize different features. Under the term Sound

Transformation one understands a wide field of different sound manipulation

techniques for different purposes (See Figure 2.5). Simple ones include different filters

often realized also by the recording hardware before digitalization of the sound signal

(Section 2.2.1.), but usually performed in a preprocessing step (Section 2.2.2.). To

understand the mechanisms of Sound Processing in this thesis, we explain complex

mathematical transformations in Section 2.2.3. The latter will help us characterizing the

sound the way we need in order to extract recognition relevant features (Section 2.2.4).

Figure 2.5: General dataflow of Signal Processing for every recognition system. Note that

every of the points can be surpassed except the signal. E.g. one might want to
skip filtering the signal or skip processing it, since there are enough features,
which could be extracted out of the raw signal

Signal Acquisition

Stream in Time /
Intensity form

Filtering

Band-pass filters

Noise reduction

Normalizing

...

Processing

Windowing

FFT

...

Feature Extraction

Extracting the
features out the
transformations if
necessary

Converting
features in special
form or measure

Video

Audio

Wearable

13

2.2.1. Sound Signal Acquisition by Humans and Machines

Signals perceived by humans through their hearing system are called audio signals.

Those signals come from a sound source which vibrates in the audible frequency range

approximately between 20 Hz and 20 000 Hz. The resulting vibrations are causing

different pressure (amplitude) in a medium (usually air), which causes the human

eardrum to vibrate and send the information to the brain for interpretation (see Figure

2.6).

Figure 2.6: Illustration of the parallel between air pressure waves (level according to

dots density) and amplitude plot (amplitude on Y-axis and time on X-axis).
Signal of about 1.6 Hz makes 4 complete cycles (periods)

Similar to that process, a microphone can act as a sound receiver and send the perceived

audio signals to a computer, which firstly converts the analog input into digital one. So

we are firstly speaking of a sample rate, which refers to the number of sample points per

second, and bits per sample, which refers to the number of bits, which we need to

encode each sound sample (see Figure 2.7).

Figure 2.7: Digitized representation of the same wave form from Figure 2.6,

but with 100 times lower sample rate using 8 bits resolution

-1

-0.5

0

0.5

1

0 500 1000 1500 2000 2500 3000

A
m

p
lit

u
d

e

Time in milliseconds

-128

-78

-28

22

72

122

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

14

In this work, the sound signals resulted by different activities are caught by a computer

and processed as an uncompressed LPCM WAVE (Linear Pulse Code Modulation

Waveform Audio File Format) sound. It is the pure form of digital sound that the

computer captures. The most important settings in this format are the number of

channels, as well as the sample rate and the bits per sample (Figure 2.8 shows detailed

format layout). By its design and characteristics the WAVE format permits to be used for

digital storage of any kind of waves with random number of channels and precision (IBM

Corporation & Microsoft Corporation, 1991) (Microsoft Corporation, 2007).

Figure 2.8: WAVE format overview. Each segment of the both Header

and Data chunks is presented with its size in braces

A further important note on the recording hardware is that it always supports a high

sample rate of at least 44100 Hz, which is also the standard for CD quality. This means

not only covering the human hearing frequency range, by any low cost system, but a

high refresh rate as well. So we have practically the possibility to exploit every recording

system for our recognition purposes, which is a huge advantage compared to standard

built-in cameras, which offer refresh rate between 24 and 30 Hz, and are far from

covering the visible range of humans, aside from being more expensive.

2.2.2. Sound Filtering

Often the audio recording and playback equipment has some deviations in its frequency

response2. In order to fix those deviations we need to filter the signal with a set of Filters

to obtain the desired frequency response. We need Filters also when we want to

operate in a special range of frequencies, cutting all rest frequencies off. So summarized,

a Filter is a function, which changes the audio signal characteristics. In the following

2
 Response to different frequencies by the audio equipment

Header
ChunkId (4), ChunkSize (4), Format (4)

SubChunk1Id (4), SubChunkSize (4), AudioFormat (2), NumChannels (2), SampleRate (4),
ByteRate (4), BlockAlign (2), BitsPerSample (2)

SubChunk2Id (4), SubChunk2Size (4)

Data
(Number of channels

*
Sample Rate

*
Byte Rate)

...
Data

(Number of channels
*

Sample Rate
*

Byte Rate)

15

subchapters we define High- and Low-pass Filters for equalization of sound3, noise

reduction and volume normalization.

Figure 2.9: Illustration of multiple Filters applied often by various hardware components

(listed as analog) and software components (listed as digital) before some actual

application like VoIP4 receives the sound. Although such setup might seem

advanced, one should consider modern audio systems, which often include

multiple audio inputs and outputs, which opens the door to intelligent usage of

their combined functionality for different purposes.

One should note that often different hardware apply Filters as well as some operating

systems (see Figure 2.9), before actual applications, like our framework, receives the

signal. Hardware Filters often include noise or echo cancelation using supplement

microphones to subtract the environment noise from the source, as well as automatic

equalization of the frequency response for a given setup. Digital Filters often perform

similar tasks to the Analog Filters, often considering weaker hardware setup, where

various tasks like beam forming5 might mean expensive hardware. Often various

software apps might turn on different features of those, which can change recognition

over time. So one should recognize such changes and re-extract features.

3
 Process of adjusting the balance between different frequencies of a sound signal

4
 Technology to deliver voice communications and multimedia sessions over Internet Protocol networks

5
 Technique used in microphone arrays for directional signal reception, which takes into account the

position of the sound sources and amplifies them, while attenuating signals from other directions. This
eventually leads to accurate feature extraction for the case that one tries to recognize the information of
the main sources ignoring the rest of the environment, which is not the case of this thesis, since we
consider secondary sources as important too.

16

High- and Low-Pass Filters

Filters for audio equalization are widely used in all disciplines of audio recognition. Most

used are High- and Low-pass Filters to cut off (or silent) frequencies below (Low-pass) or

respectively beyond (High-pass) given frequency (see Figure 2.10). This is a useful

technique, if the recognizer uses only part of the signal spectrum for its recognition. E.g.

if there is a speaker recognizer, which considers only the human speech pitch, which is

around 80-300 Hz, one should consider cutting all irrelevant frequencies, to ease the

extraction and recognition process. Further important usage of low-pass filters is to

avoid aliasing6 when downsampling a signal.

Figure 2.10: Illustration of first order Filters: High-pass (left), which cuts the frequencies

beyond some frequency and Low-pass (right), which cuts frequencies below

given frequency. The blue marked area with amplitudes passed by the Filter,

while the white marked, doesn’t. A Band-pass Filter is a combination of both

Filters, while a Band-stop filter is the inverse of the later

One should note that the frequency cut doesn’t happen immediately. This is clearly

illustrated by the so called transition band, which is the range of frequencies between

the pass band and the stop band of the signal (visually “where it turns the corner”) and

represents important characteristic of the particular Filter, which we will later use to

smooth the signal deviations in its lower frequencies.

A combination of applying both High- and Low-pass Filters is called Band-pass Filter. In

general there are more types of filters, which are applied for different purposes, but find

seldom application in sound pattern recognition field.

6
 Distortion of the signal, which makes it different from the original one after some operation like

downsampling. Example of this is when we need to lower the frequency from 20 kHz to 10 kHz we first
need to cut off all frequencies beyond 5 kHz from the source signal, because they cannot be realized in the
target signal, and thus result in distortions after downsampling.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

7
9

1
5

7

2
3

5

3
1

3

3
9

1

4
6

9

5
4

7

6
2

5

7
0

3

7
8

1

8
5

9

A
m

p
lit

u
d

e

Frequency Bins

Band
Pass

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
7

4
1

4
7

2
2

0
2

9
3

3
6

6
4

3
9

5
1

2
5

8
5

6
5

8
7

3
1

8
0

4
8

7
7

9
5

0

Band
Stop

17

Noise Reduction

Techniques for reducing the noise from the audio signal are called Noise Reduction

techniques. Such techniques are of particular interest in the case where one has one

important source like a speaker in a noisy environment. Reducing the noise from the

environment, without affecting the speaker`s signal would eventually mean better signal

for recognition. So despite for some cases Noise Reduction can pay off with increasing

the recognition rate, for other cases it might worsen it, because some important sounds

might be “noise like”. For example in a home environment a vacuum cleaner sound is

considered as noise in the context of Speech Recognition, which is not feasible in the

context of this thesis. However, some processing steps like those of next section are not

that precise due to their nature, so removing signal noise in an equally distributed

manner is available in this framework. Further techniques for better Noise Cancellation

include the usage of multiple microphones, which enables subtracting noise signals from

the important ones. However, in our setup we would like to use single microphone to

cover the most general case audio input, such techniques are not of particular interest in

this work.

Volume Normalization

When same source performs different sounds at different locations it results in different

overall amplitude in the recordings by a static microphone. This translates in difference

in all further processing steps. A way to overcome this problem is to normalize all sound

input buffers to some amplitude. However, doing so might affect further processing

steps in negative way too. Since in our setup we assume that most of the activities occur

in specific places, thus having similar loudness related characteristics, we will avoid

Volume Normalization.

2.2.3. Sound Spectrum Representation

Sound Spectrum is an important derivation of the sound, which provides detailed

information about the nature of the sound wave, in particular its frequency domain. It is

usually via Short-time Fourier Transform in combination with Window Function, both

described in this section. It transforms small signal frames from the Time / Power

domain into Power / Frequency domain. Mel Frequency Cepstrum Coefficients represent

another popular transformation obtaining vectors of features, which are derived from

the Spectrum and are often used in related works despite the increase of the

computational complexity for their extraction.

Short Fast Fourier Transformation

The Fourier transform is a way to represent a sampled signal via mixture of sinusoid

waves, called bins. In Sound Processing the Fourier transformation is used to convert the

raw sampled signal from its original Time / Intensity representation into the Frequency /

Intensity domain called Spectrum (see Figure 2.11).

18

Figure 2.11: Illustration of a complex wave (left) consisting of three waves of periods π, π/2

and π/4 in its Time (ms) / Intensity representation, and its Frequency /

Intensity representation (right).

As we already mentioned most signals we encounter in practice, such as sounds in home

environment, are changing over time and have no periodic nature. However, if we take a

closer look at these signals by cutting them into frames consisting of several

milliseconds, we can see that for those time intervals, they appear to have some pattern

or look as if they are periodic. This means that for those short excerpts of the signal we

can assume the audio signal being a periodic signal, which could be represented by the

sum of sin waves via Fourier transform, which for this case is called short-time (see

Figure 2.12). The mathematical definition for this transformation is shown in the

definition below.

 { ()} ∫ () ()

Where w is a Window Function, such as those discussed in the next section, () is the

signal at time of total time length , which is to be transformed. It is important to

mention that the discrete version of this formula is by replacing the integral with the

sum over the discrete values in a buffer, also in the above definition by replacing signal

with buffer and with buffer index. This means that choosing both, the samplling rate

and the buffer size, plays an important role for the precision and the outcome of the

Fourier transformation.

-1

-0.5

0

0.5

1

0 1000 2000 3000

0

0.2

0.4

0.6

0.8

π π / 2 π / 4

19

Figure 2.12: Plots of waveform (above) with buffer length of 4096 values (X-axis) recorded

with sampling rate of 44100 Hz (meaning time duration of 10.76 ms), and its

short-time Fourier transform (below) in frequencies between 80 and 5000 Hz

(X-axis).

Short-time Fourier Transformation is the most commonly used Fourier Transformation

and is obtained via the algorithm called Fast Fourier Transformation (Cooley & Tukey,

1965), which we discuss in the implementation part of this thesis (see Section 5.4.1.).

However, there are more similar transformations in this domain. Another recent and a

popular transformation are the Wavelets (most used in image processing), which are still

not used for this activity recognition based on sounds, but had shown promising results

in the speech and Music Recognition fields (Kronland-Martinet, Morlet, & Grossmann,

1987) (Tzanetakis, Essl, & Cook, 2001).

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.0005

0.001

0.0015

0.002

0.0025

80 580 1080 1580 2080 2580 3080 3580 4080 4580

20

Window Functions

The Short-time Fourier Transformation described in last section assumes that the input

signal is periodic, but as we have seen, a real record isn’t such, despite our assumption.

This leads to so called leakage, which causes erroneous intensities near some peak in the

spectrum (see Figure 2.13). This is mostly due to the nature of buffering, which takes

fragments of sounds at particular time intervals, without sensing their completeness

(which exists only for periodic signals).

Figure 2.13: Plots of first 32 bins of a spectrum of same periodic function – one with leakage

(left) and other with smaller leakage (right) due to usage of Hamming window.

To overcome this problem one uses Window Functions in order to smooth the buffer at

its ends. By doing so, one forces the completion of all significant periods in a signal. In

this thesis we apply three of the most commonly used Window Functions for sound

signals – Hamming Window (Def. 2), Hann Window (Def. 3) and Blackmann-Harris

Window (Def. 4).

Def 2: () (

)

Def 3: () ((

))

Def 4: () (

)

 (

) (

)

Where is the current sample from a buffer of size .

A sample plots with the Window Functions can be seen at Figure 2.14 together with an

example of how a simple signal buffer of 512 samples is windowed.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 11 21 31

0

0.05

0.1

0.15

0.2

0.25

1 11 21 31

21

Figure 2.14: Plots of Hamming, Hann and Blackmann-Harris Window Functions with the

original signal. At left we can see constant signal with amplitude 1 and at the

right se see signal with period π/2, both sampled at 10 ms.

Mel Frequency Cepstrum Coefficients

Mel Frequency Ceptrum Coefficients (short MFCCs) represent also a popular sound

transformation mainly used in the speech and speaker recognition fields. Their purpose

is to extract information from the whole spectrum by mapping it from its original

multidimensional domain into usually 12, 24 or 48 dimensional domain.

They are obtained after taking a FFT of the signal as described in the previous section.

Then follows mapping of the obtained spectrum powers into a Mel Scale7 using

triangular functions. Then we take the log of each of the Mel frequencies powers and

take their Discrete Cosine Transform8. The resulted amplitudes in the newly transformed

spectrum (also called cepstrum) are the Mel Frequency Ceptrum Coefficients (see the

three main steps in Figure 2.15).

7
 Mapping the recorded frequencies to Mel scale frequencies in parallel to the human hearing perception

of pitch converting to with the formula (

). Similar logarithmic

representations of the frequencies are often used to simulate the human perception of tones in order to
simulate the humans art of recognition.
8
 Used to break sounds into different frequencies, or sum of cosine functions, to approximate them

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400

Signal Hamming

Hann Blackmann-Harris

0 200 400

No window Hamming

Hann Blackmann-Harris

22

Figure 2.15: Derivation steps of the Mel frequency cepstrum (Yuk,

1999). Above we can see the waveform input of the sound,

in the middle its spectrogram9 and down below we can see

the resulted Mel Frequency Cepstral Features

Similar derivations to the Mel Frequency Cepstral Coefficients are the Linear Frequency

Cepstral Coefficients and the Antimel Frequency Cepstral Cofficients, which differ

essentially by their filter banks and thus produce different recognition results. With

those three one can obtain different precision at different frequencies. E.g. with same

number of filter banks one would have higher precision at the lower frequencies and

lower precision in high frequencies when using MFCCs, while the opposite is true for the

AFCCs. LFCCs would have same balanced precision over all frequencies. One can make

the LFCCs to have same precision like MFCCs in lower frequencies by choosing more

filter banks to represent the cepstrum, which is of course more computationally

exhaustive both for processing and later recognition.

There are lots of discussions, which cepstral coefficient features could be best used for

speech and speaker recognition (Lei & Lopez-Gonzalo, 2009), which led research in

9
 Three-dimensional visual representation of the spectrum of a sound and its evolution over time. In the

current example with displaying the amplitude of the different frequencies using the gray scale

23

Sound-based Activity Recognition to go in two separate directions – one using the LFCCs

(Stäger, 2006), the other using MFCCs (Temko, Malkin, Zieger, Macho, & Nadeu, 2006),

while others intend using a combination of both (Vuegen, Karsmakers, & Vanrumste,

2013) for their recognition. However one should note that due to the nature of the

features presented in this section, they represent large vectors, which imply slower

classification, while some research propose selecting different sets of features for

different tasks to obtain better recognition (Zhuang, Zhou, Huang, & Hasegawa-Johnson,

2008) (Karbasi, Ahadi, & Bahmanian, 2011).

2.2.4. Sound Features

As we have seen in the previous sections, the sound curve is a complex function, which

one can transform in different ways in order to obtain the form he would like. In our

case we would like to concentrate on different aspects of the sound and highlight them

for the usage as recognition features. In the following we describe features from the raw

sound signal representation (Time / Amplitude), spectral representation (Power /

Frequency) and the temporal representation of the spectrum (Time / Frequency) (see

Figure 2.16). One should note that those representations are sorted in order of their

complexity and computational power starting from the less demanding.

Figure 2.16: Illustration of the different features sorted in three

categories according to their derivation method

Features from Time/Amplitude Representation of the Sound

Features from the raw representation of the sound, which is in Time / Amplitude

domain, are usually not much telling features. However they enjoy literally immediate

processing time, which makes them very handy. Those include sound power and zero

crossing rate, which are presented in following subsections with examples of their

meaning and application.

Sound Power

One of the most obvious sound features is the power. There are different metrics of

measuring the loudness of the sound at certain point of time or for a certain period of

time. We discriminate between power of a current sample, which is the digital value of

this sample, and average power over period of time, by taking the average of the local

maximum and minimums of the sound function during this period.

•Sound Power

•Zero Crossing Rate
Time / Amplitude

•Pitch Frequency and Energy, F0

•Spectral Flatness and Roll Off
Power / Frequency

•Pitch Span
Time / Frequency

24

Although the power might seem a very uncertain feature, since there are a lot of

different tasks that have similar loudness, one might think of the E-Energy scenario

discussed in the introduction, where there might be a problem with deciding between

two electric consumption models, which have very similar parameters (see Figure 2.17).

