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Summary
Objectives:The aim of this paper is to discuss how recent devel-
opments in the field of big data may potentially impact the future 
use of wearable sensor systems in healthcare. 
Methods: The article draws on the scientific literature to support 
the opinions presented by the IMIA Wearable Sensors in Health-
care Working Group. 
Results: The following is discussed: the potential for wearable sensors 
to generate big data; how complementary technologies, such as a 
smartphone, will augment the concept of a wearable sensor and alter 
the nature of the monitoring data created; how standards would enable 
sharing of data and advance scientific progress. Importantly, attention 
is drawn to statistical inference problems for which big datasets provide 
little assistance, or may hinder the identification of a useful solution. 
Finally, a discussion is presented on risks to privacy and possible nega-
tive consequences arising from intensive wearable sensor monitoring. 
Conclusions: Wearable sensors systems have the potential to 
generate datasets which are currently beyond our capabilities to 
easily organize and interpret. In order to successfully utilize wear-
able sensor data to infer wellbeing, and enable proactive health 
management, standards and ontologies must be developed which 
allow for data to be shared between research groups and between 
commercial systems, promoting the integration of these data into 
health information systems. However, policy and regulation will be 
required to ensure that the detailed nature of wearable sensor data 
is not misused to invade privacies or prejudice against individuals.
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1   Introduction
1.1  The Rise of Wearable Sensors
A wearable sensor is a small electronic 
device containing one or more sensors 
which can transduce information which is 
related to the device user, the ambient en-
vironment, or the users' interaction with the 
environment (as may be facilitated by RFID 
tags embedded in domestic appliances, for 
example). Common sensors used in such 
wearable monitoring systems include those 
for measuring movement and position [1], 
such as accelerometers, gyroscopes, magne-
tometers, barometric pressure sensors, and 
GPS, or sensors for assessing electrophys-
iological and chemophysiological function, 
or other physiological properties such as 
body temperature. 

One of the oldest and most prolif ic 
wearable sensors is the Holter electrocar-
diogram (ECG) monitor, which has been in 
clinical use since the 1960s [2)]. The Holter 
monitor performs 24-hour ambulatory ECG 
recording for the purposes of capturing 
intermittent cardiac arrhythmias, which 
might otherwise be missed using standard 
assessment practices. The use of this tech-
nology in ambulatory clinical applications 
was made feasible by the invention of the 
solid state transistor, which facilitated the 
miniaturization of the bioamplifiers used 
to capture the ECG potentials, reducing the 

size of the apparatus from its initial weight 
of approximately 40 kg to a device similar 
in size to a smartphone [3].

For the Holter monitor, as for other 
wearable sensors which will be discussed 
hereafter, recent advances in memory 
capacity and miniaturization, low-power 
and high-speed microcontroller design, 
and battery technology, have enabled the 
manufacture of devices which are smaller in 
size, can record more data, and last longer 
than ever before. In addition, the recent 
proliferation of wireless communication 
technologies and continued improvements 
in global communications infrastructure 
have resulted in the ability to wirelessly 
retrieve wearable sensor data, in real-time, 
from almost anywhere in the world.

However, while the aforementioned 
technological advancements have made the 
general widespread use of wearable sensor 
systems a more feasible and practicable 
prospect, the most exciting developments 
in wearable sensor technologies have been 
driven by progress in the design of the 
sensors themselves, and specifically by ad-
vances in microelectromechanical systems 
(MEMS). For example, state-of-the-art 
off-the-shelf MEMS devices can house a 
triaxial accelerometer, triaxial gyroscope, 
and triaxial magnetometer in a low-power 
electronics package measuring only several 
millimeters along each dimension. Similar-
ly, it is possible to measure barometric air 
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pressure and ambient temperature with a 
MEMS device of comparable dimensions. 
While GPS modules are small enough to 
be housed within wearable sensors, and are 
now commonly found in smartphones, their 
size is considerably larger than the MEMS 
devices mentioned above, but still small 
enough to fit inside a typically wearable 
sensor case. Progress has also been made in 
the design of wearable sensing technologies 
for recording clinical measurements; for 
example, ECG biopotentials and respira-
tory movements, using flexible electronics 
mounted on wearable patches.

Ultimately, the availability of such minia-
turized sensors which can continuously mea-
sure global position, altitude, movement, and 
physiological function, will have profound 
implications for how health and wellbeing 
are assessed and managed in the future. 

