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Abstract
Vocal tract magnetic resonance imaging (MRI) has be-
come one of the preferred imagingmodalities for the anal-
ysis of human speech production. However, the raw im-
age data must be segmented before further analysis can
take place. This paper describes a hybrid approach to ex-
tract a 3D tongue model from 3D or 2D MRI scans of
the vocal tract during speech, which combines unsuper-
vised image segmentation with a mesh deformation tech-
nique. An efficient, minimally supervised segmentation
algorithm can also be used as an alternative to provide
a robust fallback in certain isolated cases. Both image
segmentation algorithms produce a point cloud, which is
completed and registered by deforming a template mesh
to the data. Since the mesh deformation can be applied
even with a sparse point cloud, it is possible to extract re-
alistic 3D tongue shapes even from the 2D video frames
of real-time MRI. Our approach is applied to several sets
of available MRI data and yields promising results.
Index Terms: vocal tract MRI, image segmentation, 3D
tongue model

1. Introduction
Analyzing the vocal tract, particularly articulators such as
the tongue, during speech is of great interest in the areas
of speech science and speech processing. Following tech-
nological advances in recent years, magnetic resonance
imaging (MRI) can now be regarded as the state-of-the-
art modality for imaging the vocal tract, due to its non-
invasive and non-hazardous nature. However, since the
resulting data contains the entire field of view, image seg-
mentation is required before the shape and movements of
the articulators can be processed for analysis. In particu-
lar, the extraction of high-level representations of the vo-
cal tract surface is desirable. An example of such a repre-
sentation is a polygon mesh, which can be used in various
fields of application, such as computer graphics (talking
heads or augmented-reality computer-assisted pronuncia-
tion training) or even articulatory speech synthesis, where
it may be used to approximate the vocal tract area func-
tion.

1.1. Related Work

Extracting information about the shape of the tongue from
MRI scans is an active field of research.
Peng et al. [1] employed an approach based on active

contours [2] to find the contour of the tongue in a 2D
mid-sagittal scan, using a previously trained shape model
to control the evolution of the contour. Eryildirim and
Berger [3] extended this approach to align the contour’s
end points to the corresponding extremities of the tongue.
More recently, Raeesy et al. [4] demonstrated that ori-
ented active shape models [5] can be trained to reliably
identify the boundary of the tongue in 2D MRI scans.
These methods rely on manually preparing a training set
and are limited to the 2D case.
Lee et al. [6] presented a framework for minimally su-

pervised tongue segmentation from 3D dynamic MRI.
They used the random walker approach [7] as the base
segmentation technique, which requires seeds manually
provided by the user. Moreover, this approach only pro-
vides access to a low-level volume segmentation which
has to be further processed.
Harandi et al. [8] employed a template-matching tech-

nique to generate a mesh representation of the tongue
from 3D MRI scans. They used a mesh created by an
expert from a source scan as their template, which is then
deformed using color information to match a target scan.
Specifically, they moved the mesh points in such a way
that the color at the undeformed point in the source scan
is similar to the deformed point in the target scan. Again,
the approach is limited by requiring an expert to provide
the templates.

1.2. Our contribution

In this work, we present a two-step approach that can be
used in a minimally supervised way to obtain a mesh rep-
resentation of the tongue from an MRI scan. First, we ap-
ply a segmentation method to extract the surface points of
the tongue, without relying on a specific approach. Next,
we use a template matching technique to align a mesh
to this generated point cloud that operates exclusively on
geometric information. The template is a generic mesh
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automatically extracted from one 3D MRI scan. Thus,
we do not rely on training a shape model. We also do
not require an expert for creating the templates. Further-
more, by only using geometric information in the template
matching step, we are able to use the same template mesh
for scans of different persons and from different scanners.
As the segmentation approach can be freely selected, we
can choose for each scan the most suitable method.