In such a problem a single loudness criteria might be enough to recognize the correct

device.

Figure 2.17: Plots of the energy consumption of toaster (left) and kettle (right). One

can clearly see the similarity in the patterns of both devices, despite the

actual difference in the exact power consumption (Y-axis) and runtime

(X-axis), both factors dependent of the heating elements of both devices

and the chosen operating function.

Zero Crossing Rate

The number of times the signal crosses the zero point for a certain period of time is

called Zero Cross Rate. In a simple periodic function, the Zero Cross Rate is also the

signal frequency by the factor of two. For example the function at Figure 2.9 has 9 zero

crossings for 3 seconds meaning zero crossing rate of 3 crosses per second. The practical

meaning of zero crossing rate is that if it is relatively high, it usually means a noisy

record.

Features from Amplitude/Frequency Transformation of the Sound

In this section we discuss the features from the spectrum of the sound, by studying its

concrete peaks and its overall form and characteristics. One should note that not all

sounds have the presented features, while in other cases they are not distinguishable.

Pitch, First Formant and Pitch Energy

The pitch is also called Fundamental Frequency (short F0) and represents the lowest

frequency of a sound wave. It can be measured by looking at the first local maximum in

the spectrum. In Figure 2.9 we can see that since the lowest frequency of the sound

wave is of period of π, it is also the fundamental frequency of the signal, while in the

vacuum cleaner example in Figure 2.10 the pitch is at 576 Hz.

0

100

200

300

400

500

600

700

800

900

0 50 100 150

0

500

1000

1500

2000

0 100 200

25

The first formant (short F1) is the second peak after the pitch in the spectrum. In Figure

2.9 it is of period , while in the vacuum cleaner example the first formant is not very

clear, but using our definition it is at 2040 Hz.

Further information about the pitch can be derived by looking at the pitch’s energy. This

is the sum of the energies of the spectrum bins near the pitch. In Figure 2.9 there is no

energy near the pitch, so the pitch’s energy is only contained in the pitch, while in the

vacuum cleaner example we can see that the bins around the pitch contain energy as

well.

Spectral Roll Off

The point where the spectral function falls turns down is called Spectral Roll off, and

provides important information about the main energy concentration over the

frequencies. It is measured by looking at the frequency point, where the spectrum

contains a significant part of its energy, like 95% of it. In the vacuum cleaner example it

is around the last significant peak at 4613 Hz.

Spectral Flatness

The meaning of spectral flatness is that if it approaches 0, then the signal consists of

pure tones, while approaching 1 would mean equal distribution over all bands of the

spectrum, similar to noise. In Figure 2.9 we anticipate three pure tones, which means

spectral flatness of 0, while the vacuum cleaner example from Figure 2.11 has spectral

flatness of 0.6696.

Temporal Features from the Time/Frequency Sound Domain

In this section we mention the single used temporal feature in this thesis – the pitch

span over time. One should note that most of the mentioned features in the last section

can be considered as temporal too, because they are often averaged for a period of time

in cases where the recognition window is larger than the buffering window.

Pitch Span over Time

The difference between the maximal and minimal value of the pitch over time is called

pitch span. It is a straightforward measure for the variation of the pitch, which is a good

feature to distinguish between monotone and melody-like sounds. One can clearly study

this feature using spectrogram like the one showed in Figure 2.15.

2.3. Machine Learning
In Ambient Intelligence perspective Machine Learning can be used to automatize the

process of extracting knowledge about a given environment from measured data with

the goal to understand better the underlying processes. In this chapter we will introduce

the notion of supervised learning methodology (Section 2.3.1.) used in this thesis and

one of the most popular classification methods called Nearest Neighbor. We will discuss

then another popular family of recognition techniques called Bayes classifiers (Section

26

2.3.3.) and at the end we will discuss the terms of feature selection (Section 2.3.4.) and

normalization (Section 2.3.5.), which both play an important role when working with

bigger sets of features of different types, although in a slightly different way.

2.3.1. Supervised and Semi-Supervised Learning

The task of inferring a recognition result from labelled training data is called Supervised

Learning and consists of two steps. In the first step, the Training Phase, the classifier

gathers data and labels it with the help of supplementary input. In our case the user will

label his performed activities and the respective devices to perform them. In the second

step, the Recognition Phase, the classifier tries without external help to find the correct

label, which in our case is a device recognition attempt. The two steps of supervised

learning are repeating over time, which means the user can still provide feedback in

order to improve the knowledge of the classifier.

Cases where the recognizer is able to additionally provide correct recognition of

untrained data are called Semi-Supervised Learning. In our study such cases include the

Machine Learning element training itself by automatic unsupervised mixing of records

for their combined recognition.

2.3.2. Nearest Neighbor Methods

In general, there is no established single Machine Learning algorithm or methodology in

the field of activity recognition (Aztiria, Izaguirre, & Augusto, 2010). One of the most

established family of methods for finding correct class of given set of features are the

Nearest Neighbor methods. One of their most straight forward implementations consists

of classifying an unknown object by the majority vote of its neighbors found using some

distance metric in feature space like Euclidean distance10. One should consider that if

 , then the object is simply assigned to the class of that single nearest neighbor. By

using this property, in order to improve classification runtime in Section 5.5.4., we

reduce the Nearest Neighbor algorithm to one nearest neighbor search by averaging the

trained data through the classes or by selecting a single reference value for recognition.

We then implement further optimization of reducing the dimension of feature space, by

prioritizing the different features.

10

 Distance () between each reference feature and the sampled feature measured by the

Pythagorean formula using following equation () √∑()

27

Figure 2.18: 15 nearest neighbors and 1 nearest neighbor algorithm

distributions by (Hastie, Tibshirani, & Friedman, 2009). Purple line

represents the optimal Bayes decision boundary.

2.3.3. Bayes Classification

Bayes classifiers are a family of classifiers that are based on applying Bayes' theorem for

conditional probabilities11. A classifier, which applies Bayes' theorem with strong

independence12 assumptions, is called naïve Bayes classifier. Such a classifier relies on

priori and posteriori knowledge about the data in order to assign class probabilities for

some test data. For example if one brushes his teeth every day, but cleans his room with

vacuum cleaner once a week, and does only those two activities. So after three weeks

we would have 21 occurrences of Tooth Brushing against three occurrences of Vacuum

Cleaning. In Figure 2.19 we can see a plot of this knowledge in terms of two features –

zero crossing rate and average loudness. So we have a prior probability of Tooth

Brushing activity of 7/8, while for Vacuum Cleaning it would be 1/8. A simple way of

computing a posterior probability is if we draw a circle around the unknown occurrence

to compute in straightforward way its’ likelihood13, by counting the members of each

class inside the circle. We can see that in the chosen circle in the likelihood of the

unknown activity there are two occurrences of Vacuum Cleaning and one of Tooth

Brushing meaning a posterior probability for Tooth Brushing of 1/21, while for Vacuum

Cleaning it is 2/3. So by applying the Bayes rule we assign probabilities for both classes

to the unknown sample:

11

 Probability of some class to be the correct result based on given set of features
12

 Assumption that any feature is independent from each combination of other features
13

 Function of how likely is the occurrence of some class, which is weaker than its probability

28

Thus, by having the probability of the unknown sample to be vacuum cleaning twice

larger compared to its probability to be tooth brushing, according to our rules we assign

it a label of Vacuum Cleaning.

Figure 2.19: Naïve Bayes classifier example showing two-class problem (Vacuum Cleaning

and Tooth Brushing) with two dimensional feature space (Zero Crossing Rate on

X-axis, and Average Loudness on the Y-axis). The classifier is attempting to guess

the appropriate label of unknown event by knowing its features.

There are numerous possible improvements of this “naïve” approach. One improvement

is about how to look at the distribution of the trained data for the different classes to

build up a so called distribution models, which will eventually be used to compute the

likelihood. In our example we assume uniform distribution14, and therefore add the

different probabilities in the likelihood computation. However, the most popular

distribution model is the Gaussian mixture model, where the feature vectors associated

with each class are distributed according to a Gaussian distribution15. In this thesis we

use a so called Bayes Point Machine Linear Classifier16, which approximates the optimal

Bayes decision17 by the center of mass of version space18 (Herbrich, Graepel, &

Campbell, 2001).

14

 Distribution, where all types of classes are equally likely to be observed
15

 Family of distributions, which measure the probability that any real valued observation will fall in the
interval of two real numbers. For multidimensional cases, like ours with multiple features, their complexity
increases rapidly
16

 Linear Classifier makes a classification decision based linear combination of the input feature vectors
17

 A case, where the probability model underlying the classes is known perfectly. The Bayes optimal
decision boundary is drawn with purple line in Figure 2.18.
18

 Set of all hypotheses that have not been eliminated as a result of being in conflict with observed data

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5600 5700 5800 5900 6000 6100

Unknown Neighborhood

Unknown

Tooth Brushing

Vacuum Cleaning

29

2.3.4. Feature Selection

In the last few sections we explained how to make good predictions, even for unseen

cases, with successful recognition being our main goal. However we still have not

discussed one of the main factors for recognition – the features. Namely, from a

Machine Learning perspective, how to find out which are the relevant features in order

to make good predictions?

The answer of this question is hard and overall there is a lot of research on this topic

with many different proposed solutions (Guyon & Elisseeff, 2003) (Hastie, Tibshirani, &

Friedman, 2009), some of which theoretically optimal, but unpractical to implement

(Koller & Sahami, 1996). So here we will first discuss the benefits of feature selection for

certain problems and then will briefly explain couple of ways to perform it in our

framework, while the exact implementation will follow later in Section 5.5.2.

The first benefit, which comes in mind after discussing a couple of Machine Learning

classification approaches, is that selecting the relevant features for recognition and

removing the irrelevant makes for faster result search, thus optimizing the runtime

performance.

Further issues with larger a set of features arise, when some of those features are

dependent variables19, which steers the recognizer in wrong direction by introducing the

possibility of replicated erroneous information overwhelming the correct information.

Similar problems might occur when one tries to use same feature types from different

sound representations, for example computing average loudness from the waveform

representation and from the spectrum. So despite both variables not being exactly

dependent, they still have very similar behavior.

Another problem occurs when some feature is very similar for large number of different

classes, thus providing no meaningful information. In our case, many electrical devices

had a large subset of similar cepstral coefficients, which was one of the reasons for the

decision to leave their integration into the framework for its current version.

The various listed redundant or irrelevant features above give us first ideas of how to

select features automatically. One straightforward way is to measure the relative

distance between the feature vectors of the different classes and remove those

features, which doesn’t change much through the classes. Another way is to look at how

“stable” the features are for the recorded samples of same class, e.g. their variation.

An exhaustive feature selection for a given setup environment can be done by running a

test with all feature combinations to unveil what would be the best feature combination

for the particular test, and depending on how much the test approximates real-life

conditions, we can make statements on how good the computed feature subset is.

19

 Variables are called dependent if one can find a functional mapping between them

30

2.3.5. Feature Normalization

Since there are many components in a big recognition system one needs to normalize

their inputs into a common metric at each abstraction level (see Figure 2.20). The lowest

normalization level is for the different features. Sometimes they have different metrics,

which need to be normalized in a common feature vector. An example of different

feature metrics is the zero cross rate and the pitch. The next normalization level is for

the feature vectors produced by the different sensor instances. This is needed, because

different sensors might have different characteristics, like different microphones having

different sensitivity or frequency response. The next normalization step is at sensor

level, where one needs further synthesis of the gathered feature vectors, which are not

necessarily of the same metrics or dimension. This can occur when the extracted

features is specific for the given sensor, despite being of the same type. The last

normalization step is at component level, where the different sensor types are being

normalized to merge in a single feature vector.

Figure 2.20: Feature normalization at different levels in order to extract a feature vector from

all components and the features from their sensors. In the example at first we

have sound component with two microphones and their according feature

vectors consisting of different features like those mentioned in 2.2.4. The second

component is a video with one camera and its feature vector. The third

component is for the remaining sensors, like light sensors all together with the

power of the light in a common vector, or heat sensors and a common vector for

the measured temperatures. Note that at each level there should be a

normalization procedure.

Features

Sensor Vectors

Concrete Sensor

Component

All Normalized FV

Sound

M1

MV1

F1 F2

M2

MV2

Video

C1

CV1

Other

Light

LV

Heat

HV

31

Chapter 3

Related Work

In the field of Signal Processing (Subchapter 3.1 and Figure 3.1), a lot of studies have

been carried out in its branch of Sound Pattern Recognition. Their focus was mainly on

building systems for Speech or Speaker Recognition (mostly non-commercial)

(Subchapter 3.2) and Music Recognition (mostly commercial) (Subchapter 3.3). In

general, one can separate those two types of related works from the general case of

Activity Recognition using sound, which have a similar setup to this thesis (Subchapter

3.4).

Figure 3.1: Illustration of the creation of related disciplines over time with the reason of

their establishment. Signal Processing for Recognition being the general case

and the root of both Speech and Music Recognition, out of which originate all of

the later used sound pattern recognition methodologies for the general case of

Activity Recognition.

In the following subchapters we will get familiar with the mentioned main branches of

sound pattern recognition. We introduce their purpose, technology and achievements in

their corresponding subfields. We make then parallel to the case of study of this thesis.

At the end of each subchapter we will generalize what their recognition capability means

from the perspective of general Activity Recognition. Finally, we provide an overview

with a comparison of the introduced related works and we make a composition of their

capabilities.

Signal

•1940s -
1950s

•Military
applications

Speech

•1960s -
1970s

•Commands

Music

•1980s -
1990s

•Classification
services

Activity

•2000s -
2010s

•Ambient
assistance

32

3.1. Signal Processing
The area of Digital Signal Processing, which is the root of Sound Signal Processing,

exploded around the Second World War mainly with applications like radar Signal

Processing for automatic detection of enemy or telecommunications encoding. In terms

of activity recognition, using those early Signal Processing techniques we could

determine, whether there is activity occurring or not (see Figure 3.2 for a three-wise

illustration). The rebirth of Signal Processing came with the invention of digital

computers around the 50s (Nebeker, 1998).

Figure 3.2: Three-wise illustration of the automatic activity distinctiveness

that could be done by Signal Processing from the early years

Up to date Signal Processing has been a very wide scientific area covering whole areas

itself like Image Processing, Sound Processing, Video Processing, and many more. What

we can learn from this is that all subfields often have very similar processing algorithms

despite having different purposes. So developments in those related subfields could

often be translated to the whole area. Examples include the invention of wavelets and

their immediate translation into different areas (Daubechies, 1992), or the development

of fast Fourier algorithm (Cooley & Tukey, 1965). In general, all signal recognizers share

the same workflow consisting of three main components: Signal Acquiring, Signal

Processing, and Signal Recognition (see Figure 3.3).

Figure 3.3: The three main steps in signal recognition: signal acquiring, Signal

Processing, and signal recognition, common in all signal recognition systems

Activity

Yes No

Signal
Acquiring

Signal
Processing

Signal
Recognition

33

3.2. Speech Recognition
Despite speaking being a special kind of activity, its recognition development started a

lot earlier than the general case of Activity Recognition or other Sound Pattern

Recognition fields like Music Recognition. First studies for Speech Recognition started six

decades ago with recognizing strings of digits with pauses in between (K. H. Davis, 1952).

The next milestone was set five decades ago recognizing small set of words – IBM

system 16 words (Dersch, 1962). Note the similarity between size of the word set and

the approximate activities of daily living, which typically occur in home. Another

similarity represents the pauses between commands. Typically activities are also

separated by pauses, since one cannot immediately switch between brushing his teeth

and cleaning his house.

Figure 3.4: Illustration of the main components of Speech Recognition

system (Yuk, 1999)

Later on there are numerical improvements including numerous acoustic feature

representations, which try to emulate the human perception of speech and are coming

closer in recognition accuracy to humans (Lippmann, 1997) (Scharenborg & Cooke,

2008). One of the most studied and accomplished recognition techniques are the

MFCCs, which are performing for both speech (Young, Kershaw, Odell, Ollason, Valtchev,

& Woodland, 2000) and speaker recognition tasks (Feld, 2011) (Beigi, 2011). In the face

of Speech and Speaker Recognition we anticipate first accomplishments in direction

activity recognition (see Figure 3.5). This is also of particular importance since most of

the current research of activity recognition based on sounds has its origins from the

Speech and Speaker Recognition fields and use MFCCs as main feature vector part,

which means a lack of testing other techniques, which might eventually be performing

even better. For the recognition however, most of the modern Speech and Speaker

Recognition works apply advanced models like the Hidden Markov Models (Yuk, 1999)

(Feld, 2011), which are still beyond the research state of our closely related works.

34

Figure 3.5: Illustration of the Activity distinctiveness that could be done using

a combination of speech and speaker recognizers like (Yuk, 1999)

(Feld, 2011)

3.3. Music Recognition
The beginning of Music Signal Processing could be set around the early 20s with the

invention of a musical instrument called Theremin20 (Glinsky, 2000). Later with the

mentioned Signal Processing improvements around the 40s and 50s composers such as

Karlheinz Stockhausen created music using signal generators or ring modulators. Then

with the boom of general purpose digital computers in 70s and 80s came a new era of

synthetizing and modifying sounds (Müller, Ellis, Klapuri, & Richard, 2011).

Despite the big progress in sound synthesis, the field of sound information retrieval

started in the mid-70s (Moorer, 1975), while the first International Symposium on Music

Information Retrieval was held in 200021. First big applications include automatic sound

description, like The CUIDADO Project (Content-based Unified Interfaces and Descriptors

for Audio/music Databases available Online) (Vinet, Herrera, & Pachet, 2002). It

produced the first entirely automatic chain for extracting and exploiting musical

metadata for browsing music using large set of sound features (Peeters, 2004).