1.2   Aims
This paper will present the opinions of 
the IMIA Wearable Sensors in Healthcare 
Working Group on the perceived advan-
tages and disadvantages which are likely 
to arise from the widespread adoption of 
wearable sensor systems in the future. In 
particular, a discussion is presented on 
how wearable sensor systems will generate 
data streams with significant heterogeneity, 
sporadicity and volume that transmission, 
storage, organization, interrogation, and 
most importantly understanding these data 
would be considered to fall within the class 
of data analysis problems encompassed 
by the fashionable term big data. Some 
outstanding and anticipated technical and 
social challenges facing the discipline are 
introduced, within the context of big data, 
and in some cases suggested solutions 
to these problems are put forward, with 
the hope of guiding future research and 
development (and possibly governmental 
policy) in this area.

Before proceeding to discuss the big data 
challenges facing the future development 
of wearable sensors systems, the follow-
ing section provides a brief overview of 
some wearable sensor applications, with 
the intention of providing the reader with 
some understanding of the nature of health 

applications for which wearable sensor 
systems are considered useful, ultimately 
adding context to the big data discussion 
which will follow.

2   Applications of Wearable 
Sensors
Ludwig et al. identify six categories of 
services provided by health-enabling tech-
nologies [4], which are listed as follows: (A) 
Handling adverse conditions; (B) Assessing 
state of health; (C) Consultation and edu-
cation; (D) Motivation and feedback; (E) 
Service ordering; and (F) Social inclusion. 
One might suggest that wearable sensor 
systems are most strongly associated with 
service categories (A) and (B). 

2.1   Applications in Reactive 
Healthcare – Handling Adverse 
Conditions
Ludwig et al. subdivide category (A) 
into: (A.1) Manual emergency call; (A.2) 
Automated detection of deviant behavior; 
(A.3) Automated detection of falls; (A.4) 
Automated detection of cardiac emergen-
cies; (A.5) Handling potentially dangerous 
situations.

Subcategory (A.1) represents one of the 
most successful and widely-used wearable 
sensor applications. The most common 
embodiment of this sensor is a small plastic 
waterproof (or water resistant) device worn 
on a lanyard around the neck. If the user is 
concerned for their wellbeing, they can press 
a large button on the front of the device to 
summon help. Pushing the button sends a 
radio signal to a base station phone within 
the home, which places a call over the pub-
lic switched telephone network to a human 
operator at a remote monitoring call center 
who coordinates the response. A number of 
commercial systems are currently offered 
globally by various service providers, in-
cluding Tunstall (UK), Grupo Neat (Spain), 
Philips (Netherlands) and VitalCall (Austra-
lia), and require an upfront installation fee 
and an ongoing subscription fee. 

However, there is a risk that the user will 
not have capacity to press the button if they 
are distressed or injured. For example, fall 
incident rates for those users with dementia 
is more than twice that of normal people of 
a similar age, but these dementia sufferers 
are less likely to have the presence of mind 
to activate the panic alarm when they fall [5]. 

Compliance and usability issues like this 
promote the need for automated algorithms 
to detect adverse situations, without the 
need for users to initiate the request for help. 
Ludwig et al.’s subcategories (A.2-A.5) all 
entail the automated detection of some such 
adverse situations, like a fall, a cardiac event, 
or some other dangerous situation (such as 
a dementia sufferer wandering away from 
home). The scientific literature contains 
many reported algorithms which aim to au-
tomate the detection of falls in the home, pri-
marily using accelerometry-based wearable 
sensors; see Shany et al. [1] and Schwickert 
et al. [6] for a review on fall detection algo-
rithms. However, due to the relative rarity 
of fall events (approximately one in three 
people over 65 years will fall each year) there 
have been very few reports of the testing of 
these algorithms on data from real-world fall 
events; Bagalà et al. provide one of the very 
few reports of algorithmic performance on 
real-world falls, although these fallers were 
suffering a form of Parkinson’s disease, 
hence it is unclear how generalizable these 
results are [7]. This issue of proving efficacy 
of algorithms intended to predict rare events 
will be revisited later in the paper; this is a 
major challenge for scientific researchers 
and a problem from which big data provides 
little respite.

