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ABSTRACT
We present a framework for setting up interactive three-
dimensional outer-space simulations for media facades and
other display environments. The core of this framework con-
sists of a space simulator that is capable of efficiently ren-
dering large amounts of objects and computing their physical
behavior in real time. The extensible framework further al-
lows to map 3D scenes to multiple displays and integrates
interaction components via the TUIO protocol. We present a
first use case that uses a mobile-phone GUI as a basis for user
interaction on a projection-based 3D media facade. As an ini-
tial scenario, we use a generated space scene, which consists
of asteroid belts with colliding space objects.
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INTRODUCTION
Over the last decade, an increasing number of digital tech-
nologies have been deployed to public spaces. Prominent
examples are large-scale digital displays and media facades
that have been embedded into the urban landscape [5, 7, 16,
23]. These large-scale urban screens usually display both dy-
namic and static contents as new communication channels to
citizens and visitors. Such communication platforms enhance
existing architectural structures through digital technologies
and novel presentation and sensing possibilities. Digital arts,
visualizations, interactive systems or mere announcements
are among the diverse types of content. Designers and content
providers usually address media facades with planar, 2D form
factors. However, interactivity is rarely offered [24]: It poses
additional technological and conceptual constraints to the de-
velopment of contents. As one of the media-facade design

Figure 1. Media facade at the Academy of Fine Arts Saar

challenges, Dalsgaard and Halskov state that media facades
need to be integrated into physical structures and surround-
ings of the underlying building. In accordance, typical media
facades tend to cover more than one side of a building, result-
ing in a non-planar, 3D form factor. We can exploit such a 3D
form factor for the display of 3D content on a media facade
in general. An example for that is the media facade of the
Academy of Fine Arts Saar (Figure 1).

In this paper we present a framework to compute and ren-
der physical force-of-gravity simulations on media facades.
As a use case, we chose a space simulation with many space
objects on off-the-shelf graphics hardware. Our framework
also supports mapping of the scenery to arbitrary projection-
based media facades and other display environments. In order
to support interaction, the framework is capable of handling
TUIO [17] events — the de facto standard protocol for multi
touch input — in order to manipulate objects, processes and
parameters.

In the remainder of this paper we will describe the setup of
the media facade and the space-simulation framework. We
further report and discuss the experiences we gathered by de-
ploying the system to the aforementioned media facade.



Figure 2. Central part of a rendered image for the target media facade with proper camera setup

RELATED WORK

Media Facades
Fischer et al. investigated spatial aspects in the design of
shared encounters for media facades [10]. They introduced
the term Urban HCI. Furthermore, they provided a formal
model which describes spatial configurations for different
scenarios, in which the built environment, the interface, any
associated computer system and the social context are taken
into account [10].

In [4], Boring et al. described a way to use the concept of
Touch Projector [3] to allow for a simultaneous interaction
with a media facade for multiple users through live video on
mobile devices. They segmented the overall media facade by
defining two rectangular interactive areas (corresponding to
the particular sides of the building) which were used as sep-
arate, independent interactive areas. These areas were fully
within the field of view of users standing in front of them. In-
troducing MobiSpray, Scheible et al. utilized a smart phone
as a virtual spray can [22]. They used a world-in-miniature
interface in combination with a large-scale projected media
facade to spray virtual colors on various surfaces. Baur et
al. [2] used smart phones to apply the metaphor of optical
projection to post visual content onto various digital surfaces
in public multi-display environments. With spread.gun [11],
Fischer et al. built a stylized stationary cannon for shooting
color dabs onto a projected media facade. In [12], Fischer et
al. adapted this approach by exchanging the stationary input
device for a mobile slingshot to support social interaction be-
tween users, since they had to pass around the input device.
However, the aforementioned approaches for interacting with
a media facade are usually limited to planar 2D form factors.

