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a  b  s  t  r  a  c  t

Collaborative  localization  is  a  special  case  for knowledge  fusion  where  information  is exchanged  in order
to attain  improved  global  and local  knowledge.  We propose  analytical  as  well  as  agent  based  simulation
models  for pedestrian  dead  reckoning  (PDR)  systems  in agents  collaborating  to improve  their  location
estimate  by  exchanging  subjective  position  information  when  two  agents  are  detected  close  to  each
other.  The  basis  of  improvement  is  the  fact that two  agents  are  at approximately  the  same  position
when  they  meet,  and  this  can  be used  to  update  local  position  information.  In analytical  models  we
find  that  the  localization  error  remains  asymptotically  finite  in infinite  systems  or  when  there  is at  least
one  immobile  agent  (i.e.  an  agent  with  a zero  localization  error)  in the system.  In  the  agent  model  we
tested  finite  systems  under  realistic  (that  is, inexact)  meeting  conditions  and  tested  localization  errors
edestrian dead reckoning system
utomated localization

nteracting mobile computers
nowledge fusion

as function  of  several  parameters.  We  found  that a large  finite  system  comprising  hundreds  of  users
is  capable  of  collaborative  localization  with  an  essentially  constant  error  under  various  conditions.  The
presented  models  can  be used  for  predicting  the  improvement  in  localization  that  can  be achieved  by
a  collaboration  among  several  mobile  computers.  Besides,  our  results  can  be  considered  as  first  steps
toward  a more  general  collaborative  (incremental)  form  of knowledge  fusion.

© 2014  Elsevier  B.V.  All  rights  reserved.
. Introduction

Automated localization of mobile computers is a well studied
roblem in informatics that is important for a broad range of mobile
nd ubiquitous computing applications [1]. Unfortunately it is a
ard problem that has no reliable general purpose solution for all
pplication domains [2]. Besides, automated localization systems
ypically require the use of external position signals such as GPS
or at least some of the agents involved. The design space of cut-
ing edge localization systems is thus bounded by two  extremes
1) expensive systems that provide accurate, reliable location at
he cost of extensive instrumentation of the environment and (2)
imple systems that rely on existing infrastructure (e.g. WiFi access
oints for indoor systems) and/or sensors in mobile devices but
rovide inaccurate and unreliable location only.

The built-in system of the individual user (when tracking the

ser motion entirely locally) is error prone with the average error
onotonously increasing as a function of walked distance, hence

ts applicability is further limited. This is typically found in the

∗ Corresponding author at: German Research Center for Artificial Intelligence
DFKI GmbH), Kaiserslautern, Germany.

E-mail address: kampis.george@gmail.com (G. Kampis).

ttp://dx.doi.org/10.1016/j.jocs.2014.09.001
877-7503/© 2014 Elsevier B.V. All rights reserved.
so-called pedestrian dead reckoning systems (PDR, also referred to
as inertial navigation systems) that track user position by double
integration over acceleration and direction given by an accelerom-
eter and a magnetic field sensor [3]. The method is attractive
since most modern smart phones contain such sensors leading to
a potentially large user base, however, due to a double integration,
even very small errors in the sensor signal quickly accumulate and
tend to lead to a large error in position. Thus, the further the user
moves, the larger the PDR location error becomes. We  explicitly
test the accuracy of common PDR systems in Section 2 and derive
equations that characterize the corresponding localization error.

A new idea has recently been introduced to improve on the
above. When two users come close to each other, their systems
can use proximity information to correct their position estimates
based on the fact that they occupy closely related positions [4].
From Bluetooth signals (which have a limited range) or from near
field communication devices or special purpose proximity sensors
(with a higher accuracy but an even lower range) such proximity
information can be derived. In short, the knowledge that the sys-
tems are within a certain distance of each other, combined with

the probability density distributions that each system has with
respect to its own  location allows the construction of a joint dis-
tribution that has a lower variance than the individual estimates
(Fig. 1).

dx.doi.org/10.1016/j.jocs.2014.09.001
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2014.09.001&domain=pdf
mailto:kampis.george@gmail.com
dx.doi.org/10.1016/j.jocs.2014.09.001
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Fig. 1. Collaborative localization 

In Section 3 we derive analytical models that quantify the
educed localization errors obtained by the empirical approach. The
odels show under which conditions the localization error remains

symptotically finite for very large values of time or continues to
row with time.