2. Methods
In this section, we briefly outline the procedure used to
obtain a mesh representation of the tongue contained in a
selected MRI scan of the vocal tract.
Wemay interpret a scan as an image f : Ω→R+. Here,

Ω ⊂ Rn is a discrete set of the points where the measure-
ments were taken by theMRI scanner with n∈ {2,3}, and
f (⃗x) represents the gray-value at point x⃗ ∈ Ω.
To extract the surface points of the tongue, we first find

a partition of Ω = ΩO ∪ΩB. The object region ΩO is re-
quired to contain all points belonging to the tongue. How-
ever, it is allowed to consist also of regions related to other
organic tissue. This relaxation is needed because in some
scans no boundary may be detected between tongue and
adjacent tissue. The background region ΩB then repre-
sents the locations we have no interest in, e.g., air, or other
tissue not belonging to the tongue. We observe that the
color information in a scan can be exploited to distinguish
soft tissue from material like air and bones, which moti-
vates the idea to use a segmentation technique based on
color information. In the following sections, we briefly
present two different approaches used for this task.

2.1. Chan-Vese algorithm

The main approach used for image segmentation is the
method of Chan and Vese [9]. Although it can be seen as
a minimally supervised approach because it requires an
initialization, we later on use it in an unsupervised fash-
ion by always initializing it in the same way for all experi-
ments. The needed initialization is a rough contourC that
separates Ω into two regions: the region ΩO enclosed by
C and the region ΩB that is always located outside of C.
Essentially, the approach then evolves this provided con-
tour such that the gray-value variance inside each region
is minimized:

ECV(C) = ∑
X∈{ΩO,ΩB}

(
∑
x⃗∈X

(
f (⃗x)−µX

)2
)

(1)

where ΩO and ΩB are the regions induced by C and µX
represents the average gray-value in region X . As the av-
erage gray-value is global information, this approach can
be considered a global method. In order to minimize the
energy, we apply a standard scheme [9].

2.2. Graph cut algorithm

The graph cut technique [10] is a minimally supervised
segmentation method that we use as a robust fallback al-

ternative to our main method. It requires the user to pro-
vide two annotation setsO⊂Ω andB⊂ΩwithO∩B= /0.
O contains points the user wants to be part ofΩO andB the
ones that should be contained in ΩB. In essence, the ap-
proach then finds ΩO with O ∈ ΩB and ΩB with B ∈ ΩB
such that the gray-value similarity between neighboring
points belonging to the same set is maximized:

EGC(ΩO,ΩB) = ∑
X∈{ΩO,ΩB}

(
∑
x⃗∈X

∑
y⃗∈N (⃗x,X)

ψ
(

f (⃗x), f (⃗y)
))
(2)

where N (⃗x,X) are the neighbors of x⃗ contained in X and
ψ(a,b) := exp(−|a− b|) in our case. Thus, we see that
the graph cut technique is a local method because it finds
the partition by using neighborhood information. We use
the algorithm in [11] to obtain ΩO and ΩB as the max-
imizer of (2). However, in situations where the maxi-
mizer is not unique, the algorithm may output a partition
Ω = ΩO ∪ΩB ∪ΩU with ΩU ̸= /0. In order to get the de-
sired partition Ω = ΩO ∪ΩB, we post-process the unas-
signed points in ΩU as follows: Add x⃗ ∈ ΩU to ΩO if its
nearest neighbor min⃗y∈Ω\ΩU d(⃗x, y⃗) is located inside ΩO
with d(⃗x, y⃗) denoting a distance measure between x⃗ and y⃗.
Otherwise, add x⃗ to ΩB.

2.3. Mesh deformation

After obtaining a partition Ω=ΩO∪ΩB, we can compute
the surface information as follows: First, we extract the
surface points P := { p⃗i} of ΩO, i.e., points p⃗i ∈ ΩO that
are adjacent to at least one point q⃗ ∈ΩB. Additionally, we
compute surface normals N := {⃗ni} for P such that n⃗i ∈ N
is the surface normal at p⃗i ∈ P. In order to eliminate the
ambiguity of surface normals, we choose them in such a
way that they are pointing towards the inside of ΩO. We
remark that P may also contain surface points belonging
to other articulators than the tongue, due to the relaxation
we formulated earlier for ΩO.
Finally, we use the method of Wuhrer et al. [12] to

deform a template mesh M := (V,F) to match the point
cloud data P. Here, V := {⃗vi} denotes the vertex set of
the mesh with v⃗i ∈ R3 and F its face set. To obtain a de-
formation, the approach computes a set A := {Ai} where
Ai : R3 → R3 is a rigid body motion for the vertex v⃗i by
minimizing the following energy:

