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ABSTRACT
Recent 3D reconstruction algorithms are able to generate colored meshes with high resolution details of given
objects. However, due to several reasons the reconstructions still contain some noise. In this paper we propose
the new Joint Bilateral Mesh Denoising (JBMD), which is an anisotropic filter for highly precise and smooth
mesh denoising. Compared to state of the art algorithms it uses color information as an additional constraint for
denoising; following the observation that geometry and color changes often coincide. We face the well-known
mesh shrinking problem by a new local anti-shrinking, leading to precise edge preservation. In addition we use an
increasing smoothing sensitivity for higher numbers of iterations. We show in our evaluation with three different
categories of testdata that our contributions lead to high precision results, which outperform competing algorithms.
Furthermore, our JBMD algorithm converges on a minimal error level for higher numbers of iterations.
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1 INTRODUCTION
Many applications, such as urban planning, industrial
measurement or human anthropometry, require recon-
structed 3D models of the respective objects with very
high precision. The traditional approach is to acquire
these models by laser scanners, since they promise
high quality results. However, they are expensive, im-
practical to use and contain still some noise. Mean-
while 3D reconstruction algorithms, such as e.g. [Agi,
FP10, NIH+11, SSC14], are able to generate colored
mesh models from devices like standard color cameras
and\or depth cameras, which are widely spread, cheap
and easy to use. These reconstructions contain color
information together with high-resolution details, but
also suffer from noise in their 3D geometry. To get
rid of this noise, several (mostly iterative) methods for
mesh denoising were proposed in the literature. Some-
times they are also referred to as smoothing, filtering
or fairing methods. They use directly the 3D geome-
try or derived measures, like distances or normals of
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the mesh, to estimate new vertex positions. However,
none of them explicitly uses the color information pro-
vided by e.g. one of the above mentioned algorithms.
Thus, we present in this paper a new anisotropic method
called Joint Bilateral Mesh Denoising (JBMD), which
uses - besides geometric information - the color infor-
mation as an additional constraint for edge preserving
denoising.

Another well-known problem of mesh denoising are
shrinking effects. They occur mostly in curves regions
of the mesh and are caused by homogeneous shifts
of vertices in a neighborhood into one major direc-
tion. Current approaches try to compensate that ef-
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Figure 1: Comparison of different mesh denoising algo-
rithms for the fandisk mesh. Top row: meshes. Bottom
row: color-coded error distribution.



fect, whereas they focus more on visually appealing
results than on precision. Thus, in our JBMD algo-
rithm we propose a new approach to avoid this effect
by a precise local anti-shrinking. Furthermore, many
current algorithms suffer from their high dependence
on the number of iterations. Therefore our new algo-
rithm increases the denoising sensitivity per iteration
leading to constantly low errors. A short overview
of our algorithm is also given in the following video:
https://youtu.be/odm8kr2rKPA

Summarizing, the main contributions of our proposed
JBMD algorithm are:

• explicit usage of color information as an addition
constraint for denoising,

• precise local anti-shrinking and

• increasing denoising sensitivity.

The remainder of this paper is organized as follows:
Section 2 gives an overview of existing methods for
mesh denoising. The proposed JBMD algorithm is mo-
tivated and explained in detail in Section 3, while it is
evaluated regarding precision in Section 4. The work is
concluded in Section 5.

2 RELATED WORK
Image and mesh denoising is an ongoing research topic
in the image processing and computer vision commu-
nity.

Often, mesh denoising methods are related to image
denoising approaches. State of the art approaches in
image denoising include methods such as anisotropic
diffusion [PM90], total variation [ROF92], wavelet de-
noising [Don95], robust diffusion [BSMH98], bilat-
eral filter [TM98] and joint bilateral filter [KCLU07,
HSJS08]. In particular the joint bilateral filter uses,
similar to our new approach, the color information as
an additional constraint.

