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Abstract
We study situations where (such as in a city festival) in the case of a phone signal outage cell
phones can communicate opportunistically (for instance, using WiFi or Bluetooth) and we want
to understand and control information spreading. A particular question is, how to prevent false
information from spreading, and how to facilitate the spreading of useful (true) information?
We introduce collaborative knowledge fusion as the operation by which individual knowledge
claims are “merged”. Such fusion events are necessarily local, e.g. happen upon the physical
meetings of knowledge providers. We study and evaluate different methods for collaborative
knowledge fusion and study the conditions for and tradeoffs of the convergence to a global true
knowledge state under various conditions.

Keywords: knowledge fusion, agent based simulation, crowd control, embedded intelligence, large-scale

systems

1 Introduction

Managing large crowds of people at public events and in urban areas is a complex and highly
dynamic problem. This involves an early detection of potential events of common relevance
(including security events) and the means to communicate these events with the crowd in an
efficient and timely manner. Over the past years, we have developed a smart-phone based
crowd management system, which analyzes smartphone sensor data voluntarily contributed by
visitors of public events and creates a real time overview about crowd conditions [5, 3]. The
system was tested in various real life situations such as the Zurich festival of 2013 [3]. A key
concern that has emerged during the above deployments was the ability to deal with network
outages.

In recent work [1] we thus follow a basic opportunistic networking approach by making
use of the smartphones’ built-in WiFi hotspot functionality which in combination with the
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devices switching between access point and client modes facilitates the propagation of messages
on a multi-hop basis in such a case. We presented a large-scale simulation [4] based on a
dataset consisting of movement traces from 28.000 people (recorded at the Zurich city festival
mentioned above). Using our simulation, the influence of various parameters on the system was
investigated and the random mode switching strategy could be optimized.

In this paper we go an important step further and ask, by using further large-scale sim-
ulations, what happens if information has no single entry point but individual persons start
spreading their own messages. We want to study the possibility of self-organization of informa-
tion in such systems into coherent global knowledge states but also the possibility of information
control. Messages may contain wrong or false-alarm information, and it can be vital to make
sure that such messages do not spread into the entire system, whereas in cases where informa-
tion is useful we want to facilitate spreading. We suggest to grasp an essential factor in the
“quality of information” (such as its truth content) and we will examine cases where informa-
tion with different quality is locally introduced in the system. We study how that information
can spread but also how the spreading depends on the rules of a local interaction.

The concept that makes the idea work is that of collaborative knowledge fusion. This will
be understood as the operation by which individual knowledge claims are “merged” so that the
fusion events are local, e.g. they happen upon the physical meetings of knowledge providers.
We study and evaluate different methods for collaborative knowledge fusion and analyze their
consequences, and study the conditions for convergence to a global true knowledge state in
the function of various conditions. We introduce and study 3 different local algorithms for
collaborative knowledge fusion and compare them for adequacy and efficiency.

Note that the notion of “quality of information” as used here is quite general and goes
significantly beyond crowd safety and control, opening a way towards advanced smart city
applications where crowdsourced information is used to build and maintain a global distributed
knowledge base of any kind, such a movie or restaurant database etc. [6, 2].

2 Information Spreading Without a Signal

Modern smartphones have a built-in WiFi-hotspot functionality that can be used if signals
are out. The underlying principle is that, if a certain amount of devices take over the role
as hotspots and the others are trying to connect to those hotspots, information can be ex-
changed between the connected devices via the micro-network of the hotspot. If these modes
are switched periodically, then information can be propagated to all participating devices (a
recent implementation is FireChat [8]).

Figure 1: Spreading without a signal: opportunistic communication among mobile devices.
Left: initial position (dots denote messages). Right: position after one iteration.
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In [1] we introduced a mode switching strategy based on node mobility. We showed that
using this strategy, information is spread with a low amount of devices acting as access points,
and at a greater speed compared to a random mode switching. Using our simulation model,
various crowd situations could be studied and different communication algorithms tested.