In a previous study we presented an ad hoc simulation based
n empirically determined parameters [5]. The simulation showed
hat two qualitatively different regimes of location awareness are
ossible. The system makes a transition from a state where the error
f each device is unbounded to a state where the averaged maxi-
um  error is constant, i.e., location awareness suddenly emerges

ven though the individual mobile devices are by themselves not
apable of exact location and have a tendency to accumulate error
ithout bounds. Here we ground these initial results in both ana-

ytical models and an agent based simulation, both reproducing
he main result and providing further insights, in particular on the
mportance of informed agents, system size, correlations, the role
f meeting densities and other parameters.

The paper is organized as follows. In Section 2 we describe a
otivating experiment using an individual PDR system which leads

o a quantitative description of an increasing localization error
haracterized by a power law. In Section 3 a corresponding ana-
ytical mean-field model for such an individual PDR is developed.
he model is first extended to collaborating PDRs in an infinite sys-
em, then finite systems with and without additional fixed agents
re studied. The agent based simulation model is presented in
ection 4. Finally, the conclusion and outlook are presented in Sec-
ion 5.
. Description of PDR performance

We  have performed an experiment to quantify the accuracy
f common PDRs under usual conditions. The main goal was  to

Fig. 2. Traces of motion captured by (a) the GPS sensor and (b) the
 on a population of PDR systems.

establish rules than can quantify the accumulation of the local-
ization error of a PDR system as a function of time and traveled
distance. In the particular experiment, a PDR tracked the position
of an Ambient Intelligence (AmI) device (smartphone) while the
carrying person walked inside and outside of buildings for 80 min,
without intermediate re-calibration. Simultaneously, the smart-
phone recorded GPS coordinates for reference at a time resolution
of 0.25 s (sampling rate 4 Hz).

Fig. 2(a) shows the registered path according to GPS coordinates
[4], and Fig. 2(b) shows the corresponding data from the PDR. Note
that, at first glance, the two traces do not resemble each other to
a recognizable degree. This is clearly due to accumulating errors in
the direction of motion in the PDR system. However, closer inspec-
tion reveals that local straight-line motion is captured by the PDR
quite accurately, if directions are disregarded. We  thus conclude
that a single PDR cannot be used for long-term position tracking
(unless directionality information, e.g., from a reliable compass, is
also taken into account). But how accurate is a single PDR on shorter
time and distance scales that do not involve changes in direction?
Can one quantify the increasing localization error?

Since absolute positions are irrelevant for estimating the
increases in localization errors with time and traveled distance, we
can use each space-time point (x(1), y(1), t(1)) of the trail as a starting
point. Then we  can determine, for each time delay �t  = t(2) − t(1) rel-
ative to these starting points, (a) the distances traveled according

to the GPS, i.e. �rGPS =
√

(x(2)
GPS − x(1)

GPS)
2 + (y(2)

GPS − y(1)
GPS)

2
(reference

distances) and (b) the distances traveled according to the PDR, i.e.

�rPDR =
√

(x(2)
PDR − x(1)

PDR)
2 + (y(2)

PDR − y(1)
PDR)

2
.

Fig. 3 shows the color-coded average 〈�rPDR〉 as function of �t
and reference distance �rGPS. The averaging 〈 · 〉 is done over all
starting points (all t(1)). One can see that a close similarity between
the two distances gets lost over large time delays �t beyond

 PDR system of a smart phone during normal daily activities.
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Fig. 3. Average PDR-measured distance 〈�rPDR〉 (color coded, see legend) as function
of  time delay �t  and reference distance �rGPS. Between the two straight red lines at
�rGPS = (2m/s)�t and �rGPS = (2m/s)(�t − 100s) a systematic relation between the
two  distances is visible. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

Fig. 4. Double logarithmic plot of the dependence of the average PDR-measured
distance 〈�rPDR〉 and the corresponding PDR standard deviation �PDR (Eq. (2), red)
on  the reference distance �rGPS. The lines are power-law fits to the data (see text).
Data  points below 5 m should be disregarded, because GPS distances are not accurate
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n  that range. (For interpretation of the references to color in this figure legend, the
eader is referred to the web  version of the article.)

00 to 130 s. Traveling for longer times usually involves stops or
hanges of direction which are not well detected by the PDR sys-
em, leading to unreliable PDR distance estimates. However, in time
elay frames between an upper bound, �rGPS < (2m/s)�t (related
o a maximal speed of 2 m/s),1 and a corresponding lower bound

rGPS > (2 m/s)(�t − 100 s) (red lines in Fig. 3), a consistent relation
etween �rGPS and 〈�rPDR〉 is seen. In that time delay range, low
rGPS correspond to low 〈�rPDR〉 (blue), intermediate �rGPS corre-

pond to intermediate 〈�rPDR〉 (green), and large �rGPS correspond
o large 〈�rPDR〉 (yellow).