To date, depending on the task, there are numerous of established techniques for Music

Recognition besides Mel Frequency Cepstral Coefficients, most notable of which are the

Chroma-based audio features22 (Fujishima, 1999). The most notable Music Recognition

systems are Shazam (Wang A. L.-C., 2003) (commercial) and Echoprint (Ellis, Whitman, &

Porter, 2011) (non-commercial).

20

 Theremin is the first electronic musical instrument and is played by the musician without physical
contact. The capacitance of player’s hands near antennae controls an oscillation, which is later
transformed to sound.
21

 Online at http://www.ismir.net/
22

 Initially proposed for Chord recognition, are audio features, which closely correlate to the aspect of
harmony

Activity

Speech

Speaker
1

She had your ...

Speaker
2

What?

Noise

http://www.ismir.net/

35

Here we will have a closer look at Shazam, because it realizes our idea of recognizer,

which incorporates a client / server architecture. The client issues a recognition using a

mobile application, which connects to a server for a result. Furthermore it provides

different personalization and discovery features for already tagged music or a similar

music search based on that (see Figure 3.6 for an overview of Shazams interface). Similar

to that in our setup we will also rely on the user to tag his activities first in a training

phase and provide random feedback about the recognition.

Figure 3.6: Collage of screenshots23 of Shazam illustrating different states

of the phone application. Besides the offered recognition

service one can see a high level of personalization

Shazam works by taking 10 second recordings and analyzing their spectrum for intensity

peaks. Then those peaks are grouped in a hash for a result lookup. We should note that

such a straightforward search method can provide a successful search of over 11 million

records with a constant time lookup. Other qualities of the method include noise

robustness and room acoustics independence, both very important in our case. This

leads to considerations about using similar methods to those proposed by the authors

and attempting to modify them for our setup.

23

 http://vlatte.net/2011/01/shazam-app-review/

http://vlatte.net/2011/01/shazam-app-review/

36

Bottom line is that although the described systems are often commercially based and

may seem distant relatives to our subject, they are also in the subject of Sound Pattern

Recognition and they are dealing with databases, which contain millions of songs.

Furthermore, some of the systems also aim to recognize radio and television shows as

well, which increases their complexity. In terms of Activity Recognition there is already a

high degree of activity details, which can be obtained using the presented recognizers,

despite the small set of recognizable activities (see Figure 3.7).

Figure 3.7: Illustration of the Activity distinctiveness that could be done using a Music

Recognition service like Shazam combined with instrument and chord

recognition system. Note that one could make an additional tree level for

clustering the music in terms of different genres or for similar clustering

television and radio shows, which might be important for different context. Also

we are distinguishing the activities of music listening, radio listening and

television watching, although they might all come from same source (or device).

An interesting fact is that there are no similar algorithms used for Sound-based Activity

Recognition. This is quite unexplainable since one can think of an electrical device as a

musical instrument with a specific timbre, which produces specific sound when being

operated by a human, in parallel to the musical sounds, which are more dynamic.

3.4. Activity Recognition
First works of general activity recognition based on sounds started with (Wang, Wang,

Huang, & Hsu, 2003), who tried out “Home environmental sound recognition based on

MPEG-7 features” and (Stager, Lukowicz, & Troster, 2004) and their work of

“Implementation and Evaluation of a Low-Power Sound-Based User Activity Recognition

System”, which tests three sound features and searches for result using nearest

neighbor algorithm. Later refined in Stägers PhD thesis “Low-Power Sound-Based User

Activity Recognition” (Stäger, 2006), turning into a complete solution including hardware

installation of a microphone with three accelerometers (on hand) and software written

Activity

Music

Ode to
Joy

Violin

Chord

Vocals

Lyrics

Song n

Radio /
Television

Show 1 Show n

37

recognizer. What we can learn from this work is that even a small set of straight-forward

features and search algorithms can obtain good recognition results for a small set of

activities. Also it is important to mention that this collaboration of authors are the only

ones concerned with the trade-off between power and accuracy later described in

details after empirical improvements in (Stager, Lukowicz, & Troster, 2007). An

optimized usage of the resources is an important consideration in a bigger setup and

could be done automatically as well (Lombriser, Amft, Zappi, Benini, & Tröster, 2011).

The next important development in the field is “Embedded Implementation of Distress

Situation Identification through Sound Analysis” (Istrate, Vacher, & Serignat, 2008),

which is a complete solution for an elderly care system that produces alarm if something

goes wrong. It includes an early distinguishment of the sounds between speech and

other acoustic events before making a recognition attempt. If the recognition results in a

situation where the user might be in danger it forwards an alarm with the signal to an

operator and sends message to close relatives of the user (see Figure 3.8). As we can see

this shows a complete example of Sound-based Recognition system for home

environments in practice.

Figure 3.8: Illustration of the system developed by (Istrate, Vacher, & Serignat, 2008)

Most recent developments include “Sound Environment Analysis in Smart Home” (Sehili,

et al., 2012), which is a work that installs a microphone to an existing recognition

environment, consisting of three rooms (e.g. with installed different types of sensors in

each room already) (see Figure 3.9). It is a good example of setup, since we naturally

perform different activities in different rooms, thus having less activity types in each

38

room. Also interesting is the high number of installed microphones and their

combination with other sensors.

Figure 3.9: Setup environment consisting of three rooms and multiple

sensors of different types (Sehili, et al., 2012)

Another approach worth mentioning is “Audio Classification Techniques in Home

Environments for Elderly/Dependant People” (Lozano, Hernáez, Picón, Camarena, &

Navas, 2010), which besides the conventional used techniques in the fields, studies

multi-resolution analysis to include temporal information from the sound data. Also a

couple of other studies use temporal information – (Wang, Lee, Wang, & Lin, 2008) and

(Karbasi, Ahadi, & Bahmanian, 2011), who similar to this thesis identifies the problem of

most Activity Recognition systems deriving their Sound Pattern Recognition techniques

from the Speech Recognition field.

Figure 3.10: Illustration of the Activity distinctiveness that could be done using a general

activity recognizer like the one developed by (Istrate, Vacher, & Serignat, 2008)

3.5. Device Recognition
Usually under device recognition one understands recognizing different devices

according to their interface. E.g. a recognizer scans the environment using different

communication protocols like Wi-Fi or Bluetooth and relies on the devices to support

those protocols. However, not all devices had to support such communication protocols.

Another recent research trend is to recognize electrical devices via a series of methods

like using energy monitoring sockets, power analyzer (Hart, 1989) (Belley, Gaboury,

Activity

Speech

Danger Normal

Door
Slap

Door
Lock

Glass
Breaking

Fall

39

Bouchard, & Bouzouane, 2013), and electromagnetic interference (Gupta, Reynolds, &

Patel, 2010). The problem is that all of those devices should not only be electrical, but

should be connected to the power supply. First of all not all of the devices are electrical,

nor should they be. Examples include toilet flush or a tooth brush. Some toothbrushes

are electrical but they rely on batteries for their function, which makes them “invisible”

for the mentioned technologies in their acting time. A natural way of recognizing

devices, according to the human sense would be by analyzing their sounds. This includes

the case where someone is using them to perform some activities, as well as the case,

where they perform some periodic miscellaneous tasks without being operated directly

by humans.

It is also interesting that in the mentioned related works the authors apply the

interference that a noise by some device would mean a human producing that noise,

while operating with that device. As already mentioned here as well as in Section 2.1.1.,

this is not necessarily true. There is no system known to us, which defines a set of

devices and aims to recognize their activities by monitoring the sounds which they

produce.

3.6. Overview of Related Work
In this Subchapter we first summarize the different types of related works in terms of

their functionality in Section 3.6.1. Then, in Section 3.6.2., we make a comparison of the

activity recognition systems and their capabilities presented in Subchapter 3.4. Finally, in

Section 3.6.3., we make first thoughts as to what kind of sound-based information a

system, consisting of the related works, should be able to extract.

3.6.1. Comparison of Related Works in Terms of Functionality

In this section we will make an overview of the related works, which we have presented.

We group them according to their appearance in this Chapter and show their main

attributes in Table 3.1 in the context of a device recognition system, which we will

design in the next Chapter.

The first relevant column is the number of entities over which the recognition system

operates (Column 2). For the Speech Recognition case it is usually the size of the

vocabulary, while for the Music Recognition case it is the number of songs, which the

system can recognize. It is an important factor, because the less entities one aims to

recognize, the less sophisticated methods one needs to implement, which results in

higher processing speed, while retaining recognition accuracy.

For the feature choice (Column 3), most of the closely related works use primary Mel

and Linear Frequency Cepstral Coefficients, which as stated is the primary feature source

in Speech and Speaker Recognition too. Other often used features in combination with

40

the previous include zero crossing rate, spectral roll off or frequency centroid24. For

Music Recognition the melody plays an important role, thus in systems, like Shazam,

peak intensities and their duration is the base feature, while other systems use bigger

feature vectors for detailed recognition. In our work however, a slightly different set of

features was chosen, which was found to play an important role for our recognition use

case, explained in detail in the next couple of Chapters.

Some of the described Music Recognition services enjoy user input (Column 4), similar to

ours, while other systems use static databases, where the user plays no active role in

improving the recognizer via feedback.

Another characteristic of a recognition system is its adaptation capability (Column 5),

which we consider as an important property of a system, which aims to make better

recognitions over time. Under the adaptation it is meant the adaptation scale of the

recognition rather than the user’s preferences or his interface design personalization.

Usually Speech Recognition systems have a high rate of adaptability for the purpose of

tuning the recognizer to a specific person and his pronunciation in order to obtain a

better recognition rate. Services like Shazam don’t need an adaptation property, since

they consider music songs in exact time and melody.

The last property of the recognition systems is whether they rely on Machine Learning

algorithms for finding a result. For example some of the early Speech Recognition

systems described in Section 3.2, use straight forward matching of the closest solution,

while all modern Speech Recognition systems use sophisticated Machine Learning

techniques. In an interesting contrast, Shazam uses straightforward hash table lookups

over 11000000 records for a result.

Method Entities Count Features Count User Input Adaptability ML

Speech Up to 100000 ~24 Depending High Yes

Music ~10000000 ~3 Essential Not needed Depends

Activity ~10 ~8 None None Yes

Table 3.1: A table comparing the related works from subchapters 3.2 to 3.4

24

 A measure defining middle point of a spectrum according to its amplitudes in different frequencies

41

3.6.2. Detailed Comparison of Activity Recognition Systems

In this section we will make a summarized comparison of the presented activity

recognition systems (see Table 3.2) in the context of the intended capabilities, which our

framework should possess as mentioned in the introduction.

AR
System

Sound-based
Only

Easy
Installation

Optimization
Friendly

Feature
Selection

Mixing Adaptability

Stäger
et al.

Sometimes in
combination

with
accelerometers

Setup relies
on

wearable
sensors

Performed in
both hard-

and software

Studied
features. No

automatic
selection

Not
performed

Not
performed

Istrate
et al.

Separate
sound event

detection and
extraction

Flexible
setup

Complex
techniques

No
automatic
selection

Not
performed

Not
performed

Sehili
et al.

Multiple
sensors in the

full setup
Big setup

Complex
techniques

No
automatic
selection

Not
performed

Not
performed

Table 3.2: A table comparing the related works from subchapters 3.2 to 3.4

As we can see on the comparison table, the most competing work has been done by

Stäger et al. They have studied into detail different aspects of an activity recognition

system, which we consider as important too, like making an optimization friendly

installation with carefully selected feature sets. However their biggest difference to our

intended framework is that their recognition setup relies on wearable sensors, which is

an uncomfortable way of sensing information, as mentioned in Section 2.1.4. The second

most competing work has been done by Istrate et al. They perform a large variety of

Sound Processing techniques for their recognition, but in their tests they used data from

multiple environments and trained the recognizer with 90% of it. In both points our work

intends to do completely opposite. We first intend to make a personalized setup, and

second to use less training data. Other interesting capabilities, which are out of the

scope of this thesis, but are implemented in by them, include sound event detection25

and an attempt to recognize rare short-time events like glass breaking. The third related

work collective also made an excellent job in placing a multiple microphones and

exploiting their installation, but we consider their setup too overwhelming for our

purposes.

25

 Acoustic Event Detection means to label temporal regions, such that each represents a single event of a
specific activity

42

3.6.3. Overview of Recognition Capabilities of Related Works

After summarizing the related works we can make first thoughts, as to what kind of

capabilities a generalized Activity Recognition system should possess, consisting of the

presented sound pattern recognition works. Those include Music, Speech and Speaker

Recognition, and Activities of Daily Living Recognition (see Figure 3.11).

Figure 3.11: Illustration of the Activity distinctiveness that could be done using

a personalized adaptable activity recognizer

Activity

Music
Listening

Imagine

John
Lennon

Speaking

John

Imagine all

Tooth
Brushing

Electrical
Device

Oral-B

Conventional
Way

43

Chapter 4

Concept of Sound-based

Device Recognition
In this chapter we merge and extend the gathered knowledge from Chapters 2 and 3 to

introduce the concept of Sound-based Device Recognition. To summarize briefly, in a

typical home, individuals perform various Activities of Daily Living often with the usage

of specific devices. Some of those devices produce distinguishable sounds, which could

be captured by existing microphones in the home (e.g. personal computer microphone

or smartphone microphone). Usually the performed activities are bound to a certain

place in space. This means that from our sound perspective this would “sound” very

similar every time. So our feature extraction module should provide us with smartly

chosen features that make it possible for us to distinguish the different running devices

in a home and send those to a classifier for a further processing and issuing a recognition

result (see Figure 4.1).

Figure 4.1: The whole process from user activity to its device recognition attempt by the

Sound-based Device Recognition Framework. A separation done within three

components – Environment, Sound Processing, and Machine Learning

In this chapter we first create an abstract architecture of a system for Sound-based

Device Recognition. Then we will study its concept starting from the environment,

where different activities occur and their acoustics signals are captured. Then we will go

through the Sound Processing component and its purpose of extracting audio

characteristics. The next step is to get familiar with the Machine Learning component,

which is responsible for providing a recognition result after it is supplied with

appropriate feature information. After creating the structure of our desired Sound-

Environment Sound Processing Machine Learning

Activity

Sound

Microphone

WAV

Features

f1...fn

Classifier

Guess

Result

44

based Device Recognition system, we define its intended possibilities for integration

from a software perspective.

4.1. Architecture
After introducing the recognition process, in this subchapter we introduce the

architecture of a Sound-based Recognition system at both abstract and concrete levels.

Then we define the development process model, which will be used to implement the

architecture.

4.1.1. Abstract Architecture

From a high level architecture point of view (see Figure 4.2), a Sound-based Device

Recognition system, deals with the sounds after they have been digitalized and

streamed in some way to the recognition system. Ways of digitalizing and streaming

include the system doing this with its hardware and microphone input, or within mobile

application, which records and streams the information to the system. Then such a

system consults its own database for appropriate classification of the input data, while

eventually using specialized services for detailed recogtnition information for concrete

cases beyond its knowledgebase.

Figure 4.2: Illustration of the Client / Server (or Agent / Recognition System) architecture.

The server in the middle receives sound data either from external device like
smartphone, or from its sensors. For the recognition task if own DB lookup is
not sufficient the server might use further knowledge from external resources.

4.1.2. Concrete Architecture

In abstract perspective the work of the illustrated device recognition system is to

analyze and classify audio input. So aside from the environment, which we introduce in

Subchapter 4.2, there are another two important components, the synthesis of which

establish the basis of a Sound-based Device Recognition system. One is the Sound

Processing component, which we design in Subchapter 4.3, which employs various

mathematical transformations on the sound, already introduced in Subchapter 2.2. The

other is the Machine Learning component, described in Subchapter 4.4, which employs

different classifying techniques for the device recognition tasks. See Figure 4.3 for

Sound Data

Cloud

External

•Music Recognition

•Speech
Recognition

•...

own DB

•Toothbrushing

•Showering

•Shaving

45

illustration of the introduced components of a Sound-base Recognition System, similar

to the models in Chapter 3, with respect to their main functionality, as introduced in

Chapter 2. One should note that all components are tightly dependable of each other.

E.g. the better the chosen features are, the less sophisticated the Machine Learning has

to be in order to classify the sounds. The same goes for the connection between Sound

Processing and Hardware Setup, the more adjusted a setup is – the clearer the Sound

Processing can be. However, as we will see in the next subchapter, we make loose

requirements about its setup.

Figure 4.3: Illustration of the components of the recognition system from

software perspective with some of their typical functions

4.1.3. Spiral Development Process Model

The most suitable development process to implement the described architecture of

Sound-based Recognition system among the different development process models

introduced in (Pressman, 2009) is the Spiral Development Process Model proposed by

(Boehm, 1988) (see Figure 4.4). It describes a standard Evolutionary Process Model and

provides the potential for rapid development of increasingly more complete versions of

the software. The process iterates through standard steps of cyclic process –

Communication, Planning and Designing, Implementation and Testing, and Deployment,

described in (Pressman, 2009). In addition, each finished iteration sits on the top of the

last iteration and describes a more complete and valuable system.

NN

MC

BPM

Buffering

Filtering

Transforming

Features

Microphone

Service

Machine
Learning

Sound
Processing

Hardware
Setup

46

Figure 4.4: Illustration of the Spiral Process Model (Boehm, 1988) by (Pressman, 2009)

For example we have first anticipated the need of a Sound-based Recognition system

and its most basic functionality, through Subchapters 1.2. and 1.3. Then we estimated

their development costs and time to develop. Then we made a model consisting of a

hardware and software design in 1.4., which were the basis of our first implementation.

After making first functional tests we built a first installation, which covers the process

from activity to its device recognition attempt. On that basis we defined what the main

fallacies of the system are and decided in which direction the development should

continue and so on. This all led to the current version of the Sound-based Recognition

Framework implemented in Chapter 5, evaluated in Chapter 6 and to the outlook in

Chapter 7.