EDef(A) = ∑
vi∈V

(
α distD

(
Ai(⃗vi),arg min

p⃗ j∈P
∥Ai(⃗vi)− p⃗ j∥

)
+β ∑

v j∈N (vi)

distS
(
Ai,A j

))
(3)

The term distD(·) weighted by α > 0 measures the dis-
tance between the transformed vertex Ai(⃗vi) and the nor-
mal plane at its nearest neighbor. Minimizing distD(·)
will move the mesh towards the point cloud P. The sec-
ond term, distS(·) weighted by β > 0, will generate en-
ergy if the rigid body motion Ai differs from the ones in
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the neighborhood N (⃗vi) around v⃗i. Its minimization will
prevent an alignment to data points that would distort the
shape of the template too much, which helps to keep the
mesh away from points not belonging to the surface of the
tongue. Finally, we apply the found rigid body motions
in A to the corresponding vertices to obtain the deformed
mesh.
In order to find a minimizer A, we use a similar strat-

egy like [12]: As a preprocessing step, we perform an
automatic rigid alignment to find a good position for the
template that is near the point cloud. Afterwards, we min-
imize a series of energies Et

Def(A
t)where t ∈ [1, tmax]. The

energy Et
Def differs from EDef in the following way: In

Et
Def, the transformed vertex in distD(·) is computed by

using the minimizer of the previous energy: At−1
i (⃗vi). As

arg min p⃗ j∈P(·) then does not depend on At , the energy
becomes differentiable and we can use a quasi-Newton
technique [13] to compute the minimizer. In contrast to
[12], we fix the weight β for all Et

Def because the weights
used in the experiments are not high enough to apply their
relaxation technique. Eventually, we obtain A as Atmax .
For A0 that is needed in E1

Def, we are using the identity:
A0

i (⃗vi) = v⃗i. Furthermore, the optimization process is em-
bedded in a coarse-to-fine strategy to account for large
deformations [12].

3. Experiments
In order to assess the performance of our proposed
framework, we performed experiments on three different
datasets where we always applied the following proce-
dure: First, we manually place the template at a position
centered in the tongue region of the currently selected
dataset. Next, we apply the Chan-Vese method to each
scan of the dataset, always with the same initial contour,
an n-dimensional axis-aligned ellipsoid (n ∈ {2,3}) lo-
cated at the center of the scan. The length of its semi-axis
a⃗i is given by ∥a⃗i∥ = 15hi with i ∈ [1,n] where hi is the
distance between two points in the current dataset along
that axis. Finally, we align our generic mesh (consisting
of 17091 vertices) to each point cloud by applying the
template matching method. Here, we briefly present the
datasets, the experiments, and the parameters used for the
template matching.
A demonstration video is provided as supplementary

material in the proceedings.

3.1. Static 3D MRI

The dataset of Baker [14] contains static 3DMRI scans of
a male speaker producing 25 different phonemes, as well
as several non-speech vocal tract configurations. Each
scan consists of 44 sagittal slices with a spatial resolu-
tion of 320×320 pixels (corresponding to a pixel size of
1.1875×1.1875 mm2) and a slice thickness of 1.2 mm.
Furthermore, for each scan the identified mid-sagittal
slice is provided. As the scans show the entire head of the
speaker, we cropped each slice to a 100×90 pixel region
of interest containing only the vocal tract. Furthermore,

we only considered the speech related scans.
First, we processed the whole 3D scans where we used

α = 1, β = 3 and tmax = 10 in the template matching ap-
proach.
Afterwards, we used only the identified mid-sagittal

slices in our framework to obtain the meshes. In this ex-
periment, we used the same parameters as in the first one.