2.2   Applications in Proactive 
Healthcare – Assessing State of 
Health
Category (A) above describes monitoring 
which results in a reactive response to an 
acute adverse situation which has already oc-
curred. The application of wearable sensors 
described by Ludwig et al.’s category (B) 
has recently been attracting much attention 
from researchers. The authors subdivide this 
category to include: (B.1) Recognition of 
unknown diseases and medical conditions; 
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(B.2) Monitoring known diseases; and (B.3) 
Monitoring of therapeutic interventions [8]. 
It could also be proposed here that these defi-
nitions be broadened to include prediction, or 
risk assessment for future health conditions 
or events, such as falls [9, 10].

Using wearable sensors to monitor 
cardiovascular function, physical mobility, 
and activity levels, or the specific nature of 
daily activities in which the user engages, 
it is envisaged that wellbeing may be more 
proactively managed, allowing targeted in-
terventions to be administered at an earlier 
stage [1]. The high frequency with which 
health-related assessments may be obtained 
using wearable sensors (which may even 
deliver continuous signals) is expected to 
enable closed-loop control of health condi-
tions, whereby the outcome associated with 
a medical intervention or change in lifestyle 
is immediately evident and measurable with 
wearable sensors, ultimately improving the 
standard of care achievable. Moreover these 
monitoring approaches could be applied 
for rehabilitation purposes, for example, 
in cardiac rehabilitation in a post-acute 
care scenario, or subsequently for lifestyle 
monitoring and promoting self-care.

3   Big Data Challenges for 
Wearable Sensor Systems
3.1   Wearable Sensors Can Gener-
ate Big Data
Big data is a term describing datasets which 
are large, fast-growing, heterogeneous, and 
contain substantial amounts of noise. The 
term big data may also encompass the new 
analysis methods and technologies required 
to store and understand big datasets [11]. It 
has been suggested that four Vs, volume, ve-
locity, variety, and veracity, should be used 
to describe these qualities of a big dataset 
[12]; here volume relates to the complex-
ity of the dataset, rather than the memory 
capacity required to store the dataset, 
although there is an expectation that both 
would often be correlated. Obviously, the 
classification of a dataset as being big data 
is a relative notion which is determined by 
the current state-of-the-art in data hosting 

and analysis techniques. A fifth V, value, is 
also often ascribed to big data, describing 
the commercial potential data mining such 
large datasets can provide.

Over the past half-decade the potential 
scientific and societal advantages of big 
data utilization have been explored, which 
are partly summarized in reviews in Science 
[13] and Nature [14].

Wearable sensors have the potential to 
generate big datasets. Considering a wear-
able inertial sensor which measures triaxial 
accelerometry, gyroscopy and magnetom-
etry at 100 Hz, and barometric pressure at 
2 Hz, and assuming two bytes per sample 
per signal, this will generate approximately 
156 MB of data per day. Battery power is 
perhaps the most substantial factor limiting 
the volume of data generated by wearable 
sensor systems. There is a trade-off be-
tween transmitting all data to a server and 
preserving battery life. Preprocessing data 
on the sensor to extract salient information 
before transmission will preserve battery 
life, since the amount of data transmitted 
(and hence the duration for which the radio 
is active) is reduced; however, this implies 
that information is discarded in the process. 
If battery life, low-power circuit and sensor 
design, and budding power scavenging tech-
nologies are all improved upon in the future, 
even more data will become available from 
wearable sensors. It should be noted that it 
is still feasible to wirelessly retrieve all data 
if devices are charged daily, but having to 
recharge frequently may reduce acceptance.

With regards to the complexity (which 
is really what is meant by the term volume) 
of the data generated in the above example, 
these sensor signals encode aspects of 
human movement, but simultaneously, and 
at a higher level of abstraction, the users’ 
physical strength and mobility, engagement 
with their environment, and ultimately 
complex aspects of their physical and 
mental wellbeing. The inertial signals used 
in this example are each very different in 
nature, and the inclusion of other sensing 
modalities, such as GPS, audio, camera, 
or ECG, further diversify sample rates 
and data characteristics. In addition, data 
may not necessarily be acquired continu-
ously, but rather (depending on demand) 
sporadically or with non-uniform sample 

rates (due to battery limitations mentioned 
above), adding to the heterogeneity and 
variety of the data. 