We  can thus focus on time delays �t  between �tmin and �tmax

or estimating the dependence of the average 〈�rPDR〉 on �rGPS. The
esult is shown in Fig. 4. As expected, 〈�rPDR〉 increases approx-
mately linearly with �rGPS, indicating a quite reliable estimation

f traveled distances by the PDR up to about 300 m (or about 2 min).

1 The maximal speed of 2 m/s  corresponds to fast walking. Faster motion did
ardly occur during the data recording, hence larger GPS-based velocities are
ttributed to errors in GPS (reference) localization, and the corresponding data are
gnored. We  do not set a lower bound for the allowed velocities, however (see also
ig. 3, where velocity corresponds to the slope of the line).
tional Science 6 (2015) 1–10 3

The fit in the double logarithmic plot (dashed line) has in fact a unity
slope, but a pre-factor slightly smaller than unity:

〈�rPDR〉∼0.9�rGPS. (1)

This result indicates that the calibration of the distance mea-
surements of the PDR could (using the given devices) be improved
by increasing all distances �rPDR by approximately 10%. However,
this slight distance underestimation is surprisingly independent of
the reference distance �rGPS, at least in the considered range from
5 to 300 m.  We  note that hardly any longer straight-path motion
occurred in our experiment (see Fig. 2).

Besides this systematic deviation of the average 〈�rPDR〉 from
�rGPS, random (statistical) deviations occur in each case, which
are characterized by the standard deviation (fluctuation, statistical
error bar)

�PDR =
√

〈�r2
PDR〉 − 〈�rPDR〉2. (2)

The quantity �PDR characterizes the reliability of the PDR, since it
measures the variation of the subjective distances �rPDR obtained
for each objective distance �rGPS. Our result is shown in Fig. 4 by the
red data points and the corresponding power-law fit. Specifically,
we find

�PDR∼4.3 m(�rGPS/m)0.23 (3)

(red fit in Fig. 4).
The slope of the fit, i.e. the power-law exponent 0.23, is quite

noteworthy. This value indicates that localization errors increase
with traveled distance �rGPS and thus with time (assuming approx-
imately constant velocity). This increase is much less rapid than
expected for a random walk, i.e. if random uncorrelated errors
were accumulated. If that was  the case, an exponent close to 0.5
should be observed. The much smaller experimental result indi-
cates that errors are anti-correlated in time, so that large increases
in the total error are partly compensated later. The behavior of the
PDR could thus be described by an anti-correlated random walk –
a sub-diffusive process.

Specifically, random error vectors ı�ri for each time step i are
accumulated to obtain the total error vector ı�r(t) of the position
estimate at time t, so that the difference between the subjective
position �rPDR of the agent (with respect to the origin) and its objec-
tive position �rGPS is

ı�r(t) = �rPDR(t) − �rGPS(t) =
t∑

i=1

ı�ri. (4)

The time series of error increments (ı�ri) must be anti-correlated in
time in order to achieve a sub-diffusive behavior of the accumulated
error.

In the following, we  will focus on the standard deviation s(t) =√
〈(ı�r)2(t)〉 of position estimates, assuming that there is no bias in

the position estimates, i.e. no trend in ı�r(t), so that the expected
value remains 〈ı�r(t)〉 = 0. The experimental results for �PDR shown
in Fig. 4 motivate a time dependence of s(t) following approxi-
mately

s(t) =
√

〈(ı�r)2(t)〉 =
√

〈(ıx)2(t)〉 + 〈(ıy)2(t)〉∼t˛ (5)

with 0 <  ̨ < 1. Here,  ̨ < 1/2 represents anti-correlations (partly self-
compensating errors of the PDR) and  ̨ > 1/2 represents positive
correlations (stronger accumulating errors). Note that the experi-

mental power-law exponent  ̨ = 0.23 from Fig. 4 may  be inaccurate,
in part because data from only a single experiment is available.
Therefore, we will keep  ̨ as a parameter in the following and
develop a theory that works for all values of  ̨ between 0 and 1.
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Fig. 5. Time dependence of (mean-field) localization error for individual (not col-
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Finally, then, we have to deal with the finite systems, where
aborating) PDRs following Eqs. (5) and (6) with  ̨ = 0.1 (dashed line), 0.23 (thick
ine), 0.35 (dotted line), 0.5 (thin line), and 0.65 (dash-dotted line). In all cases, the
ocalization error does not remain finite asymptotically for t→ ∞.

n the agent based model presented later,  ̨ will be fixed at 0.5
regular random walk).