State of the art algorithms for mesh denoising are
amongst others Laplacian [Fie88, Tau95, VMM99] and
bilateral [FDCO03, JDD03, ZFAT11] mesh denoising
(BMD) methods. Laplacian mesh denoising is an
iterative isotropic procedure, where the new vertex
positions are directly calculated from the positions of
the neighboring vertices. In contrast, bilateral mesh
denoising is an iterative edge preserving anisotropic
approach. New vertex positions are estimated from
the vertex’s neighborhood, where the influence of
neighboring vertices depends on their distance and on
their offset to the tangent plane. Parts of this approach
are also used for our new algorithm.

A general and well-known problem of mesh denoising
is that the mesh shrinks in convex regions with each ap-
plication of the particular algorithm, which is a huge

problem especially for iterative approaches. [Tau95]
solves this problem by alternating shrinking and expan-
sion steps. Admittedly the precision of this approach
depends heavily on the geometry of the particular mesh
[DMSB99]. Another common approach, which is e.g.
used in the Bilateral Mesh Denoising [FDCO03], is to
preserve the volume of the mesh by a global correc-
tion step as proposed in [DMSB99]. The algorithm es-
timates the volume V n of a mesh after the n-th iteration
by the sum of volumes of all ordered pyramids centered
at the origin and with a triangle of the mesh as base.
Each vertex of the mesh is then scaled by the factor β ,
which is defined by

β =

(
V 0

V n

) 1
3

, (1)

to achieve the original volume V 0. However, as mesh
shrinkage occurs only in convex regions contrary to flat
regions, a global correction has indeed appealing effects
but is not precise. Thus, we propose in this paper a
precise local shrinkage correction.

3 METHOD
In this paper we propose the Joint Bilateral Mesh De-
noising (JBMD), which is a filtering method for meshes
using local neighborhoods. The method can be subdi-
vided into two parts: the denoising itself and the subse-
quent local anti-shrinking.
The main idea of our new denoising algorithm is related
to image processing, namely motivated trough the Joint
Bilateral Filter (JBF) [KCLU07]. This anisotropic
edge-preserving filter is often used to denoise depth
images by using color images as additional constraints.
The main idea is to compute a new depth value as
a weighted average of surrounding depth values,
where the weights depend on their deviation in position
(space) and color value (range). The assumption of JBF
are coherent depth and color discontinuity, meaning
that edges in the color image coincide with edges
in the depth image and vice versa. This coherence
assumption was validated in many image processing
publications [KCLU07, WBS15] and we show in
Section 4 that it also holds for meshes.
The intention of our new local shrinkage correction is
- contrary to alternating [Tau95] or global [DMSB99]
correction - to adjust vertex positions only where
shrinkage effects occurred. This effect arises only in
convex regions, whereas flat regions are not affected.
We observed that the weighted mean signed shift of
vertices in the neighborhood, which were estimated
by the denoising in the first step, equalize in noisy flat
regions, whereas in convex (and thus shrunk) regions it
is a precise local measure for a shrinkage correction.
Like in many other mesh denoising algorithms
[FDCO03, ZFAT11] we estimate in our JBMD new



vertex positions v′′ in a mesh by shifting along the
normal direction n. This has the positive effect that
irregularities in the resulting mesh are avoided. Our
two-step algorithm can be described by

v′′ = v+(x′ ·n)− (x′′ ·n), (2)

where (x′ ·n) is the denoising part, (x′′ ·n) the correction
part and x′|x′′ refer to the magnitude of the shift. The
algorithm is illustrated in detail in Figure 2 and defined
in the following:

Algorithm 1 Joint Bilateral Mesh Denoising (JBMD)
for the m-th iteration
Require: Vertex v, Normal n
1: {qi} = neighborhood(v)
2: sum,norm,sum′,norm′ = 0
3: for all i do
4: di = ‖v−qi‖
5: oi = 〈n,v−qi〉
6: ci = (v.r−qi.r)2 +(v.g−qi.g)2 +(v.b−qi.b)2

7: wd
i = exp(−d2

i /2σ2
d )

8: wo
i = exp(−o2

i /2(σo ·λ m)2)
9: wc

i = exp(−ci/2σ2
c )