It was stated above that wearable sensors 
will generate data which satisfy the first 
three Vs of big data: volume, velocity and 
variety. The fourth V of veracity is also 
relevant to wearable sensor data. There are 
numerous examples of situations during un-
supervised monitoring using wearable sen-
sors when raw signal data can be corrupted. 
Some notable mentions involve poor device 
affixation or failure to wear the sensor when 
recording inertial signals [15], and elec-
trode movement or detachment during ECG 
recording [16]. Verifying the quality of data 
acquired during unsupervised monitoring 
is currently an active research area which 
employs both hardware and algorithmic 
solutions to ensure that poor quality data is 
identified and rejected [17-19]. It remains to 
be seen whether the complex relationships 
and context present in big data sets will 
allow the negative impact of these noise 
artifacts to be further mitigated.

3.2   Data Formats, Communica-
tion, Storage and Management
Wearable sensor technologies are still at a 
nascent point along a trajectory that other 
health monitoring technologies have al-
ready traversed. One of the next steps along 
this path will require the harmonization or 
standardization of data formats towards a 
preferred open data format and the inclusion 
of appropriate metadata to provide neces-
sary context regarding the data acquisition 
and initial analysis. Many current systems 
use proprietary data formats, rather than 
adopting an established open standard, like 
Hierarchical Data Format 5 (HDF5), for 
example [20]. 

However, a more problematic issue re-
lates to the nature of the unprocessed or raw 
data, which is directly generated by various 
wearable sensors. Two devices containing 
the same sensor set may offer up very 
different data which it will claim to be raw 
data. A common example of this has arisen 
in the past for activity monitors. Some older 
activity monitors (e.g., Stayhealthy RT3) 
generate a proprietary measure called an ac-
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tivity count, which is estimated every minute; 
this value counts how often the acceleration 
magnitude exceeded some preset threshold 
in one minute. Difficulties arise when trying 
to compare outputs of various sensors if their 
respective manufacturers use different activ-
ity thresholds, signal processing algorithms, 
sample rates, or filter settings. 

The naïve solution may suggest that 
all devices should record and transmit 
raw signal data at a standardized sample 
rate, without any onboard preprocessing; 
however, this is currently not a universally 
practicable solution, mainly because battery 
restrictions for some applications necessi-
tate preprocessing data on the device for 
data compression and extraction of salient 
information in order to reduce transmis-
sion rates and preserve battery life. Also, 
different applications inherently require 
different sample rates due to the nature of 
what is being monitored. If standards are 
to mandate sample rates and filter settings, 
these should perhaps be application specific.

At a higher level, wearable sensor data 
(and biomedical signal data in general) 
would benefit from an overarching architec-
ture similar to that of Digital Imaging and 
Communications in Medicine (DICOM), 
which standardizes how medical images 
and associated properties (such as patient 
identifiers) can be stored as a digital object 
and communicated over a network [21]. In 
addition to acquired sensor readings, an 
equivalent standard for wearable sensor data 
might encode sensor types, manufacturers, 
models, and other properties which may be 
reprogrammable, such as sample rate, sen-
sitivity and dynamic range, as well as other 
external information, such as device place-
ment location and orientation on the body 
(if known). Some researchers have initiated 
this standardization; for example, see Klenk 
et al. [22] and the EU Framework 7 FAR-
SEEING project. However, these standards 
tend to be steered by the need to advance a 
specific research area, such as enabling data 
aggregation across fall detection research 
studies in the case of Klenk et al., hence 
their standard also makes accommodations 
for the collection of ancillary gold standard 
data regarding fall events, against which 
future automated fall detection algorithms 
will be evaluated.

The major limitation with many data 
encoding schemes for wearable sensors is 
that researchers and industry use their own 
(often proprietary) concepts and terms to 
annotate and give meaning to data (meta-
data). Unless a storage format has been 
designed specifically to capture and hold 
this metadata, then this information will 
commonly be stored separately to the ac-
tual data or may be lost or misinterpreted 
when data are converted or exchanged. 
One recent initiative, with its genesis in 
the VPH-Physiome project [23], proposes 
a BioSignalML markup language to allow 
flexibility and extensibility of data and 
metadata representation and storage for 
biosignals [24]. Crucial to the BioSig-
nalML initiative is that there is no intent 
to specify another storage format. Rather, 
open data and metadata standards, namely 
those from the Semantic Web, are used to 
describe signals in their existing formats. 
Thus the BioSignalML ontology provides a 
universal framework, allowing biosignals to 
be represented, unified, extended and linked 
with other resources on the Web.

Formalizing how wearable sensor data-
sets are stored and communicated will allow 
the pooling of datasets from multiple loca-
tions around the globe. This achievement 
will increase the purity of this data, by 
minimizing the confounding effects men-
tioned above relating to variations in sensor 
types and settings. While the technical and 
logistical issues associated with developing 
standards for wearable sensor data are great, 
they would certainly be considered sur-
mountable. By far, the greater challenge is 
to organize and discover useful information 
within these big data.