Dalsgaard and Halskov identified eight challenges for design-
ing urban media facades [9]. They state that media facades
need to be integrated into physical structures and surround-
ings. This often leads to media facades that cover more than
one side of a building, resulting in a 3D form factor. To ex-
ploit the full potential and capabilities of these facades, the ul-

timate goal is to offer the opportunity for a fluent and contin-
uous interaction with the whole facade. This includes interac-
tion over borders and around corners. With [14], Gehring and
Krüger provided an approach to enable users to interact with
the complete media facade — including its occluded parts —
with the help of a mobile device. They used cartographic map
projections to create an interactive 2D map representation of
the media facade’s 3D surface.

Space Simulators
Space simulators have been developed to allow for an inter-
active exploration of gathered data sets and the simulation
of fictional and real scenarios in space. There are many ap-
plications that offer both, like the freely available Space En-
gine, which targets desktop computers [21]. This application
can simulate different galaxies, planets and moons, for in-
stance, including their motion in real time. An observer has
the possibility to interactively explore the visualized space
in a first-person perspective using the default computer input
methods (mouse and keyboard). Known galaxies are loaded
from datasets which include planetary surface information
and textures. Unexplored parts of the universe are created
procedurally. Lighting effects, volumetric nebula and the vi-
sualization of orbital paths enhance the immersion. However,
this engine focuses on desktop computers and on the explo-
ration of objects in space, not on experiments with gravity or
sophisticated multi-display setups for media facades.

Another interesting interactive application is provided by the
NASA in form of Cassie 3D [18]. It is freely available and
is tailored for the exploration of the Saturn Cassini mission.
However, it only focuses on this particular mission without
providing the possibility to simulate other space scenarios or
the interactive exploration of the deep space.

The application that is most similar to our approach is the
Universe Sandbox, which offers a real-time gravity simula-
tor [15]. The physics engine simulates the orbital motion
of objects in space based on Newton’s laws of gravitation.
By experimenting with the simulation, players can explore



Figure 3. Image of the simulation on the target media facade

the universe and play with the stars: Complex collisions and
chain reactions between objects are possible. In addition, a
player can manipulate gravity or spawn new asteroids during
runtime through desktop-interaction events. Furthermore, the
focus of this application lies on the simulation features and
not on visually appealing rendering of objects in space.

3D SPACE-SIMULATION FRAMEWORK
Each media facade requires a unique adaption in order to fit
the prerequisites of the facade, as well as the requirements
of the underlying hardware realization. This includes specific
virtual-camera settings, display setups, multi-display support,
proper perspective distortions and support for the available
interaction capabilities.

Our space-simulation framework is realized in the form of
a lightweight extensible engine, which is designed to ful-
fill these requirements to target media facades and other vir-
tual environments. In order to ensure extensibility, it of-
fers a plugin system to extend, adapt and customize sev-
eral parts of the simulation engine. This includes the real-
ization of custom scenarios (pure simulations or interactive
games, for instance), custom interaction logic or specific ren-
dering features. For this reason, the whole framework is split
into two major parts: the application itself and an engine-
interface library, which is referenced by plugins. The ap-
plication contains the core physics, graphics and interaction-
processing functionality, whereas general interfaces and set-
tings are shared between the application and the library.

Rendering
The simulation has to render many objects but should still
be able to visualize them in an appealing way for an ob-
server. Furthermore, there are different types of objects in
space, which should appear as differently looking objects as
well. Since many scenarios require multiple virtual cameras
to render the simulation from different perspectives in par-
allel, most or nearly all objects are visible with respect to
the camera setup. Also, in contrast to most common inter-
active 3D applications that typically render only a small ex-
cerpt of the world, we visualize a much higher percentage of

the whole scene on a facade. Therefore, we assume that all
objects are visible in parallel.

In order to satisfy these requirements, we designed and in-
tegrated a dynamic level-of-detail based rendering approach
for our scenario. It leverages procedurally generated geom-
etry, which allows for an appealing visualization of planets
or asteroids. However, in many scenarios it is also often re-
quired to support objects with a predefined geometry, which
is given in the form a of discrete mesh. For instance, in
cases in which the geometry cannot be described easily for
a non-expert in a procedural way. Our approach, to render
those objects appealingly, involves grouping of objects into
LOD groups, according to their distance to the camera, which
turned out to be much faster in our case than other more so-
phisticated hierarchical-based approaches [8]. We perform a
grouping step on the GPU while taking the LOD information
of every virtual-camera perspective into account and perform
the rendering step afterwards using geometry instancing [20].