10: sum += (wd
i ·wo

i ·wc
i ) ·oi

11: norm += wd
i ·wo

i ·wc
i

12: end for
13: x′ = sum/norm
14: v′ = v+ x′ ·n
15: for all i do
16: d′i = ‖v′−q′i‖
17: wd

i = exp(−(d′i)
2
/2σ2

d )
18: sum′ += wd

i · x′i
19: norm′ += wd

i
20: end for
21: x′′ = sum′/norm′

22: v′′ = v′− x′′ ·n
23: return v”

In the first step of our algorithm (line 3-14) the new po-
sition v′ of a vertex v is estimated as a weighted average
of neighboring vertex position qi, where the weights de-
pend on three influencing factors: distance (wd

i ), offset
(wo

i ) and color difference (wc
i ). For computing the dis-

tance di between a vertex v and neighboring vertex qi,
the geodesic distance on the smooth surface would be
the correct measure. However, for efficiency reasons
we approximate di using the Euclidean distance in line
4, since [FDCO03] demonstrated already a sufficient
impact. The offset oi is defined as the distance of ver-
tex qi to the tangent plane of vertex v. The intention
of using this offset oi is that neighboring points in flat
regions should have a higher influence than in convex
or edge regions. As described in line 5, oi can be eas-
ily estimated using the dot product. The last influence
factor is the color difference ci between a vertex qi and

(a)
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Figure 2: Joint Bilateral Mesh Denoising (JBMD) ap-
plied to vertex v: (a) Denoising step (v → v′). (b)
Shrinking correction step (v′→ v′′). (c) Final result.

vertex v, which is estimated in line 6. To map the in-
fluence factors di, oi and ci to weights wd

i , wo
i and wc

i ,
we use the Gaussians of lines 7-9. The final shift x′ of
vertex v is the normalized weighted sum of offsets oi of
neighboring vertices qi.

In the second step of our algorithm (line 15-22) we cor-
rect the position of a vertex v′ due to possible shrink-
ing effects. As already mentioned before, we observed
that the weighted mean signed shift x′′ of vertices in the
neighborhood, which were estimated by the denoising
in the first step, is a good local measure for a shrinkage
correction. For the estimation of the weights for x′′ we
use the distance d′i between a vertex q′i and v′ together
with a mapping function (line 16-17) similar to the first
step of the algorithm. The weighted mean signed shift
x′′ is calculated by summing up the weighted signed
sifts x′i (line 18) and normalizing afterwards (line 21).



Figure 3: Mean errors of the fandisk mesh for different numbers of iterations. Quantitative comparison of different
features of our new JBMD algorithm and comparison against BMD.
Dark blue: BMD [FDCO03]. Red: BMD without volume preservation. Green: Our new JBMD. Purple: JBMD
without increasing smoothing sensitivity. Light blue: JBMD without local anti-shrinking. Orange: JBMD without
increasing smoothing sensitivity and without local anti-shrinking.

The described JBMD algorithm is applied locally for
each vertex of the mesh. However, vertices at a bound-
ary of a mesh do not have a well defined neighborhood
(line 1). In our algorithm we define the size of the
neighborhood as a fixed number k. The neighborhood
of a vertex v is then defined by the k closest vertices
qi. Obviously, the shape of our neighborhood changes
from vertex to vertex, but since the distance di between
vertices v and qi is an influencing parameter, this arti-
fact has negligible influence.
Our JBMD algorithm is - like many other [FDCO03,
ZFAT11] - an iterative approach. In the first iteration
major noise is eliminated, whereas with higher number
of iterations the overall level of noise decreases. Thus,
we consider this aspect by an increasing smoothing sen-
sitivity. In our JBMD algorithm the noise influences the
result via the offset oi, whereas the corresponding map-
ping function depends on σo. Therefore, we decrease
the parameter σo by a constant factor λ with each iter-
ation; leading to constantly low error.