3.2. Movie of Real-time 2D MRI

We used supplementary material from Niebergall et al.
[15] as our second dataset.1 It consists of a video of real-
time 2D MRI showing the mid-sagittal slice of a male
speaker uttering a short text, with a temporal resolution
of 33 ms and a duration of 21 s. Each video frame rep-
resents an upsampled version of a 128×128 pixels scan
with a pixel size of 1.5×1.5 mm2.
Here, we processed frames 76 to 434 where we set α =

1, β = 4 and tmax = 20 in the template matching.

3.3. Corpus of real-time 2D MRI

The third data set is the updated dynamic 2DMRI record-
ing for subject M1 in the USC-TIMIT database [16],
which has a temporal resolution of 43.148 ms. Each
frame shows the mid-sagittal slice of a single speaker
and consists of 68×68 pixels with a pixel size of
2.9×2.9 mm2. Since the scans suffer from vignetting ar-
tifacts (i.e., the corners of the field of view are signifi-
cantly darker than the center region), we cropped each
frame to a selected region of interest to remove a large
part of this effect. Additionally, we applied a flat field
correction by manually creating a correction image and
compositing it with the cropped frames.
This time, we processed all frames and used α = 1,

β = 4 and tmax = 5.

4. Results and Discussion
4.1. Experiment on 3D Data

In the case of static 3D MRI, we performed a qualitative
evaluation of the 17 results where our framework suc-
ceeded as follows: For each mesh, we computed at each
vertex the error by measuring the distance to its nearest
neighbor in the corresponding point cloud data. Finally,
we computed the cumulative error for all meshes. We see
in Figure 2 that our method produces satisfying results:
Approximately 70 percent of the errors are below 2 mm.
However, phonemes like /k/ or /q/ lead to problems

in our framework: First of all, their associated tongue
shapes differ very much from our generic mesh, which
may keep the template matching from aligning it cor-
rectly. Moreover, the Chan-Vese method fails to detect a
part of the tongue-palate boundary where they are in con-
tact, because it is not clearly visible in the data in these
cases. However, it is able to identify the boundary be-
tween palate and nasal cavity, which is then included in

1http://upload.wikimedia.org/wikipedia/commons/4/
4a/Real-time_mri_speaking_30fps.ogv
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Figure 1: Segmentation results for frame 28 of the USC-
TIMIT dataset with (top row) and without (bottom row)
vignetting artifacts. ΩO is shown in red and ΩB in blue.
Left column: Input images. Center column: Chan-Vese
results with standard initialization. Right column: Graph
cut results with annotations for respective regions colored
in white.

the point cloud. This causes the template matching to
move the mesh to the boundary between nasal cavity and
palate.

4.2. Experiments on 2D Data

In the 2D case, we first evaluated the quality of themeshes
obtained from the mid-sagittal slice where we proceeded
like in the 3D case: We selected the results for the same 17
scans and computed the cumulative error by comparing
the meshes to the corresponding full point cloud data of
the 3D scan. We see in Figure 2 that the results are slightly
worse than in the first experiment but still acceptable.
Afterwards, we processed the real-time 2D MRI

datasets and investigated the temporal evolution of the
derived meshes. Here, we discovered that the mesh se-
quence was suffering from severe temporal noise, which
can be explained by the fact that we did not exploit any
temporal coherence between the frames. We also saw
in this evolution that mostly the mid-sagittal region was
moving. Moreover, we also encountered intermittent
frames where the mesh alignment was incorrect. Both
problems can be seen as the consequence of using very
sparse data in the template matching.
In the case of the USC-TIMIT dataset, we faced a

segmentation related issue: As the Chan-Vese method
makes use of global information to find a segmentation,
it has trouble to cope with the globally changing illumi-
nation in each frame that is caused by vignetting artifacts.
However, the minimally-supervised graph cut approach
that uses local information is able to produce a suitable
segmentation with only two broad annotations. We ob-
serve in Figure 1 that removing the vignetting artifacts
improves the result of Chan-Vese with respect to the ex-
tractable surface information of the tongue, which allows
us to apply our standard unsupervised procedure. As ex-
pected, the flat field correction has almost no effect on the
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Figure 2: (Top) Point cloud extracted from [ɑ] scan in
[14] and template mesh deformed to fit. (Bottom) Cu-
mulative errors for the two experiments on the Baker
dataset and template mesh deformed using only mid-
sagittal slice.

performance of the graph cut method.