4.2. Environment and Installation Requirements
In this subchapter we characterize the environment of the recognition system (Section

4.2.1.) and then we describe the recording setup from both Hardware (Section 4.2.2.)

and Software (Section 4.2.3.) perspectives.

4.2.1. Environment Characteristics

As a target environment of our framework we choose an average single occupancy

(household with single inhabitant). As such it is supposed to have a lot of useful sound

properties, like environmental noise usually generate sounds within a broad frequency

range (Passchier-Vermeer & Passchier, 2000), speaking of the noises coming from

outside our setup environment.

47

4.2.2. Recording Setup

We choose a single generic sound recording device, e.g. we make no assumption about

its capability. There are a few possible setups regarding its placement. One is to choose

wearable microphone, and other is to choose static microphone. In order to supply the

Sound Processing unit with consistent input one should consider restarting the system

when changing the placement setup. Otherwise, it might require complex preprocessing

steps like those mentioned in Section 2.2.1. A further note is that for activities, where a

wearable setup is not suitable, like showering, we assume static placement.

Figure 4.5: Illustration of laptop that can act as a possible sound recognizer in a

kitchen (Frey, Stahl, Röfer, Krieg-Brückner, & Alexandersson, 2010)

4.2.3. Installation from a Software Perspective

From a software perspective in a static setup, the main processing unit should monitor

the sound environment and be able to guess what is happening (similar to Figure 4.5).

While a wearable sound sensor would require the client to wear it while performing

different daily living tasks and stream the data to the server. In abstraction, the different

sounds produced by different activities are captured by the microphone for recognition

as shown in Figure 4.6.

48

Figure 4.6: Illustration of different sounds produced by corresponding activities

are captured by the microphone and sent to the recognizer

4.3. Sound Unit
One of the main goals of the Sound Processing Unit is to provide daily activity specific

Sound-based Recognition. E.g. to study the existing sound pattern recognition

techniques, together with their application in the current setup, and eventually develop

their variations to optimize runtime and recognition rate. As a result one should be able

to obtain real-time recognition with a good tradeoff between recognition rate and

resources used. For this purpose we first discuss the Sound Processing techniques in

Section 4.3.1. and then we introduce features choice considerations in Section 4.3.2.

4.3.1. Sound Processing

Initially when developing the Sound Processing unit, one should ask oneself the

question, how humans are distinguishing different devices or activities by their sound. A

similar research start point has been done in Speech Recognition field, with the

derivation of the Mel Frequency Cepstral Coefficients, which are according to the human

hearing system. Another similar research start has been done in the Music Recognition

field, when the human ability to distinguish a melody, was automated to fingerprint

different songs.

4.3.2. Features Choice

As already mentioned in the previous chapter, the main techniques for activity

recognition derive from the Speech Recognition and Music Recognition fields. However,

there are a vast number of other sound characteristics used to categorize the sound,

despite their inability to provide important information either for Speech or for Music

Recognition. Other features are not obtainable from tiny sound extracts, thus often

ignored for sound recognition tasks. Nevertheless, they play an important role in the

context of testing the quality of a music instruments and categorizing songs (Peeters,

2004) (Müller, Ellis, Klapuri, & Richard, 2011), as well as for environmental sounds

recognition (Chu, Narayanan, & Kuo, 2009), as mentioned in Subchapter 2.2.

Sounds

Activity

Mic

Recognizer

49

4.4. Machine Learning Element
Knowing that there are a different number of features to be evaluated one should

consider appropriate classifying techniques to combine the gathered information. When

designing a new system it is important to build up the Machine Learning algorithms from

the scratch, instead of running the best overall classifier according to the current

research. This enables evaluation of the benefits (such as better recognition rate) and

drawbacks (such as slower runtime) on each step of classifiers refinement.

4.4.1. Implementation Considerations

So with an incremental development, we can obtain the important knowledge, whether

we can apply less demanding Machine Learning algorithms for recognition in terms of

having less training data and user feedback. One should think of the practical application

of the framework, which should not count on the user to take a shower ten times in a

row or clean his room ten times straight as well as to train the recognizer. In the same

manner an unobtrusive system, which won’t demand the user to evaluate it constantly,

is also a priority in the development. Various algorithms that satisfy this demand are

described in Subchapter 2.3.

As we learned in Subchapter 2.2., some features are better for categorizing certain

sounds than other. So it is an interesting capability is to decide, which of the

implemented features are the most “telling” in terms of recognition reliability. This

demands the implementation and test of algorithm, which prioritizes the different

features, and according to those priorities calculates a result. Furthermore, it could be

the case that in different environments, different features are important to recognize

activities, so a system should be able to assign priorities automatically.

Further consideration regarding the features rises when choosing their common metric.

One know that by translating the features to some metric in the nearest neighbor

algorithm, one could simulate the priorities of the different features, but this won’t

change the fact that the algorithm would run with all features together. As mentioned in

the previous paragraph, a smart algorithm might look at the top priority feature(s) and if

those return a confident recognition result, it might not even bother to test the rest of

the features. Furthermore, one could be able to automate the process of issuing

priorities of the different features in the training phase, by looking at their distributions

in space.

4.4.2. Adaptivity

Aside from the classification algorithm one should think of an incremental learning

system, which is an important property that the Machine Learning unit should possess.

An abstract illustration of a learning system, displaying its incremental learning

approach, which aims to make better recognitions over time, can be seen in Figure 4.7.

In particular, the system should be able to add new activities and to accept user

50

feedback for its recognitions. In a personalized setup, from the client or user perspective

one should also be able to start from scratch and help the system build its Activity

Database via Supervised Learning. Over time this will steadily increase the systems

knowledgebase for accurate recognitions.

Figure 4.7: Illustration of a learning agent (Russell & Norvig, 2010)

When speaking of greater knowledgebase and intelligent incremental learning system,

importing established sophisticated classifiers becomes inevitable. Examples of such

libraries include Infer.NET (Minka, Winn, Guiver, & Knowles, 2012), WEKA (Mark Hall,

2009), and Accord.NET (Souza, April 2012) (see Figure 4.8).

Figure 4.8: Logos of the most accomplished Machine Learning libraries - WEKA

(Mark Hall, 2009), Infer.NET (Minka, Winn, Guiver, & Knowles, 2012)
and Accord.NET (Souza, April 2012)

A further Machine Learning aspect is creating a personalized recognition model for

larger multidimensional training data. Afterwards, a comparison with the implemented

51

optimized classifiers will provide significant information about the tradeoff between

speed and recognition accuracy.

Another fundamental reason for making a comparison between different Machine

Learning algorithms is that it can serve as a justification of the chosen features and their

implementation. The latter means that if the recognition rates of both recognizers are

almost the same then the feature sets are categorizing the activities in clearly

distinguishable classes, which speaks for their right choice.

4.5. Integration
During the implementation of a Sound-based Recognition Framework one should not

only think of it as a standalone system, but should prepare its integration into a bigger

system. In this Thesis we prototype an integration as a Class Library (Section 4.5.1.) or as

a running Service (Section 4.5.2.) into the AdAPT Project (Frey, 2013) (see Figure 4.9).

Figure 4.9: Illustration of Multi-Agent-based Smart Service Platform used in AdAPT (Frey,

2013), where Sound-based Recognition with its components provide acoustic
audio-based knowledge about a given environment.

4.5.1. As a Class Library

Integrating the whole Sound-based Recognition Framework as a component into a

bigger system, or providing its classes as self-deployable units, is a direct way to

integrate it directly into a bigger system. Therefore, the framework itself and its classes,

discussed in Subchapters 4.3. and 4.4., should be exportable as libraries to ease their

importing. Integration as a component provides many benefits like real-time debugging

52

and optimized runtime. However, it might increase the complexity of the system and its

deployment.

4.5.2. As a Running Service

Developing a connection protocol to offer a running service provides a convenient way

for external systems to access the knowledge of the Sound-based Activity Recognition

Framework. For example a running recognition system might require supplement

acoustic information, for cases, where it has doubts in recognizing some event.

Furthermore, using the framework as a service has the advantage of easy integration.

E.g. only through some interface, without bothering what is on the other side.

Depending on the development intentions, the latter can be considered a flaw in cases,

where one might want to have detailed view of the ongoing computations.

4.6. Privacy Issues
Since Ambient Intelligence is tightly embedded in everyday life, it brings fears to both

users and developers about “a future in which all of our moves, actions, and decisions

are recorded by tireless electronic devices, from the kitchen and living room of our

homes to our weekend trips in our cars” (Weber, Rabaey, & Aarts, March, 2005), where

“Ambient Intelligence, though often designed to enhance freedom and control, has the

potential to limit freedom and autonomy as well” (Brey, 2005). So when designing a

system, which monitors the sounds in a private life environment, one should always

consider meeting the owner’s acceptance instead of forcing him to accept intrusive

privacy policies in cases where he needs the system for some reason like health care.

In our current design case, the Sound-based Device Recognition Framework should erase

all records after extracting the desired features. An option for storing the records could

be acceptable only during the development period for testing purposes, like changing

the sound setup and re-extracting the sound characteristics. Furthermore, in a

deployment phase, it makes sense to provide the user with the choice to hide certain

activities from the recognizer.

Another issue arises with centralized server architecture26 and the eventual user

reluctance to accept being monitored externally, despite promises of data trust. Further

problems are the breakable security systems, which are often the target of third parties,

which have great interest of acquiring personal information for reasons including legal

enforcements (like the possibility to recognize listening of unauthorized music songs and

forcing a payment for them). So a standalone home system capable of performing all

designed tasks should be a major priority of development.

26

 If parts of the system are outside of users reach, like a cloud recognition service for multiple households

53

Chapter 5

Sound-based Device

Recognition Framework

In this chapter we discuss in detail the implementation of a Sound-based Device

Recognition Framework. We first describe its environment with its characteristics in

Subchapter 5.1. Then we introduce the framework solution with its concrete

architecture (Subchapter 5.2.) and the developed Graphical User Interface (Subchapter

5.2.), which will help us put implementation fragments in the overall development

picture throughout the implementation details of the Sound Processing (Subchapter

5.4.) and the Machine Learning (Subchapter 5.5.) components. Finally in Subchapter 5.6.,

we carry out a demonstration, how we cover the process from activity to its device

recognition.

5.1. Environment and Hardware Setup
Since the main goal of this study is to provide device recognition in the home, the

architecture, implementation and the tests are centralized on this infrastructure. For the

setup we have a home environment consisting of a single room (see Figure 5.1). For the

sound monitoring a single microphone is used. We assume there is only one activity

running at time, with a single user that performs it. However as mentioned in the

introduction, during certain activities, there may be multiple devices running at the

same time, like showering and shaving. We call such activities, which consist of

simultaneous occurring activities, complex activities, and we will try to recognize the

used devices during them.

54

Figure 5.1: Illustration of a typical one room home environment27 with its typical

devices and corresponding locations. One should note that we are
interested in those devices, which produce sounds.

The placement of the microphone can be static or wearable, with the first being less

obtrusive and the second providing cleaner input. In terms of acoustics both placements

provide similar respective features, as the source is related to the computer or the

actuator. However switching between static and wearable setup, as well as other

changes in the placement of the microphone in runtime might affect the recognition as

well. The reason is that different placement and angles give different frequency

responses, which are crucial for recognition. One can compare the displacement of the

microphone in audio recognition setup to installing a distortion lens in front of a camera

and trust its input data for test after a learning phase before distortion. It is good after

every new setup to erase the old training data for accurate recognition.

27

 http://etalk.sgu.edu/contribute/housing/OnCampusHousingOption.htm

Kitchen

Lounge

Bathroom

http://etalk.sgu.edu/contribute/housing/OnCampusHousingOption.htm

55

5.2. Framework Solution in VS2012
Our framework is written using C# under Visual Studio 2012. It allows easy transition

between phone and desktop applications, which is an important feature and provides

the possibility of transition to a smartphone application or creating a client/server

architecture, aside from the conventional PC implementation. A drawback in the

development under VS is the lack of libraries and examples for the specific task of sound

transformation compared to other languages and platforms like Matlab, but the solid

.NET framework, which is very useful in other tasks, together with the good debugger

that Visual Studio offers are making up for the loss.

Before becoming familiar with all components of the system we will study their

organization in the main framework project. At first we look at the abstract class

diagram in Figure 5.2, showing the primary components of the framework, which are

necessary to complete the process from activity to device recognition. On the top of the

framework there is a graphical user interface to control all other elements and to

provide an environment to connect different modules and test them (see Subchapter 5.3

for details). The two main classes are the Sound Class (Subchapter 5.4) and Machine

Learning Class (Subchapter 5.5). For a detailed class organization see Appendix A.

Figure 5.2: Abstract class diagram of the primary part of Sound-based Device Recognition

Framework. On top sits the GUI, which connects both Sound and Machine
Learning classes and gives operating power to the user. Both main classes
have abstract subclasses for their main capabilities and concrete
implementations of those abstract classes

5.3. Framework Graphic User Interface
Writing a GUI to accompany some software development process is nowadays a natural

consequence and brings dozens of benefits. It provides fast access to all functions and

combinations of them, and keeps all together in one window. It is also of big importance

in visualizing some of the sound derivations or to keep live tracking of the features while

testing. Afterwards, it is the best way to share the work and its results with the public.

For this reason a GUI was developed in parallel to the main goals and served as a pointer

to the current development progress. A snapshot of the GUI in live recognition mode

can be seen in Figure 5.3.

Implementations

Abstract Classes

Main Classes

GUI Sound-based Device Recognition

Sound

Recorder

Microphone
NA

Processing

FFT
Feature

Extractor

Machine Learning

Classifier

Intern Extern

Activity

56

Figure 5.3: Snapshot of the GUI in Live Recognition Mode. On the upper part one can see
the sound panel for sound related operations and settings. On the lower part
the recognizer panel with its related operations and settings. Most important
settings like features set and Machine Learning algorithm are always available
to enable runtime changes. The rest of the operations are encapsulated in
different tabs in the recognition tab control

The GUI is divided in two panels, one for the sound related functions, such as recording

or visualizing, and second for the recognizer related functions, like its setup and output.

The GUI parts are also meant to be accessed consequentially. E.g. firstly setting up the

sound and testing, whether it works. Then choosing the feature set for recognition,

together with the Machine Learning algorithm. Finally starting recognition, with further

advanced properties available.

In order to provide in runtime enabling / disabling of features, also switching between

different Machine Learning algorithms, both Features and Machine Learning panels are

outside the Recognition panel tab control, where everything else is encapsulated for its

concrete usage.

57

5.4. Sound Class
The Sound Class encapsulates all classes and methods responsible for Sound

Transformation (Section 5.4.1.). In particular Spectrum Derivation and Feature

Extraction (Section 5.4.3.). Further important capabilities are Sound Preprocessing for

Noise Cancellation and Equalization (Section 5.4.2.), Wave File Mixing for dealing with

multiple activities at same time (Section 5.4.4.), and Wave Recording and File Parsing for

enabling a flexible input. Less important functions of the sound unit in terms of

recognition, but important for testing, include sound playback and visualization. Since

the native sound related libraries provided by Microsoft are not very consistent in time

in terms of their interfaces and usage, we use an additional library for basic audio

features, like recording and stream handling, called NAudio28.

In this subchapter we describe all steps from Preprocessing through to Filtering and

finally extracting features as illustrated in Figure 5.4. At the end we introduce the mixing

of sounds for recognition of multiple used devices in complex activities.

Figure 5.4: Illustration of the main steps of the Sound Processing unit pipeline

5.4.1. Sound Transformation

Here we will get details in Sound Transformation and in particular the performed short-

time Fourier transform, but first we need to describe the buffering and its setup.

Buffering Setup

Besides setting up the hardware there is a need to setup the software and its recording

parameters. When one chooses flexible recording settings, one still has to convert those

unified metrics for the later transformation, which always results in data loss. So instead

of bothering with conversion, we fix the recording parameters to unified supported

constants, which satisfy our needs. Furthermore, our choice will help us to analyze the

recorded data and the produced features for consistency and effectiveness.

28

 NAudio 1.7 Available at http://naudio.codeplex.com/

Buffering

FFT

High Pass Filter

Noise
Cancelation

Features
Extraction

http://naudio.codeplex.com/

58

The sampling frequency of the recorded sound is set to the most common used 44100

Hz (also used in Compact Disks). It has been chosen because any hardware supports this

rate. Not all of the microphones support stereo recording though, which might produce

some deviations during the hardware setup as well, so the number of channels is

reduced to one (mono recording). For the sound transformations it is useful to have high

precision variables, so the bit depth is set to 32 bit signed integer per sample, which

doubles the standard bit depth value of 16 and is uniformly supported as well. Overall

the user setup is reduced to choosing the sound input and options for standard time

recording, recording storage confirmation, and visualization modes (see Figure 5.5).

A further feature of the sound unit and its visualization is triggered by clicking the

graphic, which makes a snapshot of all chart data points and saves them to the database

in snapshot section as XLSX29 and RAW30 formats. The later can be used for in depth

analyzing and visualization using different tools, like Microsoft Excel or Matlab. For

example, all image examples in this thesis are imported in this way.

Figure 5.5: Illustration of standard time recording of 10 seconds using microphone input and

displaying the intensity in the graphic (Y-axis amplitude, X-axis time in
deciseconds)

To obtain better FFT precision we set the FFT buffer to 4096 samples. For record frames

we’ve chosen a variable time length, which is at least twice the FFT buffer size. However

to standardize data for tests there is a standard record length checkbox for 10 seconds.

Short-Time Fourier Transform Implementation

For the Short-Time Fourier Transform we use a C# translation of the C++ implementation

by S.M. Bernsee (Bernsee, September 21, 1999) with the exact implementation adapted

for C# by Mark Heath in NAudio. Since the algorithm provides imaginary valued output

we map it to real numbers using Euclidean distance to obtain the absolute values of the

complex numbers. We use overlapped buffering to overcome the loss of sound data at

the edges of the windows (See Figure 5.6).