4 EVALUATION
In this section we benchmark our JBMD algorithm by
comparing it to competing algorithms, namely Lapla-
cian Denoising and Bilateral Mesh Denoising (BMD).
These algorithms are described in more detail in Sec-
tion 2. All methods - including ours - depend on some
parameters. For our JBMD algorithm these are σd , σo
σc and λ . Thus, we run each algorithm with a huge
number of possible parameter combinations to detect
the optimal setting. All results (Figures, diagrams, etc.)
shown in this paper are generated with optimal parame-
ter settings and numbers of iterations. For our JBMD
algorithm we used the parameter settings of Table 1
for the given datasets. Note, these parameters depend
highly on the mean vertex distance (MVD) of the given
mesh. According to our experiments MV D ≈ 2σd ≈
4σo can be used as a rough guideline for setting the pa-
rameters.

Unfortunately, a groundtruth comparison on real world
data is very difficult, since no datasets are available,
which provide both real noisy data and real denoised
data. Thus, in the recent literature it is common to use
precise models of an object and generate the noise on
it synthetically. For this paper we decided to use three
categories of testdata in our evaluation.

The first category are colored synthetic meshes with
sharp edges together with an artificially noisy version of
this mesh. We use here the well-known fandisk mesh,
where each part of the surface has another color. Fur-
thermore, we add a Gaussian noise, where the stan-
dard deviation is roughly half of the vertex distance.
The second category of testdata are highly precise re-
constructions of real objects acquired by a camera-
projector-system [KNRS13]. We also added here a
Gaussian noise with a standard deviation of approxi-
mately half vertex distance. The meshes used in this pa-
per are the lion and allegorie reconstructions. The third
category of testdata are reconstructed meshes, which
are generated by standard cameras and Agisoft Pho-
toScan [Agi]. We use in this paper the heads of two
persons: person 1 and person 2. These reconstructions
include partially strong noise due to the lack of char-
acteristic features. Obviously, for these reconstructions
no ground truth is available, but they are a real world
scenario, where the application of a mesh denoising al-
gorithm is required.

MVD σd σo σc λ

fandisk 0.1897 0.1 0.05 30 0.8
lion 0.4401 1.0 0.5 30 0.6

allegorie 0.0003 0.0008 0.0004 35 0.7
person 1 0.0030 0.01 0.005 20 0.7
person 2 0.0041 0.01 0.005 20 0.7

Table 1: Parameter settings in the evaluation of our new
JBMD algorithm for the given datasets with specified
mean vertex distance (MVD).
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Figure 4: Comparison of different mesh denoising algorithms for the lion mesh. Top row: meshes. Bottom row:
color-coded error distribution.

Figure 5: Mean errors of the lion mesh for different numbers of iterations. Quantitative comparison of different
features of our new JBMD algorithm and comparison against BMD.

As a quality measure for denoising we use the mean
error (ME), which is defined for a denoised mesh X and
a ground truth mesh G by

ME(X ,G) =
1
n

n

∑
i=1
‖xi−gp‖ (3)

xi ∈ X ; gp ∈ G; ∀i p = arg
p

min‖xi−gp‖,

where n is the number of vertices in the mesh X . More
intuitive, it is defined by the mean distance of each ver-
tex in the mesh X to the respective closest vertex in the
ground truth mesh G.
First of all we evaluate our algorithm with the fandisk
mesh in Figure 1, which has ideal preconditions for
our JBMD, since all sharp edges coincide with color
changes. From a visual point of view, all three mesh de-
noising algorithms provide smooth results without vis-
ible noise. However, they differ strongly in their pre-
cision, as visible in the color-coded error distribution
in the bottom row. The blue color indicates low er-
rors, whereas red represents high errors. Both BMD
and Laplacian denoising have imprecise vertices at the

edges of the mesh, whereas our JBMD has only some
minor inaccuracy. Figure 3 depicts the mean error of
the fandisk mesh depending on the number of iterations.
Our JBMD has the lowest error and converges in partic-
ular on this low error level. If our JBMD is used without
the increasing smoothing sensitivity, the mean error in-
creases again from the fourth iteration on. If we switch
off our shrinking correction, we achieve better results
for a small number of iterations. This is caused by the
inhibiting effect of the shrinking correction, since it re-
verts the denoising to some extent. However, for larger
numbers of iterations superior results can be achieved
with our new local anti-shrinking. Looking at the ef-
fects of using the color information as an additional
parameter, we see that our JBMD has - even without
increasing smoothing sensitivity and without local anti-
shrinking (orange line) - always a lower mean error than
the BMD.