However, such mode switching opportunistic communication heavily relies on a trust about
the functioning of the nodes. Every node is assumed to be an idealized agent that communi-
cates information faithfully and does not start to spread own messages of unknown quality (for
the quality of information, see below). Hence, a critical next question is to study similar op-
portunistic communication systems but where these overly optimistic assumptions are relaxed.
That will be the goal of the subsequent sections.

Figure 2: Simulation using a GIS shape file for structuring pedestrian motion (Zurich example).

3 Knowledge Fusion to Collaborative Knowledge Fusion

Knowledge fusion (KF) is an operation by which different knowledge claims from multiple in-
formation sources are merged to obtain a single knowledge claim with optimal properties. The
best known example is based on using binary classifiers (where knowledge is encoded as the
probability p of a 0− 1 classification). Binary or binomial classification is the problem of clas-
sifying (partitioning) the elements of a given set into two groups on the basis of a classification
rule. Classification decisions are thus the simplest case for representing knowledge, and making
yes/no decisions is a ground case.

The KF problem for binary classifiers, simplified, sounds as this: given n different binary
classifiers, define a new one which is at least “as good” as the best among the n. In other words,
KF is a (usually variable) mapping from (p1, p2, . . . pn) to p′ where p′ marks the classification
by the new synthetic classifier.

Traditional KF assumes informational completeness (i.e. that the complete set of alterna-
tive knowledge claims is permanently available and accessible). Also, no a priori limits on
computational resources are set – although KF methods are usually learning methods with a
carefully selected computational complexity, yet this does not exclude that in practice they can
be computationally intensive. However, for this kind of KF off-the-shelf methods exist [7] that
ensure fast and efficient computation in the face of problem size n as well as optimality in terms
of the quality of obtained fusion knowledge.

By contrast, we suggest studying collaborative knowledge fusion (CKF) here. CFK is un-
derstood [1] as a version of KF where fusion events are local, e.g. happen upon the meetings of
individual knowledge providers, and global fusion happens due to the collective (hence “collab-
orative”) interaction dynamics. As there can be many individuals in a population, we are also
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facing the problem of information propagation under the ad-hoc interactions. CKF is incremen-
tal in that it proceeds forwards in a step-by-step fashion and the entire information set is never
simultaneously available. In our context we will furthermore assume that only the simplest
local one-step computations are permitted (such as addition, rewriting, etc.) as is typical for
embedded systems of low power and compute resources. Because individual interactions form
its basis, a local interaction rule replaces the global learning rule.

It should be upfront clear that in general there can be no question of optimality for CKF
as understood here. Interaction rules typically use simple heuristics, and not optimality: thus
when analysing CFK systems, we are in fact looking for a good (or best) heuristics for the local
rules.

A key notion that will be helpful is the quality of knowledge state. This notion measures
collaborative fusion. For the purposes of our analysis, it will be assumed that there always
exists a “correct decision”, known to the experimenter yet not known to the agents - a useful
assumption in the training and analysis phase to monitor information spreading (to be aban-
doned in the test phase where a chosen interaction rule is exploited). Without restriction of
generality we will assume that the correct decision is always 0 and that p = 1 implies the cor-
rect decision - for symmetry reasons, choices are equivalent. To characterize the quality of the
knowledge state of an individual agent, we simply compare its decision (made on the basis of
its p value) with the correct decision (i.e. 0). To characterize the quality of the knowledge state
of an entire population, we take each agent’s decision and compare their average with the right
decision. Here we assume that an agent’s decision will be 0 if its p value is strictly larger than
0.5 - remember that by construction, p was the probability of the zero decision. The quality of
knowledge Q of the population is thus a real number between 0 and 1. The average decision
error of a population will be defined as 1−Q.