29

 Excel Microsoft Office Open XML Format Spreadsheet File
30

 With .txt file extension, starting with information header, followed by values separated by a tabulator

59

Figure 5.6: Illustration of window overlapping to overcome buffer leaks after windowing.

Line above is the source buffer, while the redline represents the three
overlapping buffers sent for FFT.

For a Window Function we use primary Hamming Window with two supplement choices

– Blackmann-Harris and Hann Windows shown in Section 2.2.3. One can also skip usage

of Window Function. After the transformation, the resulted spectrum is displayed in the

sound related part (see Figure 5.7).

Figure 5.7: Screenshot of spectrum visualization using Hamming window of frequencies
between 80 and 5000 Hz (X-axis) with their relative energies (Y-axis)

After making the Fourier transformation we extract the frequency range between 80 Hz

and 5000 Hz for further recognition. This frequency range contains the most

distinguishable features in the spectrum, according to our manual study and automated

evaluation of different signals. Further reasoning for this choice is the unsteady behavior

of the frequency response, which different microphones provide (see Figure 5.8). For

further disturbances in frequency response of our chosen range we implement various

Filters at spectrum level, as explained in the next section.

60

Figure 5.8: Frequency response plot for build in microphones of different

iPhone series31 displays large deviations in lower and higher
frequencies.

5.4.2. Sound Filtering

Sound Filtering is important step to overcome some issues with microphone or

environment noise, which often occur in practice. We will first describe the importance

and implementation of a High-Pass Filter to overcome irregular deviations in frequency

response for some microphones and then we introduce straight forward Noise

Cancelation to eliminate low level and evenly distributed environment noise.

Figure 5.9: Filter tab screenshot with options for, Noise Cancelation, High-pass Filter

setting with visualization option, and Window Function choice. Note, that after
making changes to some on those options there is usually a need to extract all
features again from their source sound and save them

31 By Faber Acoustical LLC at http://blog.faberacoustical.com/2010/ios/iphone/iphone-4-audio-and-

frequency-response-limitations/

http://blog.faberacoustical.com/2010/ios/iphone/iphone-4-audio-and-frequency-response-limitations/
http://blog.faberacoustical.com/2010/ios/iphone/iphone-4-audio-and-frequency-response-limitations/

61

High-Pass Filter

Most microphones are very prone to deviations in lower frequencies (see Figure 5.10

above), which made us implement a High-pass Filter to overcome those problems.

Figure 5.10: Plots of the spectrum between 80 Hz and 5000 Hz of the microphone used for

later for tests with and without High-pass Filter

In this work we implement a discrete version of a so called First Order High-pass Filter

using the following formula:

 [] []

 (())

The effect of applying the filter with of 100 and Coefficient of 0.02

can be seen in Figure 5.10.

Noise Cancelation

As mentioned in Section 4.2.1., our recognition is in indoor environment with single

inhabitant, so we assume that the single inhabitant and his actions are the main source

of sound signals. The other sources are the devices performing periodic tasks, like air

conditioner while normalizing the room temperature. In this development phase we

assume, that there are no sound signals outside our home environment, which are

louder than those occurring inside.

After changing the High-pass Filter, Noise Cancelation, or the Window Function, one

should reconsider extracting all features, which use the spectrum domain, from the

recorded test data again. Most affected features are Average Loudness, Pitch Energy,

Spectral Flatness and Spectral Roll Off. For Zero Cross Rate it makes no change, while for

0

0.1

0.2

0.3

0.4

80 580 1080 1580 2080 2580 3080 3580 4080 4580

0

0.1

0.2

0.3

0.4

80 580 1080 1580 2080 2580 3080 3580 4080 4580

62

the rest of the features one might perceive small deviation in the feature values, which

still could make a big difference, especially for the silent activities.

5.4.3. Features Extraction

After transforming and filtering the sound it is time to extract features. First we will

study different sound spectrums and then we will justify the decision of which features

are worth implementing. Then we will explain the chosen features from in the context of

device recognition with their implementation.

Acoustic Characteristics of Activities and Devices

In order to make a decision which features we should select we first studied the nature

of the sounds produced by devices using speech and music analysis software (see Figure

5.11) (see Appendix D. and E. for further spectrograms of device sounds). The first

notable difference from the mentioned domains was that our signals were most noise-

like, similar to the environmental sounds studied by (Chu, Narayanan, & Kuo, 2009). So

we had to consider a specific feature choice, different from the one used by speech and

Music Recognition fields.

Figure 5.11: Plot of 10 second recording of speech (first quarter), music (second quarter),

epilator (third quarter) and hair trimmer (last quarter). Above we see the
waveform of the recording and below its spectrogram between 80 Hz and
5000 Hz.

A further remark we made is that, for activities performed with electrical devices it is

typical that most of the defining part of the sound comes from its electrical motor,

which is the actual sound source. Also interesting was that other activities performed

with non-electrical device, like showering, had spectrograms similar looking to electrical

ones.

63

Overall, we made the conclusion that most of the devices produce monotonic sounds,

which are noise-like. Their further characteristics are not steady and are very

implementation dependable. For example, calculating the pitch of a speaker is not a

hard task compared to calculating pitch of a hair trimmer, as evident in the spectrogram

in Figure 5.11. So after changing the feature derivation method, one should re-extract

the updated feature from the training data to avoid classifier confusion.

Implemented Features

After getting familiar with the nature of sounds produced by devices, we introduce the

implemented features in the Sound-based Device Recognition Framework (see Figure

5.12), also previously explained in Section 2.2.4.

Figure 5.12: Features panel screenshot displaying the enabled
features for recognition together with their current
value in the according local recognition metrics (see
the list of features below for details over the metrics)

We present the features this time in order of their addition to the Framework over the

implementation process, which was influenced by our perception of sound and the

conclusion from the last subsection. For example, the first perceivable feature of a

sound is its loudness, so we chose to start with it. Then, in a mathematical perspective,

zero crossings are one of the most important characteristics of a function, together with

its maximums and minimums. Subsequently, we implemented a set of 8 features, for the

task of audio-based device fingerprinting.

Loudness

We compute it by calculating the average cumulative energy of the spectrum over the

recognition interval. Note that this is a relative measure and is very dependent of any

Filters and especially Noise Cancelation algorithms.

Zero Crossing Rate

Zero Crossing Rate is the only feature derived from the time/amplitude domain (e.g.

without processing the raw signal), after deciding to compute loudness after the

filtering. To count zero crossings we check whether we have a zero crossing after each

64

received sample. In order to compute the Zero Crossing Rate for a given time interval

and number of zero crossings we use following formula:

(())

Where () is the number of zero rrosses over time period . For

example if we have zero cross count for time , for

our zero cross rate we obtain . Furthermore, for a simple

periodic signal, this will mean a frequency , which is the fundamental

frequency as well (recall that two zero crosses build one period of the signal, so for

the frequency of a simple signal we have for a measured in

zero crosses per second). We use this loose relation later, when defining common metric

for the different feature metrics.

Furthermore, in order to obtain bigger floating point precision and at same time to

minimize floating point error, the exact computation of is different than straight

translation of its formula.

Pitch Detection

To detect the Pitch we scan the spectrum for the highest value there. Its functionality

was tested via frequency tests. The measure of the Pitch is in Hertz.

Again, since we are dealing with variable size buffers, which are discrete representation

of the frequency band, we need to make couple of calculations to compute obtain the

frequency value in Hertz using following formula:

Where is the index where the maximum value occurred in the buffer,

which has size of . Together build up the

relative position in frequency between and . Note that the value at the

 might be different according to the chosen Window Function and the

exact FFT computation. Furthermore, due to the discrete representation of the

spectrum, the computation of the Pitch is exact with possible error of

 .

Pitch Span

Straight pitch produces monotone sound. Varying pitch with steady average value

sounds like whirring. This is also the only feature, which is highly dependent of the

recognition buffer length, since the smaller the recognition buffer length, the smaller the

chance to observe bigger pitch span. One can think of this feature also as a temporal

feature. The future inclusion of further temporal features is also of high interest as

stated later in the conclusion (7.2). The measure of the pitch span is in Hertz.

65

Figure 5.13: Plot of spectrum of a hair trimmer illustrating that determination of the Pitch

and the First Formant are hard task. For the current snapshot the Pitch would
be calculated as 1975 Hz, while the First Formant, would be 2234 Hz. One
should note that over time those peaks switch, making the pitch vary between
the mentioned two values, which is the way we compute the Pitch Span. Red
points represent the beginning and the end of the interval for computing the
Pitch Energy.

For some devices, like a vacuum cleaner (see Figure 2.12), the Pitch is steady and doesn’t

vary over time, while for some other devices, like a toothbrush, the pitch varies over

time. In some cases, Pitch Span refers to the distance between the Pitch and the First

Formant over time, due to ambiguity of automatic distinction between local maximums

(see Figure 5.13).

Pitch Energy

This is the amount of energy as part of the whole energy, which surrounds the pitch in a

10% rectangular window (e.g. the 10% of the signal around the pitch as middle point). In

Figure 5.13 Pitch Energy refers to computing the energy between two local peaks left

from the pitch and two peaks right from it, which is between 1729 Hz and 2221 Hz as

marked with red points.

First Formant

We compute the First Formant by finding the first local maxima in the spectrum after

the pitch. We start the search after skipping some indexes from the spectrum array in

order not to misinterpret parts near the Pitch as First Formant. The metric of the First

Formant is in Hertz. As we can see in Figures 5.11 and 5.13, for some devices like a hair

trimmer, this feature is hard to obtain and provides often ambiguous results.

0

5

10

15

20

25

30

80 580 1080 1580 2080 2580 3080 3580 4080 4580

66

Spectral Flatness

This is an important measure, which is very useful to distinguish meaningful sound from

noise. The formula to compute Spectral Flatness is:

√∏ ()

∑ ()

Where is the size of the spectrum buffer () is the bin value at the

given position.

Again due to possible floating point precision problems occurring in computation of the

product the exact computation of the Spectral Flatness is done via intermediate

calculations of the product chunks by using the following mathematical formula

√
 √

√

Where and represent two positive real numbers. We should also note that since

some of the spectrum indexes might be zero values, we exclude from the overall

calculation, because their presence might lead to division by zero in the intermediate

computations.

Spectral Roll Off

As mentioned in Section 2.2.4., Spectral Roll Off is important measure about the energy

distribution over the spectrum. For its computation, we determine the point where we

have 95% of spectrums total energy. We measure the Spectral Roll Off in Hertz.

5.4.4. Sound Mixing

Mixing sounds for their recognition is a novel approach in the field of Sound-based

Activity Recognition. It has been discussed in the field of Music Recognition for mixing

different instruments in order to attempt their combined recognition (Wieczorkowska,

Kolczyńska, & Raś, 2008). However the technique used here is slightly different and

avoids volume normalization (see Section 2.2.2.), which is important for musical

instruments, since they can play at different intensity, but mostly irrelevant for devices,

which often have steady loudness. We are aware that defining which activities can occur

simultaneously is a hard task. That’s why in our Framework we implement up to three

mixing possibilities, mostly for research purposes. Each mix consists of at most three

records (see Figure 5.14).

67

Figure 5.14: Sound Mixing Tab, which enables mixing of two or three of

the available activities.

To create a mix of recordings we iterate through their values and add them. Often when

mixing signals there occurs a problem called Audio Clipping (see Figure 5.15). It happens

when the sum of the mixed values exceeds its range. A way to avoid clipping is by

lowering the amplitude of the whole mix, but by doing this, one obtains erroneous

information in some features like Loudness. We overcome the problem of clipping in our

audio setup by adjusting the recording levels in the installation step. Furthermore,

mixing sounds with lower overall amplitudes might introduce lower precision, due to

rounding error of the chosen bit dept. However, our choice of 32 bit depth provides

plenty of resolution even at lower recording levels.

Figure 5.15: Plot of single period of the function from Figure 2.6 added with itself (blue

line). The discretization of its mix is out of the interval [-1,1], so all values
out of the interval will be lost (Red Part) and we will obtain only the
rounded discretization (Green).

-2

-1

0

1

2

0 100 200 300 400 500 600

Discrete Mix

Clipped Mix

Mix

68

A further benefit of sound mixing for recognition can be seen if we compare it with

video-based recognition, where one needs complex modelling in order to simulate or

recreate how someone would look like when performing simultaneously multiple

activities, in order to recognize them.

5.5. Machine Learning Class
Unlike the pipe process nature of the Sound Class, which constantly transforms the

incoming sound signal, the Machine Learning Class evolves with time in terms of its

knowledge and capability (see Figure 5.16). In this subchapter we introduce the Activity

Class, which encapsulates information for the different types of activities and the

devices used to perform them (Section 5.5.1.). Then we discuss automatic prioritizing

and selecting features (Section 5.5.2.), as well as their metrics and normalization

(Section 5.5.3.). Finally after introducing the different activities and their feature sets,

we study the implemented Machine Learning algorithms for classification (Section

5.5.4.), together with the imported Machine Learning techniques (Section 5.5.5.).

Figure 5.16: Illustration of the evolving nature of the Machine Learning

unit, which increases its knowledge with the occurring
training and tests, and the feedback by the user

5.5.1. Activity Class

In this section we define our activity class, which comprehends different types of

activities, which are of interest in this thesis, due to the various device types used to

perform them. Afterwards we explain the way we store the gathered information.

Knowledge

Training

Tests

Feedback

69

Activity and Device Types

In our Framework the Activity Type encapsulates all types of activities, which produce

sounds for time intervals bigger than our smallest recognition window of 0.1 s. Since we

are interested in recognizing the devices used in activities we introduce a Device Type

for devices used to perform the according activity (see Appendix B for mapping between

those two type). One should also note that, not all of the activities are performed by

humans. For example, a heating element starts heating alone, when the temperature

falls beyond given threshold. We define the state of device as active, if they disperse

sounds. According to the heater example, it is on standby or inactive while measuring

the temperature and active while heating.

To enable deeper knowledge about the used devices there is a checkbox to determine

whether the activity is performed with electrical device. On this basis one can make

statements in recognition whether the recorded activity is performed with electrical

device. For example if we have five activities like brushing teeth with an electrical

toothbrush, cleaning using a vacuum cleaner, coffee making using a moka pot,

showering and speaking, we can separate those activities into three categories –

performed with an electrical device (first two), performed with non-electrical device

(second two)32 and the last one performed without any device at all (see Figure 5.17). So

after issuing recognition the recognizer assigns different probabilities for the occurrence

of each activity, and by those probabilities, one can make statements as to which of the

currently defined three activity categories this was. A sample formula to determine this

could be, by looking, whether all electrical devices score probability over some

threshold, like 0.5, while all other activities score probability below this threshold (see

sample mathematical definition below).

 ({ }) ({ })

Figure 5.17: Example of possible activity division into three categories – using electrical-, non-

electrical-, and no-device. At the lowest level we see the concrete activities with
their current occurrence probability. One can clearly make the conclusion from
those probabilities, that the occurring activity is most likely performed with
electrical device, because both listed electrical devices obtain much higher
probability according to the classifier, while making a distinction between non-
electrical device and no device at all is ineligible since both classes obtain similar
probability.

32

 Indeed, one usually heats the moka pot with a hot-plate, and the water for the shower with a boiler

Activity

electrical
device

0.7 0.6

non-
electrical
device

0.10 0.22

no device

0.15

70

Activity Database

The Sound-based Device Recognition Framework builds up its Activity Database with the

user assistance via Supervised Learning, as explained in Section 2.3.1. So we rely on the

user to supply the recognizer with sufficient information about his activities. We should

note regarding the difference between activity and its devices, discussed in Section

2.1.1., that the user still labels an Activity Type and Device Type combination. This is so,

because from user’s perspective the actual activity is known, while from Sound-based

Recognition perspective we cannot apply an inference from device to activity with

confidence.

Figure 5.18: Snapshot of the process of labeling an activity after making a record and
computing its features. The user first chooses the activity type from the
provided list of activities or he defines it himself. Then he enters further
information, whether there is a device used to perform this activity and enters
information about the device.

In the Frameworks user interface after recording some activity, there is given the

possibility to label it with its information details such as used device to perform it (see

Figure 5.18). To simplify the addition process the user can choose between listed

activities.

After gathering different activity sounds and extracting their features, it makes sense to

have them organized in some way (see Figure 5.19). In Speech Recognition there are

collections of spoken texts and their transcription, usually called Speech Corpus.

Similarly we gather labeled recordings together with extracted features, in a corpus

called Activity Database. It stores all activities with their corresponding fields and stats in

a single file, which is synchronized after changes. The file format is either raw text file or

Excel Worksheet. In order to meet the Privacy criteria from Subchapter 4.6 one might

consider encrypting those when it comes to eventual deployment.

71

Figure 5.19: Snapshot of the setup tab, where one can browse current activities

and Add/Edit/Erase the selected (only single selection possible).
Further setup capabilities include choosing the database storage type
between raw text file or Microsoft Excel file, as well as the possibility
to open the storage with the corresponding default software.

In our frameworks GUI we provide database access with basic functions. Such include

erasing activities, which are not performed anymore the way they were trained. While

other advanced operations, such as editing the activities by altering their feature values,

or adding activities with providing exact feature values, remain only for functionality

purposes and are thus not enabled in run mode. One can also choose to view the

database in a convenient way according to the selected export type, which is very handy

for applying analytical operations on it.

5.5.2. Automatic Feature Selection and Priority Determination

We implement Automatic Feature Selection and Feature Priority Determination in a

similar way. However they both have different usage scope – Feature Priorities are used

only by the Most Confident Algorithm, discussed in Section 5.5.4.

In our implementation we iterate through the features check whether they remain static

for different activities, thus making them unimportant for categorizing a concrete set of

activities (see Algorithm 1).