Mapping to output devices
As the simulation should be adaptable to different facades,
multiple render outputs (for example, connected projectors)
with arbitrary layout and distortion of the output surfaces,
have to be supported. An additional requirement is the use
of multiple virtual-camera perspectives in parallel. This is
particularly useful when targeting facades with multiple pro-
jection surfaces that are not contiguous. This in turn means,
that we have to render as many images as there are virtual
cameras. An example for such a scenario can even be a 360-
degree rendering requiring six distinct camera perspectives in
order to build a complete 360-degree image. Furthermore,
round form factors are also supported when adjusting the re-
quired distortion and camera setup.

In order to send the proper contents to the different connected
output devices, we have to adjust the different images prop-
erly on the virtual-desktop workspace locations. The underly-
ing operating system in combination with the graphics driver
will automatically send the contents to the proper output de-



vices. Note that it is also possible to span parts of the scene
across multiple output devices.

An alternative to this approach is merging or combining the
connected output devices to a large single virtual desktop.
However, this often causes software incompatibility issues
with other programs (like media players) since we have to
override the default window-mapping functionality. More-
over, this does not solve the mapping problem completely:
We still have to render different camera perspectives and ar-
range them in a proper way. In addition, we want to be less in-
vasive and do not want to manipulate the virtual-device setup
of a particular media facade since other simulations or videos
are already adapted to a particular setup.

Post-process image-distortion can be applied to specific re-
gions of the final image. This helps to support arbitrary dis-
play form factors. An example for such a process can be a
rectangular image that has to be distorted in a specific way to
match the target layout of a projected image.

The distortion process itself is not limited to a mathematical
operation (like shearing) or a set of cascaded operations. In-
stead, a distortion mask can be defined or imported based on
images or 3D triangular meshes. However, the required mask
has to be adapted for every target media facade or interactive
installation currently.

Physics
The physics engine implements a force-of-gravity simulation
in space. The gravitational-force computation between two
objects is given by Newton’s law of gravitation

~f21 := G
m1m2

|~d12|2
d̂12 = G

m1m2

~d12 · ~d12
d̂12,

where

• ~f21 refers to the force object 2 applies on object 1,

• G is the gravity constant ≈ 6.674 · 10−11 m3

kg·s2 ,

• m1 and m2 are the masses of object 1 and 2,

• ~d12 is the distance vector between the two objects and

• d̂12 is the normalized distance vector.

This kind of simulation requires a computation of the grav-
itational forces between n different objects (bodies): Every
body influences the force that is applied to the other bodies.
We can use the massively parallel nature of the GPU to com-
pute those forces in parallel, and thus, in real time. The actual
computation is performed by an algorithm similar to the one
by Josh Barnes and Piet Hut [1] while using arithmetic, data-
structure and data-access pattern specific optimizations to im-
prove the performance on GPU accelerators (see also [19]).
This ensures an efficient computation on current GPUs.

Interaction
The interaction part of the framework currently supports three
general input methods: The standard protocol for tangible
user interfaces (TUIO) [17], motion tracking and default

desktop interaction methods. The modules of the framework
that retrieve interaction events can be run on other machines
than the main simulation computer.

We decided on the integration of TUIO since there are many
client applications and devices that support this protocol. Be-
sides other features, TUIO offers the opportunity to inter-
change information about touch and drag events. For exam-
ple, a touch event can cause an object to be selected in the
client application whereas a drag event can move an object.

Motion tracking supports default optical, infrared and depth
cameras. We support default and infrared cameras via the
USB protocol, the Microsoft Kinect [25] via the native inter-
faces provided by the Microsoft Kinect SDK and other depth
cameras via the Open Natural Interaction (OpenNI) 1 frame-
work. The processing and the extraction of motion informa-
tion of the received image data is realized using the Open
Source Computer Vision Library (OpenCV) [6].