. Analytical models for individual and collaborative PDR
ystems

Now we can turn to the characterization of localization systems
sing PDRs. We  define a system of N pedestrians moving randomly

n a large restricted area (e.g. a large room) of size L × L with an
verage speed of v. Each pedestrian is carrying an AmI  device with

 PDR system tracking the position of the pedestrian. Initially (at
 = t0) each device “knows” the exact position. Due to measurement
naccuracies, the error in the estimated position of each pedestrian
ncreases with time. Since we aim at a mean-field theory for the
ependence of these errors on time and other parameters, we disre-
ard the specific characteristics of the measurements of the devices
nd we also disregard variations among the pedestrians.

Our main quantity of interest is thus the average localization
rror s(t), which depends on the time t (or, equivalently, on dis-
ance traveled, if a constant speed is assumed). We  assume s(t) to
e identical for all devices. As motivated by the experiment in the
revious section, a natural time dependence of s(t) for individual
i.e. not collaborating) PDR systems is given by Eq. (5). The differ-
ntial equation characterizing the dynamics of s(t) for individual
DRs is thus obtained as

ds(t)
dt

= ˛[s(t)](1−1/˛). (6)

xample solutions for different values of  ̨ are shown in Fig. 5.
Now we can turn to models for collaborative PDRs. We  consider

he collaboration of devices of pedestrians when they come close
o each other. As before, we assume that all agents start moving
and accumulating errors) simultaneously.2

Using a short-range communication, position measurements of
oth devices are shared between them as soon as the persons come
ufficiently close to each other. We  assume that the real distance

 between the devices at the meeting point is negligible compared
ith the accumulated position measurement errors s1(t) and s2(t)

f the PDR devices.
For the first analytical model, let us also assume that the two

evices (or agents) never met  before. This is an assumption of

nfinitely large systems (infinite linear dimension L) with infinitely

any agents N but finite density � = N/L2. In this case, the accu-
ulated measurement errors in both devices, ı�r1(t) and ı�r2(t) as

2 If this condition is relaxed and some agents enter later with a zero error, the
ituation is similar to that of fixed agents discussed below.
tional Science 6 (2015) 1–10

well as their components ıx1, ıy1, ıx2, and ıy2, will be independent.
When the position estimates of the two agents are combined,

xcol = x1 + x2

2
, ycol = y1 + y2

2
, ıxcol = ıx1 + ıx2

2
,

ıycol = ıy1 + ıy2

2
, (7)

the errors of these collaborative position estimates are smaller than
the original accumulated measurement errors. Since ıx1 and ıx2
are independent and identically distributed (iid) random variables
with zero mean, the variance of their average ıxcol, i.e. 〈(ıxcol)2〉,
is lower by a factor of 1/2 compared with the variance of ıx1 and
ıx2, 〈(ıx1)2〉 = 〈(ıx2)2〉 = 〈(ıx)2〉. The same holds for ıy and for the
two-dimensional variance, so that the standard deviation

scol(t) =
√

〈(ıxcol)
2〉 + 〈(ıycol)

2〉 =
√

1
2

〈(ıx)2〉 + 1
2

〈(ıy)2〉

= 1√
2

s(t) (8)

decreases by a factor of 1/
√

2 upon collaboration.3

Hence, the change in the standard deviation s(t) upon each col-
laboration event is scol(t) − s(t) = (1/

√
2 − 1)s(t). To include the

collaboration events in the theory, we introduce the parameter
tnew col, which represents the average time interval between events
of two PDRs coming close to each other. This parameter can be
approximated by tnew col ≈ �/v, where �=1/(�d) is the mean free
path, v is the velocity, d is the devices’ radio range for proxim-
ity detection (or, equivalently, the diameter of the devices), and
� = N/L2 is the surface density of people (or devices). The approach
thus yields

tnew col = 1/(�vd) = L2/(Nvd). (9)

We note that m = 1/tnew col = vd� = vdN/L2 is the frequency of
proximity events for a given device, i.e., the meeting frequency.
Upon each collaboration event the localization error s(t) is reduced
by (1 − 1/

√
2)s(t); this occurs at a rate of 1/tnew col. The following

differential equation thus describes the time evolution of the error
of collaborative localization in an infinite system:

ds(t)
dt

= ˛[s(t)](1−1/˛) −
(

1 − 1√
2

)
s(t)

tnew col
. (10)

This equation can still be solved analytically. Fig. 6 shows plots of
solutions with different parameters  ̨ and tnew col. If the collabora-
tion between the PDRs is switched on later (at t = 3 in the example),
curves like those shown in Fig. 7 are obtained.