72

FeatureSelection (SpanThresholdCoefficient STC, DistanceThreshold DT)

Enable all features

For each Feature F

Find the largest distance LD of F between all activities

Calculate and store |LD – DT| in FC

 if (FC < STC)

 Disable F

if all features are disabled

 Set the feature F with largest corresponding FC

 if there are multiple such features

 Choose the one with less computation steps

end
Algorithm 1: Pseudo code of Automatic Feature Selection

Another way to implement feature selection is to look for features, which vary a lot

between different records of same activity, thus providing erroneous information.

However, for this case one needs bigger training data for each activity type, which is the

reason why we stick to the first variation of feature selection.

5.5.3. Feature Metrics and Normalization

For manually implemented Machine Learning algorithms it is important to define mutual

metrics for all the features in order to measure them. Another concern is that by

converting features to common metrics, one also associates different importance or

weight with the choice of the conversion coefficient. For our choice of metrics we use

the knowledge that all our sound features share the same source. The latter provides

information about the connection between the features, which can be obtained by

studying their derivation method and their role in defining the sound. In the GUI one can

define his own set of metrics different to the displayed default one like shown in Figure

5.20.

73

Figure 5.20: Screenshot of the metrics tab with the metrics

default values and the priorities default values

One should note that priority is used only for the Most Confident Algorithm described in

next section. It is about the priority of the feature alone, since we are aware of the

possibility that combination of features with lower priorities might perform better than

combination of same size consisting of features with higher priorities.

5.5.4. Implemented Classifying Algorithms

After introducing our activity database and the different features with their common

metric, in this section we describe the two implemented classifying algorithms, both

with intension of high efficiency recognition.

Nearest neighbor

As we first described in Section 2.3.2, we implement the Nearest Neighbor algorithm

with single reference search. E.g., either having only one reference in the training set for

some class, or averaging multiple references to obtain single reference value. We do this

in order to enable rapid search for result, knowing that the number of classes is

relatively small and relying on the feature choice to be suitable.

With a single reference set a possible behavior for false recognition might be to replace

the activity stats with the new one, or to replace only those selected for the recognition,

which appeared false. One can use the feedback as training data too and compute an

average value for the reference values, or cleanup the largest deviations from an

average value.

One-Dimensional

In the one dimensional case of Nearest Neighbor we look for the activity with feature

statistics having smallest distance from the measured reference feature (see Algorithm

2).

74

NearestNeighbor1D (Feature F)

Create a sorted list L of activities according to their distance in statistics

from reference F.

return L // first element of L is the nearest neighbor
Algorithm 2: Pseudo code of one-dimensional Nearest Neighbor, which returns a sorted

list of activities according to their distance in given feature from a
measured reference

In the runtime computation we exclude the runtime for returning a full sorted list

neighbors according to their distance, because it is done only for debugging reasons. So

the total runtime for the one-dimensional Nearest Neighbor is () for number of

activities. The latter could be optimized to (), with utilizing binary search and

keeping the statistics sorted.

Multi-Dimensional

In the multi-dimensional Nearest Neighbor we run single dimensional search for all

features according to common metrics (see Algorithm 3) (see Appendix C for a sample

implementation).

NearestNeighborMD (Statistics S)

Convert all features in S to unified metrics and sum them in S’

Create an empty sorted list SL of activities according to distance from S

for each activity A

 Convert all features from A into unified metrics and sum them in F’

 Compute the distance D between F’ and the features from S’

 Add D and A into SL

return SL // first element of SL is the nearest neighbor
Algorithm 3: Pseudo code of multidimensional Nearest Neighbor algorithm

The runtime of multi-dimensional Nearest Neighbor () for number of activities

and number of enabled features.

Most Confident

As we will later see in the evaluation, some features are more trustworthy than others.

In order to exploit this property, we developed further optimization of the Nearest

Neighbor algorithm, which breaks it and returns an intermediate result according to

applied confidence criteria. We call this type of algorithm Most Confident33. We

considered a couple of possible implementations of such algorithm. The first one is to

return intermediate result of NNMD after being confident enough. The second one is to

33

 Not to be confused with some name conventions, which use the word confidence for probability

75

return the NN1D according to only one prioritized confident feature. We chose the

second variation, since the first one requires knowledge not only about the different

features alone, but also about their combination. With deeper knowledge about the

feature and their behavior in combinations with other features, one might implement a

combination of the both mentioned variations.

In detailed view (see Algorithm 4), the implemented Most Confident algorithm runs a

sequence of one-dimensional Nearest Neighbor algorithm. After each run it computes

relative confidence check, whether the intermediate result is trustworthy. In case none

of the intermediate results met the criteria, it returns simply the multi-dimensional case

of the Nearest Neighbor algorithm built up with the intermediate computations.

MostConfident (Statistics S, ConfidenceThreshold T)

Sort the list of features from S according to their priority in LF

while (LF is not empty)

 Take first feature F from LF

 Run NearestNeighbor1D(F) and store recocnition result in RR

// measure the relation of distances between F

 // and its two Nearest Neighbors (or first two elements of RR)

 Run CalculateConfidence(F, RR) and store confidence in C

 if (C > T)

 return first element of RR // e.g. current result

// none of the features passed the confidence test

return multi-dimensional Nearest Neighbor computed using all stored RR
Algorithm 4: Pseudo code of Most Confident algorithm which iterates through the

different feature types according to their priorities and returns a result
if being confident enough. If not the case it eventually returns the
multidimensional version of Nearest Neighbor.

This algorithm makes it possible to compute fast results in runtime of () for best case

scenario of positive confidence check, where is the number of activities. For taking

average values the runtime will be (), where m is the maximum count of stats for

some activity (taking the average of those would be (), thus the total runtime of

 ()). Worst case will be as the Multi-Dimensional Nearest Neighbor, which

is (), where l is the number of selected features.

One should note that there are further optimizations possible with intelligent choice of

the data structures. Such include pre-computation of the average statistics during

training to get rid of the factor. With keeping the data sorted, one can reduce the

76

factor to . With even a bigger redundancy, consisting of sorting the training data for

every set of features, one can get rid of factor too. Overall, we provide a possibility of

worst case total result search time of () and best case with direct search hit of

 ().

5.5.5. Imported External Libraries

In both of the implemented algorithms we exploited the setup to boost the runtime of

result search. However, there are numerous interesting Machine Learning tasks like

building an incremental learning system, which smartly uses large sets of training data.

The latter can be used to build up distribution models, out of which one can make

precise predictions about some unknown input and its probability to be some of the

known classes (recall Figure 5.17). For such advanced purposes we import Infer.NET

(Minka, Winn, Guiver, & Knowles, 2012), a state of the art Machine Learning library.

Further reason to include external library is to test the efficiency of the implemented

algorithms.

Infer.NET

The Infer.NET library implements the Bayes Point Machine algorithm (Herbrich, Graepel,

& Campbell, 2001)(introduced Section 4.4.) in a standard Supervised Learning setting

and is trained via Expectation Propagation (Minka T. P., 2001).

Infer.NET works by compiling a model definition into the source code needed to

compute a set of inference queries on the model (see Figure 5.21), therefore providing

numerous integration advantages over other established libraries, such as those

mentioned in Section 4.4.2. WEKA or Accord.NET, including runtime optimization,

detailed debugging, code transparency, model exporting.

Figure 5.21: Diagram summarizing the inference process of Infer.NET (Minka, Winn,

Guiver, & Knowles, 2012)

In our multi-class setting for device classification, every device class has an associated

weight vector with standard Gaussian vector priors. The device class with a

corresponding feature vector is defined by the arg-max of its score under each class. The

score is defined as the inner product between the features of the data point and the

77

weight vector plus some added noise. The factor graph corresponding to Bayes Point

machine is shown in Figure 5.22.

Figure 5.22: Illustration of the multi-class classification with Bayes Point Machines
(Minka, Winn, Guiver, & Knowles, 2012)

Furthermore, Infer.NET is a perfect choice to satisfy the Adaptivity criteria described in

Section 4.4.2. To build an incremental learning system we connect the feedback from

the user and use it to obtain posterior distribution of learned data.

We should note that the integration of several classifiers has the potential of interesting

opportunities for their usage. Besides combining features for recognition one might also

consider combining the Machine Learning algorithms as well. According to (Provost &

Fawcett, 2001), a wise choice of classifiers beats the recognition rate of any of them

separately.

78

5.6. Process from Activity to its Device Recognition
After getting familiar with the Sound-based Device Recognition Framework and its inner

mechanisms, in this subchapter we provide a revision of the process from activity to its

device recognition introduced in Chapter 4 (see Figure 5.23).

Figure 5.23: Revision of the process from occurring activity to its device recognition
based processing and classification of captured acoustic signals

For this purpose the user first has to train the recognizer (Section 5.6.1.) and then we

can use it for static recognition (Section 5.6.2), as well as for real-time recognition

(Section 5.6.3.). At the end of this subchapter in Section 5.6.4., we explain also the

interface for integration, which satisfies the concept from Subchapter 4.5.

5.6.1. Training

In the training phase the user labels his recorded activities (See Figure 5.24). This is a

form of manual event detection, meaning that the user identifies his activity timing

alone and provides the information to the recognizer.

Figure 5.24: In training phase the user makes records and labels them

If the added record already exist in the database, the recognizer uses it as further

training information for the selected class.

Activity

 Sound

Microphone

Buffer

Features

f1...fn

Recognition

Device

Result

79

5.6.2. Recognition

In the recognition phase the user asks the recognizer to make a guess about some

recording as shown in Figure 5.25. After attempting recognition, the user can provide

feedback to the recognizer and correct him if he decides to do so.

Figure 5.25: Snapshot of a recognition attempt. We can see on the label right the

recognition result, and upon what features it is based. The user is given
a chance to provide a feedback whether the recognition was good. If
the recognition was bad, the user may also correct the recognizer.

5.6.3. Real-Time Recognition

Real-time recognition is an important characteristic of every pattern recognition system

(see Figure 5.26). Here we have a flexible system for real-time recognition, which

enables changing the feature set for recognition with the Machine Learning algorithm

while running. The recognition intervals are between 0.1 s and 10 s. Note, that the

training data is usually recorded with 10 s intervals as mentioned. Furthermore, for time

intervals below one second pitch span feature is automatically disabled, because of the

impossibility to gather sufficient and reliable temporal information of this type in such

small periods of time.

Figure 5.26: Live Recognition mode enabling feature and Machine Leaning algorithm

selection, during a real-time recognition with time intervals between 0.5 s
and 10 s.

80

Viewed in depth, the real-time recognition is a non-stop interaction between the two

main components of the software system – Sound Unit and Machine Learning Unit. The

first one constantly buffering the incoming input from the environment and extracting

different features, while the second one periodically pulls the current state of the

features and issues recognition (see Figure 5.27).

Figure 5.27: Live recognition dataflow diagram showing the interaction between the

Sound Processing unit, which is constantly buffering the recorded sound and
extracts features, while the Machine Learning component starts recognition
after some point of time

5.6.4. Integration Interface

Here we describe our integration interface, which satisfies the described one in

Subchapter 4.5. We first provide the integration possibilities as Class Library, then as a

Running Service.

Class Library

In order to integrate the project to class library, one has to change its output type to a

class library as shown in Figure 5.28.

Figure 5.28: Changing the output type of the project to class library for integration

Sound Processing

Buffers

Machine Learning

Recognition Result
according to current state
of features

Sound Processing

Buffers

Machine Learning

Recognition Result
according to current state
of features

81

After compiling to class library one can access the whole framework as a complete

solution, as well as both of its namespaces for Sound Processing and Machine Learning

separately (see Figure 5.29).

Figure 5.29: Illustration of best exporting opportunities of the Framework and its

namespaces – Sound Namespace for Sound related operations and ML
Namespace for Machine Learning related operations.

Service

Since the described Sound-based Device Recognition Framework encapsulates all the

logic for Sound Processing and Machine Learning, we rely on the client providing sound

recordings via TCP/IP a connection34. So the first step is to establish connection, after

which the GUI acting as a server starts to listen for commands. There are two

commands, which the user has to choose – one for training and one for recognition.

They are defined as follows:

 Train <Activity, WAVE File>

 OK // Confirmation

 Recognize <WAVE File>

 Activity // Recognition Result

One should note that according to the definition of those commands, obtaining a real-

time recognition requires a connection of at least 176400 bytes per second for the wave

data plus the additional bytes for the commands and the WAVE File headers (recall

Figure 2.8). One can loosen up such connection requirements if he considers a mixed

integration. For example, by integrating the Sound Class into a device in order to send

only the features to the Framework for recognition.

34

 Group of communications protocols used for the Internet and similar networks

SoundRecognizer

ML Sound

82

83

Chapter 6

Evaluation
In the evaluation of the Sound-based Device Recognition Framework, we evaluate all

important aspects of the developed system, such as its recognition accuracy, automatic

mixing and automatic feature selection. We concentrate on the functionality of the

framework at its current development stage, and show that our system provides a solid

base for further developments. In Subchapter 6.1., we define our test environment and

its setup, as well as our test corpus and software test module. Then, in Subchapter 6.2.,

we present our experimental results.

6.1. Test Setup
In our tests, we cover a large variety of devices that produce different noise in a home

environment. In Section 6.1.1 we introduce these devices and we specify our hardware

setup. In Section 6.1.2 we present our software module for automatic testing.

6.1.1. Test Environment Setup and Corpus

We perform our test in a home environment. We select a 25 class problem consisting of

20 devices, three complex activities with two devices, speaking and silence. In

comparison, most of the related works, with similar test environment to ours from

Subchapter 3.4., are usually dealing with classes of a size between 10 and 15 entities.

Similarly to other works, we perform 6 records per device and use one record for

reference, while the other 5 are for tests.

Zone-wise our environment can be separated into three activity zones – zone for

personal hygiene, zone for preparing meals and zone for relaxing and socializing (see

Figure 6.1). Zones can be separated either in separate rooms or locations in one big

room. Furthermore, almost all tested activities are performed at their corresponding

place, excluding vacuum cleaning (moving around the room), hedge cutting (also at

different locations). Devices, which had strongly bounded locations were Fridge, Coffee

Maker (Moka Pot), Kettle, Shaker (Blender), Washing Machine, Toilet, Absorber,

Microwave, Heater and Music Centre.

84

Figure 6.1: Visualization of our simulated environment with three activity zones

and their corresponding devices. Hedgecutter is in brackets, because it
occurred outside, despite being captured indoors. Similar to that the
Chain Cleaning occurred in the corridor.

Besides the conventional devices used in a home, we tried to make the recognition

problem harder by adding a Hedgecutting activity, which occurred outside of our test

environment, but still was captured indoors. We also included a Chain Cleaning activity,

in order to increase the number of non-electrical devices and the variety of the devices.

Mixed1 is a complex activity of simultaneous Showering and Toothbrushing with usage

of respective Shower and electrical Toothbrush. Mixed2 is cleaning while blending at

same time, with Vacuum Cleaner and Blender. Mixed3 is actually performed by a person

cutting hedges from outside with a Hedgecutter and by a person trimming hair with

Hairtrimmer.

The only activity without device was the speaking activity, which should be correctly

identified for future developments of the framework, where it might include Speech

Recognition components. In parallel, the music listening activity can be used to

recognize the songs listened to with an external library, besides providing information

about the usage of a HiFi system. Furthermore we added a silence entity despite being

neither device nor activity itself, due to the fact that with an average microphone, like

the one we used, the recordings of Fridge and Shaving were almost the same as those of

silence in terms of their volume levels and spectrum shape. Furthermore in integration

of the system into a bigger recognition system recognizing silence as a separate entity

Electrical Toothbrush

Epilator

Hair Trimmer

Hairdryer

Shaver

Shower

Toilet

Washing Machine

Absorber

Coffee

Fridge

Kettle

Microwave

Mixer

Shaker

Heater

Music Centre

Vacuum Cleaner

(Hedgecutter)

(Chain Cleaner)

85

might present some vital information, which might be crucial for differentiating some

entities, like mentioned in Section 2.2.4.

For our recordings we use a single microphone. We make 10 second mono records at

44100 Hz rate and use FFT Buffer size of 4096 samples. It is also important, that the

sounds are actually recorded from activity that really occurs. E.g. no playback recordings

were indexed. In out tests, we made all records with manual event detection using our

framework.

6.1.2. Software Test Module

In our software module for automatic testing we provide different opportunities to test

various aspects of the system (See Figure 6.2), including:

 Test all combinations of features for a given test corpus via computing their power

set. This provides important information about the best feature combination, as well

as the worst. Furthermore, it can be used to identify the best performing derivation

method.

 Test different permutations for given number feature set size in order to find out the

best performing. Indeed, this is a subset of the feature power set of all features, but

sometimes with larger test corpus it takes a lot of time to compute the power set of

all features.

 Test different provided algorithms for finding the best algorithm.

 Provide automatic feedback, as if the user would. This is an option, which makes bin

sense with less training data, where the single reference is vital.

 Provide spatial information to the recognizer, as if there are multiple microphones

installed, or tracking.

 After tests the test module cleans all information from the Activity Database, but

there is an option not to do so. Such an option is important to see how real-time

recognition performs.

 If none of the options is selected, the test module runs the tests with the selected

features and algorithm, as if the user ran them.

It is also worth noting, that before each test, besides setting up the Machine Learning

parameter, one can change Sound Processing settings as well.

We perform our experiments in two steps. First we identify the feature set with the

highest recognition accuracy. Second, we run detailed tests with the set in order to

study in details its obtained results.

86

Figure 6.2: Test for power set of all features to identify the best combination. In

the first column of the list we see the feature combination in a decimal
notation, while its selected bits represent the enabled features. In the
second column we see the number of correct recognitions. In the
current snapshot we see Total Tests Size of 150 and Training Size of
25, meaning 125 performed tests. So 122 hits means recognition
accuracy of 97.6%.