Implementation
The whole framework is implemented in C++. Computa-
tions on the CPU make use of SSE and AVX instructions to
improve performance. Furthermore, we leverage Direct3D
11 [26] for the rendering part in order to benefit from tes-
sellation capabilities. We use Direct Compute [26] for com-
putations on the GPU, which integrates seamlessly into the
Direct3D functionality. It is similar to other well known
APIs/programming languages which are available for this
task like OpenCL 2 or Cuda 3.

Figure 4. The media facade’s 3D effect running a demo video

USE CASE: MEDIA FACADE
The first use case of our simulation framework is the me-
dia facade of the Academy of Fine Arts Saar. The facade
is about 3.4 meters high and 20 meters wide. It is located
about 5.5 meters above the ground and spans over five win-
dows of equal size, as shown in Figure 1. Multiple projectors
project media contents from the back onto a canvas behind
the windows. The canvas is mobile and driven by an electric
1http://structure.io/openni, Accessed April 2015
2http://www.khronos.org/opencl, Accessed April 2015
3https://developer.nvidia.com, Accessed April 2015

http://structure.io/openni
http://www.khronos.org/opencl
https://developer.nvidia.com


motor such that it can be moved aside during the day auto-
matically. The schedule for the projections and the control of
motor is managed automatically via a software interface. A
mobile back projection curtain offers the opportunity to use
the space inside the building as a traditional gallery for exhi-
bitions and presentations at daytime.

The whole canvas is subdivided into five smaller ones, where
every small canvas covers a single window. In our setup, a
single projector is used for every window, which sums up to
a total number of five projectors for the whole media facade.
The projectors are mounted to the ceiling and are oriented in
a way that every projector is perpendicular to the projection
surface.

When looking at the enclosed edge, a spectator gets the im-
pression of volumetrically spreading 3D objects, which seem
to be caught within the room confined by the projection can-
vases (Figure 4). Note that this 3D illusion is also perceptible
without the use of additional hardware like active or passive
3D glasses. This setting is perfectly suitable for a wide range
of different observers which briefly stay and watch. In order
to support this effect, a proper virtual-camera setup that takes
this perspective into account, is required. The ideal observa-
tion point is located on the opposite side of the road, as shown
in Figure 5. At the same time, this is a limitation to this 3D
approach, since it relies on fixed observer-camera angles for
a proper perception of the 3D illusion.

Figure 5. Observer position to perceive the simulated 3D effect

Technical Setup
As mentioned previously, the projection canvas consists of
five projectors. Each projector is typically used with a res-
olution of 1024 × 768 pixels, which can be increased to
1400×1050. Those projectors are connected to a default off-
the-shelf middle-end graphics accelerator from AMD which
can handle up to six output devices in parallel. The sixth out-
put device is used for maintenance and/or development ser-
vices.

Projection Mapping
In order to reflect the physical form factor of the facade, the
images have to be distorted according to a specific mask. A
sketch of the used mask is shown in Figure 6. This defined
mask, which is given by the projection environment, is used
for extraction of regions from the rendered images.

Figure 6. Sketch of the used mask for projection mapping

In our scenario, we need to extract two regions of the final im-
age (one region for each side of the facade), which are shown
in Figure 7. The black border indicates the rendered image.
After the extraction, we can distort those regions to rectan-
gles in order to send them to the output devices (Figure 8).
The actual projection process performs the inverse transform:
it projects the rectangles to the projection screens that appear
to be distorted from an observer’s point of view. Using this
transformation, an observer can exactly see what we wanted
him to see: a properly mapped image with the correct per-
spective adjustments.

Figure 7. Extracted regions according to the used mask

Figure 8. Distortion/deformation according to the used mask

Simulation Scenario
We designed a scenario which consists of an asteroid belt
with an initial number of 214 = 16384 asteroids. It orbits
around a central sun. We use different object types via dis-
placement mapping to simulate different asteroid geometries
and different surfaces (based on material properties and tex-
tures). Already a small number of nine predefined types pro-
vides the impression of many different asteroids. In this case
we used pre-designed materials and textures1 for the asteroids



instead of procedurally generated ones. The object geome-
try is based on different procedurally-generated ICO spheres
(icosahedrons) which allow for an appealing displacement of
asteroids during rendering.