The asymptotic value smax of s(t) for large values of time t (sat-
uration level) can be defined and analytically calculated by setting
the time derivative to zero in Eq. (10):

˛s(1−1/˛)
max =

(
1 − 1√

2

)
smax

tnew col
, (11)

so that

smax =
(

˛tnew col
√

2√
2 − 1

)˛

. (12)

The asymptotic values smax are also shown in Fig. 7. Note again,
however, that this result holds for infinite systems only.
the same two  PDRs will meet several times. For convenience,
we employ a second time parameter trep col, which represents

3 Note that 〈ıxi〉=0, since we assume the absence of a bias, and all agents have accu-
mulated errors of the same magnitude, i.e., 〈(ıxi)2〉 = 〈(ıx)2〉. The standard deviation,
which is the square root of the variance, decreases by the factor 1/

√
2.
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Fig. 6. Time dependence of (mean-field) localization error for collaborating PDRs
following Eq. (10) with  ̨ = 0.1 (dashed lines), 0.23 (thick lines), 0.35 (dotted lines),
and 0.5 (thin lines) as well as tnew col = 1 (black), 3 (red), and 10 (blue). In all cases,
the  localization errors are smaller than those without collaboration (see Fig. 5) and
remain finite asymptotically. The values for t→ ∞ are shown by short line segments
to  the right-hand side of the right axis. (For interpretation of the references to color
in  this figure legend, the reader is referred to the web version of the article.)

Fig. 7. Time dependence of (mean-field) localization error for collaborating PDRs
following Eq. (10) with  ̨ = 0.23 and tnew col = 0.5, 1, 2, 3, 5, 10, ∞ (from bottom to
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Fig. 8. Comparison of the time dependences of (mean-field) localization errors for
an  individual PDR (thin line, Eq. (6) with  ̨ = 0.23), and collaborating PDRs in an infi-
nite system (thick line, Eq. (10) with tnew col = 1), in a finite system (dashed line, Eq.
(14) with N = 10, tnew col = 1, trep col = 5), and a finite system with one fixed agent (dot-
ted  line, Eq. (16) with M = 1 and tfixed = 10). A finite asymptotic value is reached in the
second and in the forth case. The wiggling of the dashed and dotted lines is caused
by  the initial conditions of the corresponding time-delayed differential equations,
since a fixed time delay trep col = 5 is assumed. Under a more natural assumption of

ther assumptions (in particular, to map  the area between the
op;  tnew col =∞ is the case without collaboration). The parameter tnew col from Eq. (9)
ncludes the density of agents �, the speed of the agents v, and the radio range of
he devices d. The communication between the PDRs was suspended before t = 3.

he average time interval between repeated meetings (and hence
ollaboration) of the same two persons (and PDRs). Usually,
rep col � tnew col, and thus

rep col ≈ Ntnew col or trep col ≈ (N/2)tnew col (13)

eem to be reasonable approximations.
If the same two PDRs meet again, their errors are not completely

ndependent. Instead, only additional errors accumulated after the
ast meeting will be independent. Therefore, we must replace s(t) in
he second term of Eq. (10) by a term approximating this additional
ccumulated error, i.e. s(t) − s(t − trep col). This is a rather conser-
ative approximation, becoming more exact for smaller values of
rep col. It yields the following time-delayed differential equation for
he collaborative localization in a finite system:

ds(t)
dt

= ˛[s(t)](1−(1/˛)) −
√

2 − 1

tnew col
√

2
[s(t) − s(t − trep col)], (14)

here the initial condition s(t) = 0 holds for all t ≤ 0.
Note that this equation can no longer be solved analytically. A

onstant level smax is no longer reached in this case, and the phase
ransition thus disappears. The growth of s(t) as function of time is

elayed (compared with the individual PDR system) but not asymp-
otically limited in the finite system. Fig. 8 compares a numerical
olution of Eq. (14) with the corresponding exact solutions for the
revious model versions.
randomly varying time delays for each agent, the curves would be smoothly increas-
ing also around t = 5 and 10. The differential equations have been solved analytically
and/or numerically using Mathematica [6].

The phase transition toward an asymptotically constant regime
can however be restored if we assume that there are a few immo-
bile devices in the room. Since immobile devices do not change
their position, they do not need any PDRs and always keep an exact
knowledge of their position. If the number of such fixed devices is
M, the time

tfixed ≈ (M/N)tnew col (15)

can describe the mean time interval between two events that a
specific person (or PDR) comes close to such a device. Each time
that happens, the localization error of that person can be reset to
0. We  can thus assume an additional mean error decrease rate of
s(t)/tfixed, yielding

ds(t)
dt

= ˛[s(t)](1−(1/˛)) −
√

2 − 1

tnew col
√

2
[s(t) − s(t − trep col)]

− s(t)
tfixed

. (16)

This differential equation surely yields a constant asymptotic value
for s(t) again, as it can be solved analytically in full analogy with Eq.
(10) if the second term on the right hand side is disregarded. How-
ever, disregarding a negative term can only increase the localization
error. Therefore, we see that even a single immobile device (one
single fixed point) is sufficient for restoring the phase transition
toward the regime with a constant asymptotic localization error in
the limit. Fig. 8 also compares a numerical solution of Eq. (16) with
the corresponding solutions for the previous model versions.