3.3   Analyzing Data
Interpreting big data from wearable sensors 
will face many similar challenges that other 
big datasets pose, and perhaps more. 

Firstly, the data is heterogeneous, orig-
inating from different sensing modalities. 
Indeed, these data need not only originate 
from wearable sensors; using wearable 
sensor to complement other health data in 
order to improve clinical decision making 
is likely to be a major incentive for their 

use, and the aggregation of wearable sensor 
data and more traditional health data will 
increase the complexity and heterogeneity 
of the overall dataset. 

Another challenge arises from the po-
tentially sporadic nature of the data. Signal 
processing methods for dealing with non-
uniformly sampled data, specifically data 
containing large temporal gaps, is not well 
developed when compared to the methods 
available for uniformly sampled data; even 
filtering or smoothing nonuniformly sam-
pled longitudinal data to remove noise is 
not a trivial exercise, and interpolation and 
resampling can lead to false confidence in 
parameter values where long periods of 
data are missing; for example, see locally 
weighted scatterplot smoothing [25]. 

Clearly, wearable sensors provide the 
capability to monitor more frequently than 
would currently be achievable, say, by 
visiting the general practitioner (primary 
care physician), for example. Therefore, 
this temporal resolution is definitely seen 
as an advantage of continuous monitoring 
with wearable sensors, as it is unlikely that 
adverse health events will be missed (for 
example, nocturnal cardiac arrhythmias). 
This continuous monitoring is obviously 
valuable in scenarios where it is known 
exactly what the observed pattern indicative 
of failing health is (for example, an easily 
recognized ECG containing an arrhythmia); 
but then that advantage does not need to 
make any use of the capabilities of big 
data, but rather simply requires frequent or 
continuous monitoring. The large volumes 
and complexities of big data promise to 
enable the discovery of new relationships, 
and to do so with high statistical confidence. 
Given that we must mine through big data 
to discover new relationships, in certain 
instances the additional data generated by 
continuous and multimodal recording can 
actually make it more difficult to discover 
the desired relationships between sensor 
readings and health status.

There does not appear to be a good 
consensus on how best to interpret the re-
sulting multiparameter longitudinal records 
generated by wearable sensor systems [8]. 
When it comes to automatically labeling 
a vector of features values indicative of 
health status into a category of wellbeing, 
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statistical pattern classification models are 
mature enough to perform this task well. 
What is often poorly understood, or simply 
unknown, is what are the best features which 
can be extracted from the available sensor 
(or other ancillary health) data in order to 
make this determination of wellbeing; this 
is particularly difficult for wearable sensor 
data, as it is both multidimensional and tem-
poral in structure. Modelling the underlying 
mechanisms which give rise to the observed 
feature values would enable a reduction in 
the complexity of the dataset, and the model 
parameters may in turn be used to infer the 
state of wellbeing of the individual. However, 
due to the highly complex nature of big data 
and the potential disparity between data 
sources, developing a model which would 
explain the observed sensor values, and 
hence reduce the complexity of the dataset, 
is an endeavor likely to enjoy only limited 
success. In such complex scenarios, the last 
resort is to mine through the dataset in the 
hope of finding a relationship between the 
observed variables and some gold standard 
measure of health status. There are, however, 
some serious caveats which should be heed-
ed when this approach is employed.

Successful mining of any dataset, big or 
otherwise, is dependent on the ratio of the 
number of available training examples to the 
number of features extracted. The number of 
potential features which could be extracted 
from any dataset is infinite, so common sense 
and domain knowledge is often used here to 
guide these choices; although for complex 
or novel data sets, little domain knowledge 
may be available to steer feature design. Par-
ticularly for predictive or prognostic models, 
many have erred in the past by overlearning 
on small training sets, generating models 
which perform poorly when applied to an 
independent data set or when deployed in 
the wild [26, 27]. It is tempting to believe 
that collecting yet more sensor data will 
mitigate this risk of overlearning, as we 
have more information about the problem, 
but this would be a false assumption. It is 
most important to maximize the number of 
training examples available. 