The lion and allegorie meshes, which correspond to
the testdata category of real reconstructions with syn-
thetic noise, are depicted in Figure 4 and 7 respectively.
Again, from a visual point of view all three mesh de-
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Figure 6: Comparison of different mesh denoising algorithms for the person 1 mesh. Top row: meshes. Bottom
row: color-coded comparison against the input mesh.

noising algorithms deliver smooth results. However, for
both datasets at the edges of the mesh BMD and Lapla-
cian denoising are less precise than our JBMD. Figure 5
and Figure 8 depict the respective mean error of the lion
and allegorie meshes depending on the number of iter-
ations. Again, our JBMD outperforms the competing
algorithms and converges at the lowest error level.

The person 1 and person 2 meshes correspond to the
testdata category of reconstructions with real world
noise. Since no groundtruth data is available for these
datasets, we compare the denoised meshes against the
original mesh in Figure 6 and 9 respectively. The BMD
algorithms results in the biggest differences to the orig-
inal mesh. Especially the nose, but also the eyebrows
and mouth, have a huge deviation and are not precise.
The Laplacian smoothing shows less deviation, but is
by far not as close to the original mesh as our JBMD. Of
course, smaller deviations to the original do not manda-
tory result in a better quality, but from a visual point of
view all results are similarly smooth. Thus, also for this
category of testdata our JBMD outperforms the com-
peting algorithms.

Summarizing the evaluation results, we found out
that our JBMD algorithm outperforms competing
algorithms for all tested datasets in terms of precision
while creating smooth results. Notably is in particular
that our JBMD converges on the lowest error level for
higher numbers of iterations. This is the achievement
of all three main contributions of our paper: Using
color information as additional constraint, correcting

shrinking effects locally and increasing the smoothing
sensitivity with each iteration. Like illustrated in Figure
3, 5 and 8 this is only possible with the combination
of all these three contributions. As long as at least one
of them is not activated, the mean error is not minimal
and does not converge. With the local anti-shrinking it
is possible to denoise especially edges very precisely.
Furthermore, we verified with our convincing result
that the coherence assumption of coinciding geometry
and color changes holds also for meshes.

5 CONCLUSION
In this paper we proposed the new Joint Bilateral Mesh
Denoising (JBMD), which is an anisotropic filter for
highly precise and smooth mesh denoising. Under the
assumption of coinciding geometry and color changes
it uses color information as an additional constraint for
denoising. This assumption is adapted from the Joint
Bilateral Filter (JBF) of the recent image processing
research and we showed in this paper that this coher-
ence assumption also holds for meshes. Furthermore,
we proposed a precise local anti-shrinking, which leads
to precision improvements especially at the edges of the
mesh. Our third contribution increases the smoothing
sensitivity for higher numbers of iterations. In our eval-
uation we compared our new JBMD algorithm against
competing algorithm based on three categories of test
data. We showed that our contributions lead to high pre-
cision results with lowest errors. In addition our algo-
rithm converges to the minimum error level for higher
numbers of iterations.
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Figure 7: Comparison of different mesh denoising algorithms for the allegorie mesh. Top row: meshes. Bottom
row: color-coded error distribution.

Figure 8: Mean errors of the allegorie mesh for different numbers of iterations. Quantitative comparison of
different features of our new JBMD algorithm and comparison against BMD.

(a) Input (b) BMD (c) Laplacian (d) Our JBMD

Figure 9: Comparison of different mesh denoising algorithms for the person 2 mesh. Top row: meshes. Bottom
row: color-coded comparison against the input mesh.
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