4 Well-Informed Agents

As mentioned above, the rationale of our approach is to study situations where (such as in
a city festival) in a signal outage cell phones can communicate opportunistically by WiFi or
Bluetooth, and we want to understand and control the information spreading. A particular
question is, how to prevent false information from becoming ubiquitous, and how to facilitate
the distribution of true and useful information?

We will assume in the following that some (zero or nonzero proportion) of the agents can
be “well-informed” (well-informed agents, WIAs), and remain so all along in a given simulation
run. A well-informed agent is one that makes the right decision at p = 1 and also “knows”
(represents) that that is the right information1. While WIAs also undergo meetings and inter-
action, and thus enter the exchange of information, we will nevertheless assume that the WIAs’
knowledge is never updated (based on the fact that the WIAs’ knowledge is already known to
be perfect, and cannot get any better). WIAs are, therefore, reliable and permanent sources of
information - introduced by hand at the beginning or in an emergent fashion dynamically.

Intuitively, WIAs play an important role in the knowledge dynamics and influence con-
vergence towards high quality knowledge states in CKF – an intuition to be tested in the
subsequent simulations. Can WIAs stop the spreading of false alarms in a crowd to avoid panic
and catastrophy? If so, how many WIAs will be needed, and where lie the tradeoffs, if any?

1This is similar to the famous KK rule in the modal logic of knowledge by Hintikka.
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5 Incremental Fusion: Three Model Variants

We have developed a large-scale agent based simulation framework that forms the basis of the
following experiments (referred to hereinafter as “the model”). The model uses a population
of agents (of size N) that navigate in 2-space. Each agent possesses a position (known to the
observer) and performs random Brownian motion allowed by the topology (torus, square, or a
walled structure of streets or offices - our interactive model framework offers tools for hand-
drawing the latter, or for importing a maze map or a GIS-based street shapefile). When an
agent moves, its position is updated accordingly. The agents’ meeting is understood as an event
when agents are found in the vicinity of each other within a meeting radius d. (Note that at
d = 0 the agents can no longer meet, positions being represented as real numbers that have a
negligible chance to match up exactly). Upon meeting, agents exchange information.

Information is represented in the agents as decision probability p (as discussed above). The
model is static: there always exists a fixed “correct decision”, and this decision stays unchanged
within a run. Agents further possess a parameter called experience which is the sum of prior
meetings (i.e. the amount of exposure to other agents and their knowledge claims).

Figure 3: The model GUI for interactive exploration. The model is written in NetLogo and
available from http://ccl.northwestern.edu/netlogo/models/

The model comes with a user interface for interactive exploration, selecting model versions
from a roll-down menu. We tested the model using 3 different local interaction rules (meeting
methods) called (i) quantitative democracy, where knowledge is averaged upon a meeting (ii)
experience takes all, where a more experienced agent (such as a teacher) overwrites the prior
knowledge of the less experienced one (the “student”), and (iii) transitive experience where not
only the knowledge but also experience itself is handed over to the meeting partner (imagine this
such that a student of a guru becomes a guru). In what follows we describe and analyze each
of these model versions with tools that include extended parameter studies. For the algorithm
specification we refer to the self-documenting code available with the model.

Simulations were tested using the following parameters and intervals (Table 1). “Mutual
update” here means whether only the active agent (which is a well-defined entity in an agent
based simulation) is updated at a meeting or both meeting parters are: the model permits
either, and here we assume the second. In terms of calibration, we can conveniently think of a
time step as 0.1s of real time.

All simulation runs were performed from t = 0 to tmax = 10, 000 steps and each parameter
combination was tested using 10 different runs. When zero crossing did not happen, time was
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parameter value range

population N 300 fixed
meeting radius r 0.1 fixed
mutual update yes fixed

initial decision p(0) 0.1 0.1-1.0
percent of WIAs 1 1-10

WIAs’ experience bias 1 1-10

Table 1: Simulation parameters tested.

set to tmax to help visualization. Population number N was kept low for analysis: the system
can be run on hundreds of thousands of agents representing real people.