Unfortunately, for many (but not all) 
medical research problems, acquiring train-
ing examples for models, be they predictive 
models, risk models, or decision support 

models, is a demanding task. The prohibitive 
cost and technical challenges associated with 
running trials of wearable sensor systems of-
ten limits cohort sizes to the several hundred 
participants. Given that it is often fledgling 
technology companies who are innovating 
in the wearable sensor (and home telehealth) 
space, developing and validating algorithmic 
tools to interpret complex sensor and medi-
cal record data in the face of strict regulatory 
approval criteria burden these pioneers with 
a cost and risk that cannot be sustained given 
the revenues and financial support available 
to the typical start-up company. 

If the event which would constitute a 
positive training example is also a rare event, 
such as an older person falling (given that 
one in three people over 65 years falls in a 
year), then the cohort size and monitoring 
time must both be increased to capture a 
sufficient number of events to obtain statisti-
cal significance and power. This slow rate at 
which gold standard measures of wellbeing 
can be acquired is the bottleneck which will 
impede the full promise of big data use for 
healthcare from being realized, for certain 
applications. 

The solution to the challenge of small 
dataset size in medical research requires 
a consolidated global effort. Data should 
be aggregated on a global scale and made 
publically available using an agreed format 
for data and knowledge interchange, as 
discussed previously; these sentiments have 
also been echoed in a 2009 editorial publica-
tion in Nature [28]. The PhysioNet database 
is an example of one such repository of 
publically available biosignals [29]; although 
data hosted here is publically available, data 
from different studies are not often compara-
ble in structure. Hence, trial protocols should 
be standardized as per the example listed 
earlier for the FARSEEING project. Data 
sharing on this scale will also average out 
experimental bias between research groups 
and avoid the urge to overfit small datasets. 

3.4   Acceptance of Wearable Sensors 
and Ubiquitous Monitoring 
The discussion above has focused on the 
challenges associated with managing and 
interpreting big data generated by wearable 

sensors systems. However, the generation 
of this data has been based on an assump-
tion that wearable sensor technologies will 
achieve widespread acceptance and ad-
herence among potential future users. The 
following sections highlight three primary 
disincentives against the use of wearable 
sensor technologies which may hinder their 
widespread adoption: discomfort and incon-
venience, stigma, and privacy. 

The first two of these disincentives are 
both discussed together in the following 
section, as they are each issues which can 
be largely resolved using good engineering 
design. The third disincentive relates to the 
more philosophical topic of privacy, and is 
discussed in a subsequent section.

3.4.1   Discomfort and Inconvenience, and 
Stigma
The first disincentive relates to the comfort 
and convenience of the device. This involves 
issues such as device size and placement 
location (poor placement and large size can 
discomfort the user), method of affixation 
and associated difficulty in donning and 
removing the device (belt, holster, lanyard, 
adhesive tape, etc.), and requirements to 
remove the device for bathing or sleeping. In 
the specific case of recording biopotentials 
(for example in ECG monitoring or more 
futuristically for mind control-type applica-
tions by way of EEG), attaching electrodes 
in a reliable manner whilst maintaining a 
satisfactory signal-to-noise ratio, remains 
the single biggest limitation. Many of these 
problems can likely be overcome using good 
user-centric engineering design approaches.

The second, distinctly different incon-
venience, relates to stigma (real or per-
ceived) associated with wearable sensors. 
While wearable sensors for exercise and 
activity quantification, such as Fitbit (San 
Franscisco, CA, USA) and Polar monitors 
(Kempele, Finland), are currently in vogue, 
other wearable systems aimed at monitoring 
conditions associated with aging and poor 
health may serve as a stigmatizing label for 
the user and a continuing reminder of their 
worsened physical condition. Again, clever 
engineering design may overcome these im-
pediments, creating wearable devices which 
can be disguised under clothing and which 
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are comfortable and unobtrusive enough that 
the user is not acutely aware that they are 
wearing the device. 

Taking this notion of engineering a con-
venient and inconspicuous wearable device 
to its extreme results in some interesting 
concepts for future monitoring technologies, 
which may serve to make the traditional 
embodiment of a wearable sensor redundant. 
The following paragraphs provide a brief 
digression from the main discussion, pro-
viding a glimpse of these exciting potential 
advances, before returning to the discussion 
of how big data from wearable sensors may 
impact on privacy. 