5. Conclusion and Future Work
In this work, we presented a minimally supervised ap-
proach to extract polygon tongue meshes from vocal tract
MRI scans. We saw that the proposed method was able to
produce promising results. However, we also identified
some issues which will be addressed in the future.
For example, we are currently investigating how to

handle problematic phonemes like /k/. Here, we plan to
reconstruct the missing palate information by using a sec-
ond point cloud from a different vocal tract configuration
or a full palate trace obtained by electromagnetic articu-
lography (EMA) [17].
Moreover, we are planning to enhance the framework

to train a statistical model with 3D data, which can then
be used in the template matching to improve the results
with sparse point clouds (e.g., 2D scans). Stone et al. [18]
successfully used a similar approach to predict coronal
tongue profiles from mid-sagittal tongue contours. Addi-
tionally, we also want to explore a more data-driven ap-
proach for improving the results in 2D: In particular, we
want to combine lateral EMA information with a point
cloud originating from a mid-sagittal scan, which may
provide the template matchingwith sufficient information
to align both the mid-sagittal and the lateral region of the
mesh.
In order to cope with the temporal noise we encoun-

tered for 2D real-time MRI, we are thinking about ap-
plying a temporal smoothing. We also want to investi-
gate if we can improve the results by sharing informa-
tion between consecutive frames: Here, we plan to use
the result of the current frame as the template for the next
frame, since it resembles the shape of the tongue in the
next frame more closely than the generic template.

421



References
[1] T. Peng, E. Kerrien, and M.-O. Berger, “A shape-based

framework to segmentation of tongue contours from MRI
data,” in IEEE International Conference on Acoustics
Speech and Signal Processing (ICASSP), 2010, pp. 662–
665. doi:10.1109/ICASSP.2010.5495123

[2] C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, “Implicit active
contours driven by local binary fitting energy,” in IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2007, pp. 1–7. doi:10.1109/CVPR.2007.383014

[3] A. Eryildirim and M.-O. Berger, “A guided approach
for automatic segmentation and modeling of the vocal
tract in MRI images,” in European Signal Processing
Conference (EUSIPCO), 2011. [Online] http://hal.inria.fr/
inria-00630642/

[4] Z. Raeesy, S. Rueda, J. K. Udupa, and J. Coleman,
“Automatic segmentation of vocal tract MR im-
ages,” in IEEE 10th International Symposium on
Biomedical Imaging (ISBI), 2013, pp. 1328–1331.
doi:10.1109/ISBI.2013.6556777

[5] J. Liu and J. K. Udupa, “Oriented active shape models,”
IEEE Transactions on Medical Imaging, vol. 28, no. 4, pp.
571–584, 2009. doi:10.1109/TMI.2008.2007820

[6] J. Lee, J. Woo, F. Xing, E. Z. Murano, M. Stone, and J. L.
Prince, “Semi-automatic segmentation of the tongue for
3D motion analysis with dynamic MRI,” in IEEE 10th
International Symposium on Biomedical Imaging (ISBI),
2013, pp. 1465–1468. doi:10.1109/ISBI.2013.6556811

[7] L. Grady, “Random walks for image segmentation,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 11, pp. 1768–1783, 2006.
doi:10.1109/TPAMI.2006.233

[8] N. M. Harandi, R. Abugharbieh, and S. Fels, “3D seg-
mentation of the tongue in MRI: a minimally interactive
model-based approach,” Computer Methods in Biome-
chanics and Biomedical Engineering: Imaging & Visual-
ization, 2014. doi:10.1080/21681163.2013.864958