As mentioned, in our current tests we first test power set of all features to determine

the best performing set (see Figures 6.2 and 6.3). If some features have the same

recognition accuracy then we choose the minimized set of features for best result. In

case of a conflict for the number of selected features, we choose those with minimal

costs similarly to (Bolón-Canedo, Porto-Díaz, Sánchez-Maroño, & Alonso-Betanzos,

2014).

Figure 6.3: Detailed view of the tests after being performed for further statistical
operations.

87

After identifying the best performing feature set, we run specific tests with it in order to

obtain detailed information about each recognition attempt (see Figure 6.4).

Figure 6.4: Test environment snapshot while performing concrete test

Again, we can see details about the recognition in an automatically generated sheet

shown in Figure 6.5.

Figure 6.5: Excel Export of the detailed test results for a chosen feature combination.
We can see in the first column the actual activity compared to the
recognition result in the second column. In the next two columns we see
the selected features and the used Machine Learning algorithm for
recognition, followed by the values for each selected feature.

All tests and their results are stored in the database. This includes all intermediate

computation steps, as well as the used Sound Processing and Machine Learning

parameters. One can use the results on his own for performing further evaluations with

Excel or Matlab. Such evaluations and visualizations are those which follow in the next

sub chapters with concrete tests. Other evaluations, which are not of particular interest

in this chapter`s performance evaluation, but represent interesting input for solving the

introduced use cases in Subchapter 1.2., are evaluations of the users schedule, for

creating his activity profile, based on different activities which he performs at a different

time. One can also import the computed features from the intermediate steps in his

own program and tryout different Machine Learning algorithms, or use the features as

additional information for his existing recognition software (e.g. skipping to include the

Sound-based Device Recognition Framework as library).

88

6.2. Test Results
In this subchapter we perform our tests which were introduced in Section 6.1.3., with

hardware setup and environment explained in Section 6.1.2.

6.2.1. Identifying the Best Feature Set for the Tests

As mentioned in Section 6.1.1., our Test Corpus consists of 25 Class problem, out of

which 20 Classes represent devices, 3 Classes are mixes of two devices, and the other

two Classes are Speaker and Silence. We run the implemented multi-dimensional

Nearest Neighbor algorithm with single training for the task of recognizing 125 activities

consisting of 5 occurrences from each of the 25 classes. We test the power set of all

features. This means, with our implemented 8 features we test 255 combinations,

excluding the empty set. The results of best and worst performing feature combinations

together with the average recognition results are shown in Table 6.1.

Feature
Count

Best Set Result Worst Set Result
Average

Result

1 LA, (ZCR, PA) 52% FF 30.4% 44.6%

2 LA, SRO 81.6% SRO, FF 49.6% 67.49%

3 LA, SF, FF 93.6% PV, FF, PE (PV,SRO,PE) 62.4% 76.69%

4
LA,PA,SF,FF

(LA,SF,SRO,FF)
97.6% PV,SRO,FF,PE 64% 79.97%

5 LA,PA,SF,SRO,FF 97.6%
ZCR,PV,SF,SRO,FF
PA,PV,SRO,FF,PE

68.8% 80.66%

6
LA,ZCR,PA,SF,SRO,FF
LA,ZCR,SF,SRO,FF,PE
LA,PA,SF,SRO,FF,PE

94.4%
ZCR,PA,PV,SF,SRO,FF,PE

(ZCR,PA,PV,SRO,FF,PE)
(ZCR,PA,PV,SF,SRO,FF)

72% 80.06%

7 LA,ZCR,PA,SF,SRO,FF,PE 93.6%
PA,PV,SF,SRO,FF,PE

(ZCR,PA,PV,SRO,FF,PE)
74.4% 79%

8 All Features 77.6% All Features 77.6% 77.6%

 85.9% 62.4% 73.26%

Table 6.1: Best, Worst and Average results for all different feature combinations of
different set sizes. The results in brackets were up to 1 recognition close to
the provided result

With a single feature for recognition we obtained best results for Loudness Average (LA),

directly followed by Zero Crossing Rate (ZCR) and Pitch Average (PA). They were also the

first three implemented features. It is interesting, that the combination of those three

was nowhere near to matching the performance of the winners in the next two

categories.

For feature couple, we anticipate also an interesting result having Spectral Roll Off (SRO)

in the best combination as well as in the worst combination. Similar to that the First

Formant (FF) is constantly in all best results and worst results together – clear evidence

that the combination of features is crucial for recognition, rather than having single

strong features, supporting our claims from Section 5.5.4.

89

We can see also that Loudness Average (LA) performs well and could not be found in any

of the worst results. This supports our pre-study of sounds in the theoretical background

Chapter 2, where we claimed that electrical devices have a nice property of being bound

to some loudness level. Also, doing most of the activities at their specific places also

played an important role. For example deciding to regroup all devices and their

locations, will have a tremendous effect on the LA feature.

For best recognition set we identified two combinations, which beat the 97% rate and

one not far behind – <LA,PA,SF,FF> (97.6%), <LA,PA,SF,SRO,FF> (97.6%), and

<LA,SF,SRO,FF> (96.8%). We identify the reason for these exceptional good results being

the Sound Processing setup for the environment, as well as most of the devices being

tested throughout the development, thus enabling the precise extraction of their

characteristics.

Our average results between 4 and 7 feature sizes was about 80%, which is also a same

feature count, where the best results peaked. We tested our automatic feature selection

algorithm and it chose a set of 6 features to obtain 91.2% recognition accuracy. Thus we

conclude that the feature count range between 4 and 7 features is the best performing.

In Figure 6.6 we can see a visualization of the results from Table 6.1. We can see that

both best and average cases increase their accuracy for feature count up to 4 and 5, and

from that point on we see a declining. Thus we observe that the increasing number of

features doesn’t necessarily mean better recognition, as mentioned in Section 2.2.4.

However if one wants to be on the safe side, one should implement more features,

because as we see the worst case recognition rate increases with each new feature

addition.

Figure 6.6: A plot of best (blue) vs. average (green) vs. worst (red) results in terms of

the different recognition rates (y-axis) according to the different feature
set size (x-axis). The violet point represents the automatic feature
selection, which selected 6 features and obtained 91.2% recognition
accuracy.

50

60

70

80

90

100

1 2 3 4 5 6 7 8

Best

Average

Worst

Auto

90

This evaluation can serve also as a test for correct identification of important features -

e.g. threshold for those features and feature selection method justification.

6.2.2. Running Detailed Tests

In this section we provide a confusion table for the best feature sets identified in the last

section, as well as a detailed test the of the performance with our automatic selected

feature set by supplying the recognizer with special information about the activities. We

should also note that the devices and their locations are according to Section 6.1.1.

Testing the Best Feature Set

In Table 6.2 we provide a confusion matrix of the device predictions of the two best

performing sets, identified in the previous section, compared with the actual device.

 Predicted
Actual Class

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

1 Absorber 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 ChainC 0 5 0

3 Cleaner 0 0 5 0

4 Coffee 0 0 0 5 0

5 Epilator 0 0 0 0 5 0

6 Fridge 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 HairD 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 HairT 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 Heater 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 HedgeC 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 Kettle 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 MicroW 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0

13 Mixed1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0

14 Mixed2 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 1 0 0 0 0 0 0 0

15 Mixed3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0

16 Mixer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0

17 Music 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0

18 Shaker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0

19 Shaver 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0

20 Shower 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0

21 Silence 0 5 0 0 0 0

22 Speech 0 5 0 0 0

23 Toilet 0 5 0 0

24 ToothB 0 5 0

25 Washer 0 5

Table 6.2: Confusion matrix for best results displaying the actual class of some device,
and its prediction by the classifier (the two best results have same matrix)

91

We can see surprisingly good results for the automatically mixed data for recognition.

Also it was surprising that the Hedgecutter was misrecognized three times, while its

combination with the Hairtrimmer was all correctly identified. The only misrecognized

indoor device was the Shaker. However, it got confused with its combination with the

Vacuum Cleaner, thus not being an entirely erroneous recognition.

Testing the Feature Set with Automatic Feature Selection

Our automatic feature selection algorithm chose a 6 feature set consisting of

<LA,ZCR,PA,SF,SRO,PE>, which obtained recognition accuracy of 91.2%. Most of the

wrong recognitions were of devices, which do not belong to the same Activity Zone

according to Section 6.1.1., like the erroneous recognition of Hedgecutter as Absorber.

So we conducted an experiment by supplying the recognizer with information about the

location of the device. The experiment then achieved a recognition result of 97.6% (see

Table 6.3).

 Predicted
Actual Class

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

1 Absorber 5 0

2 ChainC 0 5 0

3 Cleaner 0 0 5 0

4 Coffee 0 0 0 5 0

5 Epilator 0 0 0 0 5 0

6 Fridge 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 HairD 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 HairT 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 Heater 0 0 0 0 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 HedgeC 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 Kettle 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 MicroW 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0

13 Mixed1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0

14 Mixed2 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0

15 Mixed3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0

16 Mixer 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0

17 Music 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0

18 Shaker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0

19 Shaver 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0

20 Shower 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0

21 Silence 0 5 0 0 0 0

22 Speech 0 5 0 0 0

23 Toilet 0 5 0 0

24 ToothB 0 5 0

25 Washer 0 5

Table 6.3: Confusion matrix for the automatic feature selection and its prediction by
the classifier with the help of spatial information

92

6.2.3. Test of Mixing

In order to test the mixing component we record two activities and their combination,

and then we mix automatically the recorded activities and compare them according to

the obtained features (see Figure 6.7).

Figure 6.7: Illustration of the mixing process of two device records and its feature-wise

comparison with the real mix

We use the tests from the previous section to compare 6 records of Toothbrushing,

Showering, together with their automatic and real mixes, to illustrate in Figure 6.8 their

similarity in terms of the first implemented and most robust single features. For

spectrogram comparison of the tests see Appendix E.

Figure 6.8: Three-dimensional plot with real (Red) and automatic (Green) mix of

Showering (Blue) and Toothbrushing (Orange) according to their of 6
experiment distribution over Loudness, Zero Crossing Rate and Pitch.

Tooth
Brush

Shower
Auto
Mix

Loudness

Pitch

ZCR

Real Mix

Loudness

Pitch

Zero Cross
Rate

350
400

450
500

550 550 550
8000

9000
10000

11000
12000 12000 12000

800

1000

1200

1400

1600

1800 1800

93

We obtained similar results when mixing other devices, except while mixing Shaker and

Vacuum Cleaner, which shared almost same features between the automatic mixing and

real mixing, except the average pitch. E.g. in the mixed version the pitch of the shaker

was perceived to be stronger, so it dominated and produced similar values throughout

the tests. While in the real mixes of both devices we measured average pitch ranging

between 586 Hz and 915 Hz with one occurrence of 1531 Hz. Such deviations can be

explained by the occurrence of acoustic resonance and seriously affect pitch-based

recognition.

6.2.4. Comparison between NNMD and Infer.NET

We also made a comparison between the Infer.NET classifier and our implementation of

the multi-dimensional Nearest Neighbor for our test corpus. We selected the full feature

set to check, whether Infer.NET can handle better multiple features. Our results showed

that for testing with single training, both recognizers achieved the same recognition

accuracy. The drawback of Infer.NET was that it ran about 10 times slower, which is

understandable, considering the much larger number of computations it has to perform.

However, with the increasing number of training data Infer.NET steadily increases its

recognition rate, while our optimized implementation had virtually the same recognition

rate (either a bit higher or a bit lower). So we anticipate a tradeoff, between runtime

and recognition rate, where one might choose the best option for his setup.

94

95

Chapter 7

Conclusion & Outlook
In this Thesis we designed and developed the Sound-based Device Recognition

Framework for classifying sounds occurring in a home environment. In the development

process, we first studied the nature of the sounds produced by different devices. Then

we incrementally determined a set of features, which distinguishes them from one

another. We extracted these features by applying various Sound Processing techniques.

For the final phase of classification, we optimized the Nearest Neighbor algorithm and

imported the Bayes Point Machine. After implementing all steps of the full process from

activity to recognition with multiple solution choices at each phase, we performed a

detailed evaluation of the system by testing its multiple facets. Our tests showed robust

recognition results and helped us to identify a sufficient set of features and Machine

Learning algorithms to build a robust personalized recognizer. Thus, we consider this

stage of development of the Sound-based Device Framework as complete. Furthermore,

it provides a solid base for further developments.

7.1. Contributions
Despite its early development stage, there are many contributions in the field of Sound-

based Device Recognition provided in this work. The study of specific characteristics of

the sounds produced by devices alone has not been investigated in any related work. In

contrast, we first performed a manual study of them and then made a full testing of all

combinations to identify the best performing set. Most of those characteristics were

overseen by the majority of related works for the case of general activity recognition,

since they are not applicable for Speech Recognition, which is their conventional

research starting point. However, according to our evaluation, combinations of our

chosen features are definitely important for classification of activities in a home

environment. We also adopted different Machine Learning techniques and optimized a

couple of them for our purpose. We also introduced the only system in the field,

designed to learn over time using a feedback from the user and to adapt its recognition

settings such as automatically choosing its feature set. A further contribution from a

software engineering standpoint is the flexible development of the Framework, which

incrementally increases its capabilities carrying out a spiral development process.

96

7.2. Review of Research Questions
Here we review the research questions from Subchapter 1.6., which represent a further

contributions of our work.

7.2.1. Could we reduce the complexity of a recognition system, while

maintaining the recognition rate?

We have not only shown that we can significantly reduce the complexity of a recognition

setup in a personalized setup, but also implemented different ways to do this in both

Sound Processing and Machine Learning Classes.

7.2.2. Which are the relevant sound features for the task of device

recognition, and can we choose these automatically?

We investigated the feature selection from many different perspectives. We first studied

the feature selection manually with sound analyzing software and then we incrementally

built the desired set of features in our Sound Processing Class. Then in our Machine

Learning Class we implemented automatic feature selection. Both, the chosen feature

set for implementation, as well as their automatic selection for recognition, performed

well in our evaluation.

7.2.3. Could we automatically mix activities for their untrained

recognition?

We obtained very good results in mixing automatically activities for their untrained

recognition. Furthermore, we made a detailed comparison between automatically mixed

records of some activities and their real simultaneous occurrence.

7.3. Outlook
There are several possible improvements that could be done in our Sound-based Device

Recognition Framework in the near future. The first and most important is to develop

automatic acoustic event detection. This will enable creating a smart continuous

monitoring of the environment, without the drawback of fixed size frames, where one

might buffer only partial acoustic information. This opens the door to modelling the

environment using Dynamic Bayesian Networks, which relate states to each other over

adjacent time steps. Among the most popular choices are the Hidden Markov Models,

which represent a simplified version of a Dynamic Bayesian Network. They observe the

state of the environment as the only information source to predict the next occurring

state. The state transition probabilities are then computed via observations. In our case

this will allow us to recognize activities as processes, instead of making partial

momentarily recognitions. For example, by monitoring the sounds produced by some

device over time, we could create a model to predict, what kind of activity was

performed with the device.

97

Another way to confidently recognize activities is to go one step further in the direction

of automatic event detection. Then, we could wisely extract meaningful audio intervals

by applying envelope35 modeling (Jensen, 1999). After extracting the features from the

extracted sound intervals, one could seek for similarities with trained data using the

Dynamic Time Warping algorithm36 (Müller, Ellis, Klapuri, & Richard, 2011). For example,

both described techniques could provide a meaningful differentiation between the

activity of cleaning with a vacuum cleaner and leaving the vacuum cleaner running

uncontrolled, beyond the recognition of the vacuum cleaner device itself.

For cases where one has multiple available sound inputs, one could adopt Sound

Processing techniques to exploit their presence in terms of combining their information

for obtaining in depth knowledge about the environment. It would also be interesting,

whether one could exploit unconventional audio inputs as well. Such an unconventional

audio input could be the musical instrument called Theremin, which produces different

sounds according to the presence of humans and has successfully been tested for

gesture recognition (Endres & Dimitrov, 2010).

7.4. Open Problems
Here we select three major complex problems that are still not investigated by any

research collective. Each of those problems represents an interesting challenge in the

domain of Sound-based Activity Recognition:

Environment with multiple inhabitants – it would be interesting to investigate an

environment, where multiple persons are acting and producing different sounds. It is

indeed a challenge to recognize them and their actions. One possible solution of the

problem is after recording all sounds to mix them automatically and extract the features

from the mix in the conventional way, as successfully incorporated in this thesis for

multiple device recognition. A complicated scenario here might be the case, when

dealing with architecture of centralized server and multiple clients, having thousands of

records, where mixing all those records might not be practical, so one has to be able to

make good automatic decisions, which activities could occur concurrently and at what

place. There is a similar challenge in the Speaker and Speech Recognition field to

discriminate, which person is talking, besides the actual Speech Recognition. However,

there is often a good concern that both speakers usually don’t speak at same time,

which is not feasible in activity context.

35

 The evolution over time of the amplitude of a sound
36

 Algorithm for measuring similarity between two temporal sequences which may vary in time or speed.
Finds numerous applications in Music Recognition in measuring similarity between music pieces, which
are played with different tempo.

98

Rare activities – activities, which seldom happen like repairing a house or house

accidents. A recognizer could not cover all those activities in a learning phase. However,

an appropriate reaction should present, especially in case of an accident, one can

consider high level abstraction, in which a central server processes a large database of

rare activities listed with their features to run a lookup when the personalized

recognizer fails to provide a recognition answer.

Transition to Unsupervised Learning - when receiving features, which are deviating from

all current references, many times the same way, the system should be able to note,

that there might be new activity happening. We could eventually tryout completely

unsupervised activity recognition using activity models and common sense similar to

(Wyatt, Philipose, & Choudhury, 2005) (Marszalek, Laptev, & Schmid, 2009).

99

Bibliography
Aztiria, A., Izaguirre, A., & Augusto, J. C. (2010). Learning patterns in ambient intelligence

environments: a survey. Artificial Intelligence Review, 34(1), 35-51.