The most obvious future development 
which could deliver both a convenient 
and inconspicuous wearable device is the 
emerging nexus between wearable sensors 
and smartphones. Smartphones today are 
endowed with an impressive complement of 
inertial sensors, cameras, and communica-
tion connectivity. Given the penetration of 
mobile phones worldwide, the smartphone 
makes for a very attractive platform from 
which to perform health monitoring. The 
major challenge of using a smartphone 
as a wearable sensor to monitor mobility, 
activity and wellbeing, is the likelihood of 
generating poor quality data as a conse-
quence of how the phone is carried (in the 
pocket or a bag) and because the phone’s 
original intended use hinders how it might 
be used as a health monitor; for example, 
using the phone to place a call generates 
movement which may confuse an activity 
monitoring algorithm; or the leads of an 
ECG bioamplifier plugin for cardiac mon-
itoring may impede normal smartphone 
use. It is conceivable that designs similar 
to Google Glass (Google, Palo Alto, CA, 
USA), embodied in a pair of spectacles 
and responding to voice commands, may 
also incorporate other MEMS transducers, 
solving this issue of poor device affixation 
by requiring that the device is consistently 
worn at a comfortable location on the body, 
while also preserving the original useful-
ness of the smartphone as a communication 
device. Furthermore, aggregating infor-
mation from the smartphone as a wearable 
sensor as well as a communication device 
may further richen the complexity of the 
data generated. 

The recent emergence of smart watches 
(such as the Samsung Galaxy Gear, Samsung 
Group, South Korea), which serve as a wire-
less peripheral of the smartphone, mostly 
overcome issues of discomfort and stigma, 
but at the cost of requiring two devices (both 
the watch and the phone), and being affixed 
to the wrist which may introduce significant 
movement artifact as a result of normal 
gesticulation. 

It is also becoming feasible to consider 
implanting monitoring devices within the 
body, which would ordinarily be body-
worn. Implantation solves many of the is-
sues mentioned above, but consequentially 
creates other problems. An advantage of 
implantable monitors is that correct and 
comfortable affixation can be assured; small 
devices may be placed subcutaneously 
under local anesthetic and fixed in position 
relative to the body. The user does not need 
to remember to wear the device and it is 
also hidden from view, which may alleviate 
any concerns regarding stigmatization. In 
addition to the acquisition of commonly 
sensed inertial signals using MEMS sen-
sors, implantable devices better facilitate 
the continuous acquisition of other physio-
logical signals, like ECG, respiration, body 
temperature, and possibly blood pressure. 
This technology has already been somewhat 
realized in cardiac pacemakers which mon-
itor ECG and body movement and pace the 
heart to compensate for increased metabolic 
demand during strenuous activity [30]; 
however, pacemakers are obviously only 
recommendable if there is a medical indi-
cation, and there is no capability for con-
tinuous or voluminous telemetry streams 
originating from the device and transmitting 
to an external data repository. It is this re-
quirement to retrieve the monitoring data 
which is the largest stumbling block for 
implantable health monitors; data must be 
transmitted by radio link across the skin 
barrier, a process which will quickly deplete 
the battery when large volumes of data are 
involved. Given that implantation requires 
surgery, a minimum battery life of perhaps 
ten or more years might be suggested. It 
may be possible to inductively charge the 
battery, or scavenge power from the body 
in order to prolong battery life, but these 
technologies are not yet mature enough 

for this particular application, although 
they are fast approaching maturity [31]. 
Using radio telemetry to retrieve sensor 
data also places limitations on the distance 
over which the data may be transmitted, as 
safe use of radio transmitters within the 
body will require low-power transmission in 
order to avoid tissue damage from heating. 
However, if these technical hurdles can be 
overcome, the volume and quality of data 
obtained using implantable sensors would 
be unprecedented and could revolutionize 
healthcare. Whether people would wish to 
be implanted with sensors may ultimately 
be a personal choice based on the real or 
perceived risk versus reward afforded by 
these technologies; for example, the ad-
vantages may far outweigh the negatives for 
those with dementia or a high risk of falling, 
or those with a genetic predisposition to 
a life-threatening disease, while a healthy 
individual may feel no urge to implant 
themselves with a sensing device.

Another technology complementing the 
future of wearable sensors as a monitor-
ing modality is the smart environment or 
smart home [32]. The smart environment 
also resolves problems of discomfort, 
convenience and stigma associated with 
wearable sensors by removing the need to 
wear any sensor. Environmental sensors, 
such as cameras, motion sensors, furniture 
sensors, etc., replace the single body-worn 
sensor. While not suitable for monitoring 
electrophysiological signals like ECG, 
smart environments perform reasonably 
at monitoring movement, activity and in-
teraction with the environment. Since the 
infrastructure required to create smart en-
vironments is substantially more costly than 
that of most wearable sensors and potentially 
more intrusive, it remains to be seen if the 
advantages provided will offset these costs 
and disadvantages and make it a viable and 
acceptable technology for continuous health 
monitoring in the home.