5.1 Quantitative Democracy (QD)

Under this rule, when two agents meet, they compute and share the average of their knowledge
values: pnew = (p1 + p2)/2.

Clearly, without any WIAs the population using this rule undergoes a random process
towards a convergent end state. The naive expected value of the population’s decision error is
0.5, but this exact value is never realized in an individual run. Instead, every individual run
ends with 0 or 1 as the entire population’s knowledge state flips after a certain time - these
two values are equally probable in the absence of WIAs and the exact value of 0.5 has zero
probability. (At the other extreme, if all agents are WIAs, the population obviously starts from
a perfect knowledge state and remains there.)

Starting from a random population with some WIAs, how many WIAs does it take to get a
“directed process”, where the end value of the population’s decision error is a guaranteed zero,
independently from the initial knowledge quality? Again, it is easy to see that for this one a
single WIA is enough, as there can be no equilibrium state until all agents converge to the WIA
values. Agents no doubt meet sometime, sooner or later, with the available WIAs (whether
there are many or just a few) and from this meeting they gain knowledge (i.e. improve their
knowledge quality) whereas the WIAs are never compromised. Then the agents meet again with
further WIAs and with further updated agents and so on – so the agents continually improve
more and more, in an endless process that necessarily converges to the right decision at p = 1
(the WIA’s value).

The characteristic zero crossing time (to use a statistical physics term, i.e. the time to a zero
error), grows, however, dramatically with the decreasing values of WIA proportions. We studied
this using parameter sweeps, to be discussed next. But before that note that there is a long-
standing memory effect of the initial knowledge state of the population. If the initial knowledge
state is entirely random (i.e. the expected value of p is 0.5 at t0) then the convergence process
is fast in the presence of WIAs. However, if the initial population is extremely badly informed
(p = 0 for the 0 decision) then the convergence to the right decision can be significantly slower.

Figure 4 now shows the effect of WIAs (in the function of their increasing proportion) as
well as the effect of the quality of initial knowledge state of the population. What we can
observe is that that in combination they can lead to a fast convergence in QD to a high quality
emergent knowledge state, and the increasing WIA proportions reduce the standard error of
the convergence time. We further observe that the histogram of p values in the population
(Figure 5) follows a unimodal distribution, i.e. the individual values gather around a mean
value marked as a vertical grey line. The right column corresponds to WIAs at p = 1.
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Figure 4: In QD, the introduction of more WIAs directs the process towards high quality
knowledge states. Using the calibration, 4% WIAs yield a convergence in ca. 7 minutes.

Figure 5: The dynamic histogram of binary classification probabilities under QD (to be com-
pared with EXP and TRAN below).

5.2 Experience Takes All (EXP)

As a first step towards more realistic model versions, we tested an interaction rule “experience
wins”. A simple reputation system is thereby realized, where reputation is simply understood
as the experience of prior meetings. Here the intuitive idea is that, when two agents meet,
the naive agent takes its p value from the more experienced one, i.e. the one that had more
prior meetings before and whose knowledge state thus accumulates information from all the
prior meetings. We can imagine this as a teacher vs. student situation where the experienced
partner (the teacher) hands out information to the less experienced (the student).

The teacher metaphor also helps us understand that, in order to distinguish WIAs from the
other agents and to mark them as teachers, we need to add an initial bias or “experience” to
them – i.e. an a priori trust or reputation at t0 available to the WIAs to give them a kick-start
and initial credibility.

Again, the first fews steps of the analysis are easy. If there are no WIAs or if the WIAs
have no bias then “nothing interesting” can happen. Typically the system again converges to
an average decision error around p = 0.5 – but not to a single coherent decision this time. The
reason is the pullback effect of badly informed but highly experienced agents – informally we
can call them false prophets. Unlike in QD where the p values form a distribution, here any
agent with an arbitrary p value but a high experience can become a center for further spreading.
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Figure 6: The effect of WIAs and “WIAs bias” in EXP. More WIAs reduce individual zero
crossing time, but the average is unchanged: most runs do not converge to a singleton.