4. An agent based model for collaborative PDR systems

We also wanted to approach the problem from a disaggregated,
low level perspective, to understand:

1 The behavior of finite systems at finite times under various fur-
dotted and dashed lines of Fig. 8, which is inhabited by most
systems).

2 The effect of realistic meeting conditions, i.e. of inexact meetings
represented by meeting diameter as a parameter.
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Fig. 9. T

 The effect of correlations and their change as a function of system
size.

We developed an agent based simulation model for the col-
aborative PDR localization process. Agent based models tend to
ffer a rich, entity-level, causal perspective where parameters can
e heterogeneously, individually defined and manipulated. This
akes them an ideal counterpart to higher level aggregate mod-

ls such as differential equations to test the underlying theories
n a minimalist, reality-close setting. Our model was written in
he freely available agent based modeling (ABM) and simulation
nvironment NetLogo ([7], provided by Northwestern University)
hat provides high level tools for fast model development and
ntuitive experimentation. The model can be run interactively
rom the GUI or in a “headless” mode from command line for
arameter sweeps and analysis. The program code has been made
ublicly available in the open source NetLogo Models Library
http://ccl.northwestern.edu/netlogo/models/, for the model GUI
ee Fig. 9).

The model uses a population of agents (of size N) that navigate
n continuous two-dimensional space4 of size L × L. Time goes in
iscrete steps. Each agent possesses a global position vector (xg(t),
g(t)) (known to the observer) and a local “subjective position”
ector (xl(t), yl(t)) (known to the agent). Agents perform regular
andom walk as allowed by the topology (which can be a torus,
quare, or a walled structure of streets or offices – the interactive
odel includes hand-tools for the drawing of these, or to import a
aze). Note that this is a simplification that however (according to

ections 2 and 3) overestimates localization error.
When an agent is moving, its global position will be updated

ccordingly. Subjective (local) position is also updated, using two
inds of errors in every step: a systematic bias b (positive or neg-
tive) of the step size estimate (as a model of PDR based step
alculation) and a random step uncertainty p (both defined as a vari-

ble and testable parameter). When performing random motion,
gents can turn by a degree specified as a parameter. Although dif-
erent values of this parameter yield visually different behaviors,

4 NetLogo functions as a cellular automaton composed of discrete patches yet
ermitting continuous positions [8,9].
del GUI.

the model is essentially non-sensitive to this parameter so we omit
its further discussion.

Agents can meet. Meeting is understood here as the event that
agents are “close to each other”, i.e. detected within a range of each
other determined by a parameter specifying meeting diameter (or
radio range). Note that if the meeting diameter d (from Section 3)
is set to d = 0, then agents can never meet as their positions are
continuous and represented as real numbers that have a negligible
chance to match up exactly. Upon meeting, agents exchange infor-
mation on their subjective position, and update their estimate by
forming the average of the two  subjective positions. If two  agents
i and j meet, the new subjective coordinates will be computed as
xli(t + 1) = (xli(t) + xlj(t))/2, and similarly yli(t + 1) = (yli(t) + ylj(t))/2.

We have built and tested two  variants of the model, where the
subjective position is either updated only for the active agent or
for both agents. The active agent is the one having a current CPU
slice, which is usually a well-defined entity in any ABM model. The
process was essentially non-sensitive to this difference. Agents may
also begin with a nonzero initial position error I = s(t0) (using the
notation from Section 3). A certain number M of agents is allowed
to “know” its exact position in every step (fixed agents). Agents can
be initiated at the same initial point or randomly dispersed in space.