3.4.2   Privacy and the Quantified Self
The third disincentive to the adoption of 
wearable sensors involves social aspects 
associated with continuous surveillance of 
an individual’s location and state of health. 
Thus far the discussion has largely neglected 
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these issues in favor of exposing the tech-
nical challenges facing the deployment of 
wearable sensors and the interpretation of 
the data generated. The discussion below is 
not unique to wearable sensors, and some of 
these arguments will find analogs in other 
domains where large amounts of personal 
data are collected. 

One prominent question arising is, “will 
people tolerate such intensive monitoring of 
their lifestyles?”. The answer to this question 
depends on the balance of advantages and 
disadvantages associated with continuous 
monitoring of lifestyle and wellbeing. If the 
health benefits are not immediately apparent 
or impactful, the cost to privacy may be too 
substantial to incentivize the widespread 
use of wearable sensor technologies. For 
example, the use of a fall detection sensor 
may be a very attractive technology to an 
older person who has previously fallen and 
was unable to summon help; however, using 
sensors for predictive or proactive healthcare 
monitoring may not carry the same psycho-
logical impetus for the user, as the rewards 
are not immediate, or may simply not be 
apparent in advance. 

Of course, aside from the advantages 
of monitoring, personal acceptance of, and 
motivation to use a wearable monitoring sys-
tem are also influenced by real or perceived 
disadvantages arising from the existence of 
extensive information regarding our life-
styles (which is often trusted to a third par-
ty). One can cynically consider a dystopian 
scenario where increased health insurance 
premiums are quoted to those engaging in 
unhealthy lifestyles, for example, by failing 
to meet minimum recommended exercise 
quotas. There is also the concern of loca-
tion information being abused to facilitate 
criminality, allowing burglars to know when 
people are not home, for example. These 
concerns are not unfounded given that much 
of this personal information will be held in 
cloud storage, where its security is trusted 
to a third party.

As with any emerging and revolutionary 
technology, misuses and risks are expected, 
but ultimately one should remain optimistic 
that the benefits will ultimately outweigh the 
disadvantages. However, to protect against 
such misuses government regulation will 
surely be required to mandate how data can 

be legally used and what punishments are 
appropriate for the various transgressions 
which will inevitably arise. The boundary 
between use and misuse of big data truly is a 
social quandary requiring democratic debate 
to arrive at a consensus of what is considered 
acceptable to the majority.

As a final comment regarding what has 
motivated the development of wearable 
sensor systems, and other such health mon-
itoring systems which involve collection of 
large volumes of personal data, there is a 
question of whether these technologies are 
addressing the symptoms of what are larger 
social problems. For example, pendent 
alarms have found popularity as a result of 
people living longer and often living alone 
in later life. It is feasible that some of need 
for intensive monitoring using wearable 
sensor systems would be obviated if our 
social fabric was rewoven in a manner that 
encouraged a return to times when several 
generations of the family lived together and 
supported one another. Perhaps the mobility 
of younger generations and an increasing 
tendency to follow work around the globe 
means this is unlikely to occur, and wearable 
sensors systems are a necessary technology 
to support healthy aging into the future.

4   Conclusions
Wearable sensor systems have the poten-
tial to generate complex, heterogeneous 
datasets which are currently beyond our 
capabilities to easily organize and interpret. 
To successfully utilize wearable sensor data 
to infer health and wellbeing, and enable 
evidence-based proactive health manage-
ment, a coordinated global effort is required 
to adopt standards and ontologies which 
allow for data to be shared between research 
groups, and promote the integration of these 
data into health information systems. It 
should be noted that the big data generated 
by wearable sensor systems may not provide 
a panacea for outstanding medical infor-
matics problems, particularly those which 
involve an expensive and time-consuming 
collection of a gold standard measures of 
wellbeing, as the significance of statistical 
inferences derived from any dataset is 

governed by the number of accurately la-
belled training examples available. Finally, 
governmental policy and regulation will 
be required to ensure that the detailed and 
personal nature of wearable sensor data is 
not misused to invade privacies or prejudice 
against individuals.
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