Beigi, H. (2011). Fundamentals of Speaker Recognition. New York, USA: Springer.

Belley, C., Gaboury, S., Bouchard, B., & Bouzouane, A. (2013). Activity Recognition in

Smart Homes Based on Electrical Devices Identification. Proceedings of the 6th

International Conference on PErvasive Technologies Related to Assistive

Environments (pp. 7:1--7:8). Island of Rhodes, Greece: ACM.

Bernsee, S. M. (September 21, 1999). The DFT “à Pied”: Mastering The Fourier Transform

in One Day. DSP Dimension. Germany: DSP Dimension.

Boehm, B. W. (1988, May). A spiral model of software development and enhancement.

Computer, 21(5), 61-72.

Bolón-Canedo, V., Porto-Díaz, I., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2014, July).

A framework for cost-based feature selection. Pattern Recognition, 47(7), 2481-

2489.

Brey, P. (2005). Freedom and Privacy in Ambient Intelligence. Ethics and Information

Technology, 7(3), 157-166.

Chu, S., Narayanan, S., & Kuo, C.-C. (2009, Aug). Environmental Sound Recognition With

Time–Frequency Audio Features. IEEE Transactions on Audio, Speech, and

Language Processing, 17(6), 1142 - 1158.

Cook, D. J., Augusto, J. C., & Jakkula, V. R. (2009, August). Ambient Intelligence:

Technologies, Applications, and Opportunities. Pervasive and Mobile Computing,

5(4), 277-298.

Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex

fourier series. Mathematics of Computation, 19(90), 297-301.

Daubechies, I. (1992). Ten Lectures on Wavelets (9th ed., Vol. 61). Philadelphia,

Pennsylvania, USA: Society for Industrial and Applied Mathematics.

Dersch, W. C. (1962). IBM Shoebox. Advanced Systems Development Division

Laboratory, Advanced Technology Group. San Jose, Calif: IBM.

Ellis, D. P., Whitman, B., & Porter, A. (October 24-28, 2011). Echoprint. 12th

International Society for Music Information Retrieval Conference. Miami: ISMIR.

100

Endres, C., & Dimitrov, S. (November 11-12, 2010). Using a Theremin for Micro-Gesture

Recognition in an Automotive Environment. Adjunct proceedings of the 2nd

International Conference on Automotive User Interfaces and Interactive Vehicular

Applications. Pittsburgh, PA, USA: AutomotiveUI.

Feld, M. (2011). A speaker classification framework for non-intrusive user modeling:

speech-based personalization of in-car services. Computer Science Institute, DFKI.

Saarbrücken: Saarland University.

Frey, J. (July 18-19, 2013). AdAPT - A dynamic Approach for Activity Prediction and

Tracking for Ambient Intelligence. Proceedings of the 9th International

Conference on Intelligent Environments (pp. 254 - 257). Athens, Greece: IEEE.

Frey, J., Neurohr, C., & Brandherm, B. (July 2-4, 2014). EvA - Self Adaptable Event-based

Recognition Framework for Three-Dimensional Activity Zones. Proceedings of the

10th International Conference on Intelligent Environments. Shanghai, China.

Frey, J., Stahl, C., Röfer, T., Krieg-Brückner, B., & Alexandersson, J. (2010). The DFKI

Competence Center for Ambient Assisted Living. Ambient Intelligence: First

International Joint Conference, 310-314.

Fujishima, T. (1999). Realtime Chord Recognition of Musical Sound: a System Using

Common Lisp Music. Proceedings of the International Computer Music

Conference. Beijing, China: International Computer Music Association.

Glinsky, A. (2000). Theremin: Ether Music and Espionage. Chicago: University of Illinois

Press.

Gupta, S., Reynolds, M. S., & Patel, S. N. (2010). ElectriSense: single-point sensing using

EMI for electrical event detection and classification in the home. Proceedings of

the 12th ACM international conference on Ubiquitous computing (pp. 139-148).

New York, NY, USA: ACM.

Guyon, I., & Elisseeff, A. (2003, 3 1). An introduction to variable and feature selection.

The Journal of Machine Learning Research, 3, 1157-1182.

Hart, G. (1989, June). Residential energy monitoring and computerized surveillance via

utility power flows. Technology and Society Magazine, 8(2), 12 - 16.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd

ed.). Springer.

Herbrich, R., Graepel, T., & Campbell, C. (2001, 9 1). Bayes point machines. The Journal

of Machine Learning Research, 1, 245-279.

101

IBM Corporation, & Microsoft Corporation. (1991, August). Multimedia Programming

Interface and Data Specifications 1.0. 56-65.

Istrate, D., Vacher, M., & Serignat, J.-F. (2008). Embedded Implementation of Distress

Situation. Identification Through Sound Analysis. The Journal on Information

Technology in Healthcare, 6(3), 204-211.

Jensen, K. (December 9-11, 1999). Envelope model of isolated musical sounds.

Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects. Trondheim,

Norway: NTNU.

K. H. Davis, R. B. (1952). Automatic Digit Recognition (AUDREY). Bell Laboratories.

Karbasi, M., Ahadi, S., & Bahmanian, M. (13-16 Dec 2011). Environmental sound

classification using spectral dynamic features. 8th International Conference on

Information, Communications and Signal Processing (pp. 1 - 5). Singapore: ICICS.

Katz, S. (1983, 12). Assessing self-maintenance: activities of daily living, mobility, and

instrumental activities of daily living. Journal of the American Geriatrics Society,

31(12), 721-727.

Ke, S.-R. a.-J., Hwang, J.-N., Yoo, J.-H., & Choi, K.-H. (2013, 6 5). A review on video-based

human activity recognition. Computers, 2(2), 88-131.

Koller, D., & Sahami, M. (1996). Toward Optimal Feature Selection. 13th International

Conference on Machine Learning (pp. 284-292). Bari, Italy: Stanford InfoLab.

Kronland-Martinet, R., Morlet, J., & Grossmann, A. (1987, August). Analysis of sound

patterns through wavelet transforms. International Journal of Pattern

Recognition and Artificial Intelligence, 1(02), 273-302.

Lawton, M. P., & Brody, E. M. (1968). Assessment of Older People: Self-Maintaining and

Instrumental Activities of Daily Living. The Gerontologist, 9(3), 179-186.

Lei, H., & Lopez-Gonzalo, E. (2009). Mel, Linear, and Antimel Frequency Cepstral

Coefficients in Broad Phonetic Regions for Telephone Speaker Recognition. Tenth

Annual Conference of the International Speech Communication Association, 2323-

2326.

Lippmann, R. P. (1997). Speech recognition by machines and humans. Speech

communication, 22(1), 1-15.

Lombriser, C., Amft, O., Zappi, P., Benini, L., & Tröster, G. (2011). Benefits of dynamically

reconfigurable activity recognition in distributed sensing environments. Activity

Recognition in Pervasive Intelligent Environments, 4, 265-290.

102

Lozano, H., Hernáez, I., Picón, A., Camarena, J., & Navas, E. (2010). Audio Classification

Techniques in Home Environments for Elderly/Dependant People. Computers

Helping People with Special Needs(6179), 320-323.

Mark Hall, E. F. (2009, 6). The WEKA Data Mining Software: An Update. ACM SIGKDD

Explorations Newsletter, Volume 11(1), pp. 10-18.

Marszalek, M., Laptev, I., & Schmid, C. (20-25 June 2009). Actions in context. IEEE

Conference onComputer Vision and Pattern Recognition (CVPR) (pp. 2929-2936).

Miami, FL, USA: IEEE.

Microsoft Corporation. (2007, December). Multiple Channel Audio Data and WAVE Files.

Microsoft Corporation.

Minka, T. P. (2001). Expectation Propagation for Approximate Bayesian Inference.

Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence. UAI

'01, pp. 362-369. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Minka, T., Winn, J., Guiver, J., & Knowles, D. (2012). Infer.NET 2.5. Microsoft Research

Cambridge.

Moorer, J. A. (1975). On the Segmentation and Analysis of Continuous Musical Sound by

Digital Computer. Stanford University, Department of Computer Science.

Stanford, CA: Stanford University.

Müller, M., Ellis, D. P., Klapuri, A., & Richard, G. (2011, February 4). Signal processing for

music analysis. IEEE Journal on Selected Topics in Signal Processing, 5(6), 1088-

1110.

Nebeker, F. (1998). Fifty Years of Signal Processing: The IEEE Signal Processing Society

and its Technologies 1948-1998. IEEE, History Center. New Brunswick, NJ: The

IEEE Signal Processing Society.

Passchier-Vermeer, W., & Passchier, W. F. (2000). Noise Exposure and Public Health.

Environmental health perspectives, 108(1), 123-131.

Peeters, G. (2004). A large set of audio features for sound description (similarity and

classification) in the CUIDADO project. Institut de Recherche et Coordination

Acoustique/Musique, Analysis/Synthesis Team. Paris, France: IRCAM.

Pressman, R. S. (January 20, 2009). Software Engineering A Practitioner's Approach (7th

ed.). McGraw-Hill Science/Engineering/Math.

Provost, F., & Fawcett, T. (2001, March). Robust Classification for Imprecise

Environments. Machine Learning, 42(3), 203-231.

103

Russell, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach (3 ed.). Upper

Saddle River13, New Jersey: Prentice Hall.

Scharenborg, O., & Cooke, M. P. (June 4 - 6, 2008). Comparing human and machine

recognition performance on a VCV corpus. Workshop on Speech Analysis and

Processing for Knowledge Discovery. Aalborg, Denmark: ISCA.

Sehili, M. A., Lecouteux, B., Vacher, M., Portet, F., Istrate, D., Dorizzi, B., et al. (2012).

Sound Environment Analysis in Smart Home. Ambient Intelligence: Third

International Joint Conference, 208-223.

Souza, C. R. (April 2012). The Accord.NET Framework. Federal University of Sao Carlos,

Department of Computing.

Stäger, M. (2006). Low-Power Sound-Based User Activity Recognition. Swiss Federal

Institute of Technology Zurich, Information Technology and Electrical

Engineering. Zürich: ETH Zürich.

Stager, M., Lukowicz, P., & Troster, G. (2004). Implementation and Evaluation of a Low-

Power Sound-Based User Activity Recognition System. Proceedings of the Eighth

International Symposium on Wearable Computers (pp. 138--141). Washington,

DC, USA: IEEE Computer Society.

Stager, M., Lukowicz, P., & Troster, G. (2007, June). Power and accuracy trade-offs in

sound-based context recognition systems. PerCom - Pervasive and Mobile

Computing, 3(3), 300-327.

Tapia, E. M., Intille, S. S., & Larson, K. (2004). Activity recognition in the home using

simple and ubiquitous sensors. In A. Ferscha, & F. Mattern, Lecture Notes in

Computer Science (Vol. 3001, pp. 158-175). Berlin Heidelberg, Germany: Springer.

Temko, A., Malkin, R., Zieger, C., Macho, D., & Nadeu, C. (2006). Acoustic Event

Detection and Classification in Smart-Room Environments: Evaluation of CHIL

Project Systems. Cough, 5-11.

Tzanetakis, G., Essl, G., & Cook, P. (2001). Audio Analysis using the Discrete Wavelet

Transform. Proc. WSES Int. Conf. Acoustics and Music: Theory and Applications.

Skiathos, Greece: AMTA.

Vinet, H., Herrera, P., & Pachet, F. (13th-17th October 2002). The CUIDADO Project

(Content-based Unified Interfaces and Descriptors for Audio/music Databases

available Online). 3rd International Conference on Music Information Retrieval.

Paris: ISMIR.

Vuegen, L. a., Karsmakers, P., & Vanrumste, B. (2013). Automatic Monitoring of Activities

of Daily Living based on Real-life Acoustic Sensor Data: a preliminary study.

104

Fourth workshop on speech and language processing for assistive technologies

(SLPAT) (pp. 113-118). Grenoble, France: Association for Computational

Linguistics.

Wang, A. L.-C. (2003). An Industrial-Strength Audio Search Algorithm. 4th Symposium

Conference on Music Information Retrieval, 7-13.

Wang, J.-C., Lee, H.-P., Wang, J.-F., & Lin, C.-B. (2008, January 4). Robust Environmental

Sound Recognition for Home Automation. IEEE Transactions on Automation

Science and Engineering, 5(1), 25 - 31.

Wang, J.-F., Wang, J.-C., Huang, T.-H., & Hsu, C.-S. (2003, Dec 30). Home environmental

sound recognition based on MPEG-7 features. IEEE 46th Midwest Symposium on

Circuits and Systems, 2, 682 - 685.

Weber, W., Rabaey, J., & Aarts, E. H. (March, 2005). Ambient Intelligence. Springer.

Wieczorkowska, A., Kolczyńska, E., & Raś, Z. W. (2008). Training of Classifiers for the

Recognition of Musical Instrument Dominating in the Same-Pitch Mix. New

Challenges in Applied Intelligence Technologies, III(134), 213-222.

Wyatt, D., Philipose, M., & Choudhury, T. (May 9, 2005). Unsupervised activity

recognition using automatically mined common sense. Proceedings of the 20th

national conference on Artificial intelligence. 1, pp. 21-27. AAAI Press.

Young, S., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., & Woodland, P. (2000). The

HTK Book (for HTK Version 3.1) (5 ed.). Microsoft Corporation.

Yuk, D. (1999). Robust Speech Recognition Using Neural Networks and Hidden Markov

Models. The State University of New Jersey, Graduate School-New Brunswick.

New Brunswick: Rutgers.

Zhuang, X., Zhou, X., Huang, T. S., & Hasegawa-Johnson, M. (2008). Feature analysis and

selection for acoustic event detection. IEEE International Conference on

Acoustics, Speech and Signal Processing, 2008 (ICASSP) (pp. 17-20). Las Vegas,

USA: IEEE.

105

Appendix
A. Class Organization
In Figure A.1 we see a full class diagram containing most important classes in the project

and their corresponding place (in parallel to Subchapter 5.2).

Figure A.1 Full Class Diagram of the Sound-based Device Recognition

Solution in Visual Studio 2012

106

B. Activity Type and Device Type
When the user annotates some Activity Type we infer Device Type as follows:

public enum ActivityType
{
 Absorbing, // -> Absorber
 BikeMaintenance, // -> Chain Cleaner
 Cleaning, // -> Vacuum Cleaner
 CoffeeMaking, // -> Moka Pot
 Epilating, // -> Epilator
 FridgeCooling, // -> Fridge
 HairDrying, // -> Hairdryer
 Hairtrimming, // -> Hairtrimmer
 Heating, // -> Heater
 Hedgecutting, // -> Hedgecutter
 Microwaving, // -> Microwave
 Mixing, // -> Mixer
 MusicListening, // -> Music Centre
 ShakerPreparation, // -> Shaker
 Shaving, // -> Shaver
 Showering, // -> Shower
 Speaking, // -> Speaker
 ToiletFlush, // -> Toilet
 Toothbrushing, // -> Electrical Toothbrush
 Washing, // -> Washing Machine
 WaterBoiling, // -> Kettle
 Test, // -> Test Device
 Mixed1, // -> <Device1,Device2,(Device3)>
 Mixed2, // -> <Device1,Device2,(Device3)>
 Mixed3, // -> <Device1,Device2,(Device3)>
 Unknown, // -> {...}
}

Where is fixed to unknown activities, like those which the user has not

defined or decided to hide, is for test purposes of unlisted activity types,

 are for three available mix choices.

107

C. Multi-dimensional Nearest Neighbor
Here we compute the Nearest Neighbor and return a sorted list with the nearest

neighbors, according to Section 5.5.4. One should note that this is a simplified version,

where logic for averaged statistics and common metrics is omitted.

public SortedDictionary<double, int> NearestNeighbourMD(Stats currentStats)
{
 SortedDictionary<double, int> distanceToFeature = new SortedDictionary<double, int>();

 for (int activityIndex = 0; activityIndex < activities.Count; activityIndex++)
 {
 double distance = 0.0;

 for (int featureIndex = 0; featureIndex < MLFeaturesCount; featureIndex++)
 {
 double reference = activities[activityIndex].stats.array[featureIndex]);
 double current = currentStats.array[featureIndex];

 if (!currentStats.ignore[featureIndex])
 {
 distance += Math.Pow(reference - current, 2.0);
 }
 }

 distanceToFeature.Add(Math.Sqrt(distance), activityIndex);
 }

 return distanceToFeature;
}

108

D. Test Records Spectrograms
Here we show 10 second spectrocrograms of all 22 test records:

Figure D.1 Absorber

Figure D.2 Chain Cleaner

Figure D.3 Vacuum Cleaner

Figure D.4 Moka Pot

109

Figure D.5 Epilator

Figure D.6 Fridge

Figure D.7 Hairdryer

Figure D.8 Hairtrimmer

110

Figure D.9 Heater

Figure D.10 Hedgecutter

Figure D.11 Kettle

Figure D.12 Microwave

111

Figure D.13 Mixer

Figure D.14 Music

Figure D.15 Shaker

Figure D.16 Shaver

112

Figure D.17 Shower

Figure D.18 Silence

Figure D.19 Speaking

Figure D.20 Toilet Flush

113

Figure D.21 Toothbrush

Figure D.22 Washing Machine

114

E. Mixed Records Spectrograms
Here we compare automatically generated mixes with their corresponding real records

of complex activities.

Figure E.1 Original Mix Toothbrush and Shower (Mixed 1)

Figure E.2 Automatic Mix Toothbrush and Shower (Mixed 1)

Figure E.3 Original Mix Shaker and Vacuum Cleaner (Mixed 2)

Figure E.4 Automatic Mix Shaker and Vacuum Cleaner (Mixed 2)

115

Figure E.5 Original Mix Hedgecutter and Hairtrimmer (Mixed 3)

Figure E.6 Automatic Mix Hedgecutter and Hairtrimmer (Mixed 3)