In interactive experiments using the model GUI, a few simple
facts can be readily observed. An all-important system parameter
is meeting frequency m,  which is an emergent result of the num-
ber of agents N, the meeting diameter d and other factors including
the exact topology and similar to 1/tnew col = vdN/L2. Using intuition,
meeting frequency can be expected to give the most sensitive con-
tribution in the model. Further, we  can readily note that a nonzero
initial position error can never disappear, unless a proportion of
agents is well-informed. This is also expected, because in lack of
external information the subjective positions can never improve
beyond the best available initial estimate. Increasing the meeting
diameter d increases meeting frequency (and hence the chance to
collaboratively improve the position estimates) but lowers the pre-
cision of every meeting at the same time, hence compromising the
improvement of the new estimate, and thus leading to a trade-
off. Understandably, higher population numbers tend, in general,

to also lead to higher meeting frequency and thus (all other things
equal) to a better localization. Mapping these trade-offs was  one of
the important tasks of parameter sweeps. Further parameters such
as turning, topology, the initial positions of the agents, and other

http://ccl.northwestern.edu/netlogo/models/
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Fig. 10. Parameter sweep results: average error s(t) at t = 5000 versus (a) meeting frequency m and (b) number of agents N.

Table 1
Parameter intervals and values tested.

Variable Initial value Step size End value

Meeting diameter d 0.08 0.02 1.0
Step uncertainty p 1 1 10
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ide factors have a negligible or zero effect and will thus be omitted
rom the detailed analysis below (Table 1).

We  performed parameter sweeps using NetLogo’s built-in
ehaviorSpace module in the headless mode using 24 AMD  Opteron
348 cores at 2.8 GHz and 64 GB of RAM. Results were analyzed
obtaining statistics and visualization) using the R statistical pro-
ramming language/environment. Each test was run for 1000
onsecutive time steps (our statistical analysis used all generated
ata; the time plots show the first 5000 steps), and for each tested
arameter combination 10 different random seeds were applied.
e tested the system with and without collaborative information

xchange, the former represented by the finite nonzero meeting
iameter d = 0.08 and similar. In the following we  use M = 0 and I = 0
o test the most interesting case where the asymptotic behavior is
ot well understood in the analytical model.

For the meetings regime (i.e. when the collaborative localiza-
ion was turned on at various m, p and N values) Fig. 10 shows the
uantitative relations between the average localization error and
eeting frequency (Fig. 10(a)) viz. the number of agents (Fig. 10(b)).
s also expected, there is a gradual yet significant decrease in the

ocalization error s(t) (in both cases taken after 5000 steps) as a
unction of both meeting frequency and the number of agents.

The main result is best presented in time plots. Fig. 11 shows
000 different runs using values taken from the parameter inter-
als indicated above and N = 400. Colors (from ochre to pink to
lue) indicate distance from a virtually “non-meeting” situation
m = 0.04, ochre) to that of frequent meetings due to a large meet-
ng diameter (d = 1.0, blue). Note that many intermediate curves are

asked out by the overplotted curves that represent the higher val-
es (pink and blue; with blue being the highest). Nevertheless this
oes not interfere with the result. Although some outliers exist,

t is well observable that the upper end of the meeting diame-

er scale, represented as pink (and blue) values, yield “flat” lines
n the time plots, indicating that average localization error stays
early constant and does not grow after reaching a (relatively low)
Fig. 11. 1000 time plots at various values of the meeting diameter d at N = 400. For
explanation of colors, see text.

maximum in the studied time interval. By contrast, in those situ-
ations (ochre) where meetings hardly, if at all, occur we  observe a
continual divergence of the average error term s(t).

For a more advanced visualization, we  also produced an inter-
active 3D plot of the results, an OpenGL object that can be mouse
rotated as well as zoomed. Below we  include a snapshot (Fig. 12(a))
showing average localization error s(t) versus meeting diameter
d and step uncertainty p. The transition is visualized on another
3D plot showing average error s(t) versus time for the meeting/no-
meeting regimes and parameter m (Fig. 12(b)).

In short, for different assumptions our agent based model is
still found to justify the claim that there is an important transition

between the meeting and non-meeting regimes. Without meet-
ings the associated updating of the subjective position estimates
is lost, and the error s(t) for the position estimate diverges in the
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ig. 12. OpenGL snapshots. Average localization error s(t) in different comparisons
 at N = 400.

BM model, whereas by introducing the meetings (together with
heir information exchange of the subjective positions and the con-
ecutive computing of the new estimates) we can keep this error
ssentially constant despite the finite size of the system for large N.
he exact error value s(t) depends on many parameters including
eeting frequency and the number of agents. A choice of N in the

undreds is realistically high for a population of pedestrians using
n application that provides a collaborative localization service.

Finally, we turn to the study of correlations. How is it possible
hat despite the finiteness of the systems we obtain good results?
ote that – after clarifying the effect of N on s(t) in Fig. 10(b) – we
ave mostly studied large, if necessarily finite, systems.