Figure 7: The dynamic histogram of binary classification probabilities under EXP (left) and
TRAN (right) showing arbitrary centers of spreading. The right columns shows the effect of
WIAs whose values are copied.

Similarly, then, in a less obvious case, where WIAs exist and an initial WIA bias is added,
we experience that even at high values of this bias the head advantage of the WIAs can slowly
evaporate due to the random effects of meetings and compensated by a higher number of
meetings by some arbitrary, however badly informed agents. In other words, agents may for no
systematic reason randomly accumulate higher experience up to a point that they continue to
spread the wrong decision. As a result, the system can maintain a mixed knowledge state for a
very long time. (Ultimately the entire system must collapse to a single knowledge state again
for equilibrium reasons, since random effects drive it and p = 0 or 1 act as sinks or absorbing
walls. But often the time needed to reach them is not on a practical scale.

Applying more WIAs and/or more bias may, of course, counterbalance this and drive the
system to a right decision or drive it nearer: these quantitative effects are studied in parameter
sweeps shown on Figure 6. It is seen that WIAs or their bias do not change the average process
which shows no convergence in the studied time frame. Also on Figure 7 we see that instead of
a continuous distribution, several single values dominate the system. These values can remain
semi-permanent for a long time under EXP.

5.3 Transitive Experience (TRAN)

Finally, we developed a model variant informed by an idea borrowed from peer-to-peer (p2p)
“gossip” systems [6, 2]. This new variant is the same as the experience-based model, with
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the important exception that reputation (i.e. experience) is transitive here: together with a
knowledge claim, the experience accumulated in the lifetime of the agent is handed over to the
less experienced partner upon a meeting. In other words, and to stay with the metaphor used
above, by meeting with a teacher (and learning from her), we become teachers ourselves (and
by meeting a grand master we become grand masters).

Parameter studies (Fig. 8) show TRAN to be significantly more depedable than EXP and
converging to an end state in a rapid way. The system behaves much as in QD but even faster,
however less predictably so: the cost is several outliers that render an individual application
risky.
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Figure 8: TRAN convergence vs. WIAs; at 4% zero crossing takes 3-6 minutes.

6 Discussion and Conclusions

Bringing results on the same plot (Fig. 9) summarises our findings. In the presence of WIAs,
QD is fair and highly reliable. Using QD as comparison, EXP inhabits the upper and TRAN
the lower region, the latter at the same time being significantly faster and less predictable (as
visible on both Fig. 8 and 9).

We have demonstrated that simple local rules can facilitate the emergence of high quality
global information in collaborative knowledge fusion (CKF) systems. Some of these rules, or yet
others to be studied later, could be used in real-life deployments in the future. The question
remains, however, which of them is superior, and what are the tradeoffs to be considered?
Whereas this current first study cannot reply to all these questions, already some hints can
be formulated. Of the 3 rules tested, TRAN is fastest but QD is most reliable, and both are
superior to EXP. The last one however may preserve diversity. While the focus of the current
paper was on CKF with a high quality emergent global state, other applications might focus
on maintained diversity and heterogeneity.

Further research is needed to compare the tested methods with the p2p “gossip” algorithms
that use an independent sampling of peers (i.e., where ”meetings” happen in virtual space as in
a random graph). For example, independence is known to exclude local clusters as experienced
in EXP and may improve on it. Exploration of these and other possibilities and are left to
subsequent papers.
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Figure 9: QD (blue), EXP (orange) and TRAN (turquoise) in one plot. Best results by TRAN
yet at a high error and outliers. EXP is inferior in all parameter combinations.
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