[9] T. F. Chan and L. A. Vese, “Active contours without
edges,” IEEE Transactions on Image Processing, vol. 10,
no. 2, pp. 266–277, 2001. doi:10.1109/83.902291

[10] Y. Boykov and G. Funka-Lea, “Graph cuts and effi-
cient ND image segmentation,” International Journal of
Computer Vision, vol. 70, no. 2, pp. 109–131, 2006.
doi:10.1007/s11263-006-7934-5

[11] Y. Boykov and V. Kolmogorov, “An experimental com-
parison of min-cut/max-flow algorithms for energy mini-
mization in vision,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 26, no. 9, pp. 1124–
1137, 2004. doi:10.1109/TPAMI.2004.60

[12] S. Wuhrer, J. Lang, M. Tekieh, and C. Shu, “Finite
element based tracking of deforming surfaces,” 2013,
arXiv:1306.4478.

[13] D. C. Liu and J. Nocedal, “On the limited memory
BFGS method for large scale optimization,” Mathemat-
ical programming, vol. 45, no. 1-3, pp. 503–528, 1989.
doi:10.1007/BF01589116

[14] A. Baker. (2011) A biomechanical tongue model for
speech production based on MRI live speaker data.
[Online] http://www.adambaker.org/qmu.php

[15] A. Niebergall, S. Zhang, E. Kunay et al., “Real-time MRI
of speaking at a resolution of 33 ms: Undersampled radial
FLASH with nonlinear inverse reconstruction,” Magnetic
Resonance in Medicine, vol. 69, no. 2, pp. 477–485, 2013.
doi:10.1002/mrm.24276

[16] S. Narayanan, A. Toutios, V. Ramanarayanan et al., “USC-
TIMIT: A database of multimodal speech production
data,” USC, Tech. Rep., 2013. [Online] http://sail.usc.
edu/span/usc-timit/usctimit_report.pdf

[17] P. Hoole and A. Zierdt, “Five-dimensional articulogra-
phy,” in Speech motor control: New developments in ba-
sic and applied research, B. Maassen and P. van Lieshout,
Eds. Oxford University Press, 2010, ch. 20, pp. 331–349.
doi:10.1093/acprof:oso/9780199235797.003.0020

[18] M. Stone, M. Epstein, M. Li, and C. Kambhamettu, “Pre-
dicting 3D tongue shapes from midsagittal contours,” in
Speech production: Models, phonetic processes, and tech-
niques, J. Harrington andM. Tabain, Eds. NewYork, NY:
Psychology Press, 2006, ch. 18, pp. 315–330.

422

http://dx.doi.org/10.1109/ICASSP.2010.5495123
http://dx.doi.org/10.1109/CVPR.2007.383014
http://hal.inria.fr/inria-00630642/
http://hal.inria.fr/inria-00630642/
http://dx.doi.org/10.1109/ISBI.2013.6556777
http://dx.doi.org/10.1109/TMI.2008.2007820
http://dx.doi.org/10.1109/ISBI.2013.6556811
http://dx.doi.org/10.1109/TPAMI.2006.233
http://dx.doi.org/10.1080/21681163.2013.864958
http://dx.doi.org/10.1109/83.902291
http://dx.doi.org/10.1007/s11263-006-7934-5
http://dx.doi.org/10.1109/TPAMI.2004.60
http://arxiv.org/abs/1306.4478
http://dx.doi.org/10.1007/BF01589116
http://www.adambaker.org/qmu.php
http://dx.doi.org/10.1002/mrm.24276
http://sail.usc.edu/span/usc-timit/usctimit_report.pdf
http://sail.usc.edu/span/usc-timit/usctimit_report.pdf
http://dx.doi.org/10.1093/acprof:oso/9780199235797.003.0020

	Introduction
	Related Work
	Our contribution

	Methods
	Chan-Vese algorithm
	Graph cut algorithm
	Mesh deformation

	Experiments
	Static 3D MRI
	Movie of Real-time 2D MRI
	Corpus of real-time 2D MRI

	Results and Discussion
	Experiment on 3D Data
	Experiments on 2D Data

	Conclusion and Future Work