Do correlations decrease with systems size? Indeed they do,
s shown in Fig. 13(a). The figure shows entire-run correlations
Pearson correlation, results represented as points) between the

ocalization error terms s(t) in the ABM model, averaged for 10 runs,
etween t = 0 and t = 1000. For small values of N, fluctuations can
e seen despite the averaging as random effects are amplified due
o the few meetings among few agents. But the overall tendency
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Fig. 13. Error correlations versus (a) number of agents N and (b) fraction r of realized
rsus a meeting radius R = d/2 and step uncertainty p at t = 5000 and (b) versus d and

is clearly visible, especially if Lowess interpolation (solid line) is
added. The correlations decrease with increasing N and reach very
low levels; the value at N = 1000 is 0.004. Therefore, with large N
the chance that two error terms are correlated becomes negligible.

This phenomenon further raises the question of meeting fre-
quency and “re-meeting” as the source of correlations. How often is
re-meeting expected? The frequency r of re-meeting between two
selected agents can be empirically approximated as the fraction of
realized meetings in a given interval against the number of possi-
ble meetings N2. We  note that r corresponds to N/trep col with trep col
from Eq. (13), since trep col is the average time interval between the
re-meetings for a selected agent. While we used a constant value
(independent of N) for the re-meeting frequency r in the analytical
model, Fig. 13(b) shows that r is linearly decreasing with N (from
0.64 to 0.55) in the agent-based model simulations. In other words,

we see that uncorrelated random walks do not produce “enough”
meetings for them to be correlated as N grows, since the number of
possible meetings goes up radically (with N2) and thus the fraction
of meetings decreases. As a result, even for systems of realistic size
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 meetings over possible meetings N2. Each point summarizes 10 different runs.
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with hundreds of agents) the correlation problem can safely be
eglected and thus the behavior of the system approximates that
f the infinite case.

. Conclusion and outlook

In this paper we have derived different models for collaborative
ocalization. In particular, using a mean-field model we  have char-
cterized the increase of the localization error of an individual PDR
y an experimentally obtained scaling exponent. When the AmI
ystems of several agents can interact, they can increase the accu-
acies of their PDR systems by collaboration. We  have shown that
he localization error remains asymptotically finite if the system is
nfinitely large (i.e. agents always continue to meet other agents
hey never met  before) or if there is at least one stationary agent
ith constantly zero localization error. While the analytical solu-

ion of the mean-field model was possible in the case of infinite
ystems, the time-delayed differential equation for the finite sys-
em could only be solved numerically. It was found that, in these
ime-delayed finite systems, as was the case with individual PDRs,
he localization error does not approach a constant value if no fixed
well-informed) agents are applied.

To test how serious this restriction is in practice, we  have per-
ormed additional numerical experiments in an agent-based model.
he model studies the effect of system size (i.e. the number of
gents), the effect of realistic (imprecise) meetings and the role of
orrelations. We found that in finite yet sufficiently large systems
N ≈ several hundred) under realistic conditions, the localization
rror remains sufficiently small over time. We  can thus conclude
hat the approach is viable and can produce good localization
esults under a wide range of conditions. Further experiments, not
iscussed in this paper because they add no relevant details, indi-
ate that (despite a different spatial scaling [10]) the same applies if
gents navigate in mazes or on maps, as opposed to free navigation
n barrier-free two-dimensional space as in the results presented
ere.

The collaboration approach might be very useful not only for
edestrian localization in buildings and in crowds, but also for

ncreasing the accuracy of car localization on roads with intense
raffic, where accurate localization information is essential for indi-
idual traffic guidance systems that should know in which lane a
river is found (where accuracy required beyond that of GPS infor-
ation).
Further, we maintain that collaborative localization also

resents a baseline case for more general collaborative knowledge
usion (where both present a ground case for complex adaptive sys-
ems). What essentially happens in collaborative localization from

 more abstract viewpoint is that the agents exchange their knowl-
dge in order to achieve an advanced knowledge status together,
ollectively, one that would not be achievable individually, and
chieve this status without any prior planning or coordination of
he agent-to-agent (i.e. peer-to-peer) information flow. Knowledge
n this simplest case is signified by that of the belief in a (subjec-
ive) position. We  believe the same principle can be generalized to
nclude more general knowledge systems, the exploration of which
s left to future work.
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Appendix

See Table 2.

Table 2
Table of symbols.

Symbol Meaning Symbol Meaning

N Number of agents L Linear system size
x,  y Spatial coordinates �r Position vector
t,  t(i) Time, time instance �r  Distance
s(t)  Average

localization error at
t

� Standard error of
�r

l  Mean free path bw.
meetings

m Meeting frequency

�  Density of agents
(= N/L2)

M No. of fixed
(“well-informed”)
agents

p  Step uncertainty d “Radio range”, i.e.
diameter of sensing
proximity
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