The mass of each asteroid is responsible for its size, which
makes it easy for an observer to distinguish between heavy
(large) and light (small) objects. Furthermore, the mass con-
trols the collision behavior, which is based on the laws of
physics and every collision causes additional visual effects to
appear. Based on a comparison of the mass relation, some ob-
jects might be smashed whereas others remain while smash-
ing their collision partners. Objects that have to be smashed
will be subdivided into smaller ones which are added to the
simulation again. However, the subdivision logic will only be
applied if the asteroid is large enough to avoid endless split-
ting. A collision with a sun always results in a complete de-
struction of the asteroid. An average number of objects in
space during the simulation (without an interaction event) is
around 45500 ≈ 215.47.

The interaction component of the simulation allows to inter-
fere with this scenario. We allow a manipulation of a sun and
the creation of additional asteroids on a mobile device via the
TUIO protocol. The manipulation capabilities allow to expe-
rience major changes in the gravity field while destabilizing
the asteroid belt. Every mobile-phone user that connects will
automatically create a new sun with a unique color whereas
the first user controls the central sun. In the case of a longer
period of time without external interaction events (target au-
dience are passers-by), the simulation logic creates random
asteroids and tries to re-stabilize the belt.

In order to benefit from the form factor of the facade, we
adapted the virtual-camera setup and the final image distor-
tions. The center of the simulated system should be in the
center of the visualization, as the belt rotates around a central
sun. If the mapping of the sun is performed naively, the pro-
jected virtual position will be located on the window surface,
as shown in Figure 9. This results in a viewing angle between
the virtual camera and the observer of around 15 degrees.

Observer

Wall
(ca. 5.5m)

ca. 26m

ca. 15 deg

Figure 9. Naively projected position of the simulated sun

Unfortunately, this camera setup does not allow for the de-
sired 3D effect, in which the sun seems to be centered in the
1These materials were made by Pascal Klein, a designer from the
Academy of Fine Arts Saar.

virtual room. In order to adapt the setup, we need to take
the front edge of the facade into account (see also Figure 5).
The virtual-camera position and its angle have to be adjusted
in order to match an observer’s viewing perspective in reality
(Figure 10). An observer (who is approximated by the height
of the observer’s eyes of about 1.6 meters) looks at the sun
through the windows at the edge of the facade. This results in
an angle between the observer and the center of the windows
of about 8 degrees.

Observer

Wall
(ca. 5.5m)

ca. 26m

ca. 8 deg

Figure 10. Sketch of the observer’s viewing perspective who looks at the
virtual position of the simulated sun

A rendered image for the media facade (including proper
camera setup) before the final projection-mapping-distortion
step, is shown in Figure 2. A picture of the deployed simula-
tion on the media facade is shown in Figure 3.

CONCLUSION
In this paper we presented a framework for simulating large-
scale 3D content on media facades with non-planar form fac-
tors. Our framework provides customization and adaption ca-
pabilities to address the variety of different media facades and
environments. The integration of interaction features through
the generic TUIO protocol was tested with mobile devices as
well as motion tracking input, controlling or creating space
objects in real time. Supporting the TUIO protocol turned
out to be a valuable choice, as it reduces the complexity of
integrating different interaction clients. The process of map-
ping virtual cameras to real projection surfaces and adjusting
image-distortion masks (if required) is still complex and dif-
ficult to automatize.

For further testing and simulation, the output of the system
can be connected to the Media Facade Toolkit of Gehring et
al. [13] to inspect whether the 3D effect works for the in-
tended position of the observers. This is a particularly crucial
issue for media facades that are optimized for certain viewing
positions, directions, or distances.

For the future, we will investigate alternative interaction tech-
niques, such as shifting the virtual-observer position. Further-
more, we would like to test the system on media facades of
different form factors and other interactive installations. We
also plan to create new scenarios like a recreation of our solar
system and offer interaction possibilities that allow for play-
ful learning sessions. Users would then be able to destroy
planets or to change the size of the sun and see the effects on
the orbits of the other planets and moons.
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14. Gehring, S., and Krüger, A. Facade map: Continuous
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