
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
Web3D '15, June 18 - 21, 2015, HERAKLION, Greece
© 2015 ACM. ISBN 978-1-4503-3647-5/15/06…$15.00
DOI: http://dx.doi.org/10.1145/2775292.2775295

A CSS Integration Model for Declarative 3D

Jan Sutter∗

DFKI
Saarland University

Kristian Sons†

DFKI
Saarland University

Philipp Slusallek‡

DFKI
Saarland University

Intel VCI

Figure 1: Debugging an XML3D scene that uses our proposed CSS integration model. It is now possible to change, add or remove material
parameters right within the well-known debugging facilities of today’s browsers (here: Mozilla Firefox).

Abstract

Declarative 3D (Dec3D) implementations, most notably XML3D
and X3DOM, have enabled a seamless integration of 3D and 2D
content on the same web page. Yet one of the major web technolo-
gies, Cascading Style Sheets (CSS), has not been integrated. The
usage of CSS for 3D content has always been envisaged but never
fully approached, because only polyfills for declarative 3D imple-
mentations exist and only recent developments have made custom
CSS properties available.

In this paper we will present a deep integration and adaption of CSS
for Dec3D content and, hence, provide the final component neces-
sary to fully integrate 3D content into the web technology stack.
Our integration model allows for appearance definitions, such as
visibility and materials, at a novel level of expressiveness. CSS-
Selectors, inheritance, as well as media types provide unique means
to change a scene’s final appearance in a flexible and powerful way.
Using CSS, it is possible to define the appearance of a 3D object
dependent on the DOM hierarchy position or the screen resolution
and orientation without a single line of JavaScript. The integration
of CSS further enables the use of browser debugging facilities that
have not been usable before. Because the requirements of 3D con-
tent are different compared to those of 2D content, we will point
out existing limitations and necessary future additions to improve
the interoperability of CSS with 3D content.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality; I.3.6 [Computer Graph-
ics]: Methodology and Techniques—Standards;

∗e-mail:jan.sutter@dfki.de
†e-mail:kristian.sons@dfki.de
‡e-mail:philipp.slusallek@dfki.de

Keywords: DOM, HTML5, CSS, XML3D, Dec3D, materials

1 Introduction

Web pages today are built on top of three core technologies: HTML,
CSS and JavaScript. While HTML is used to define the structure
and content, and to some degree its semantics, CSS is used for lay-
out and styling purposes and JavaScript for interaction and appli-
cation logic. The Declarative 3D For The Web Architecture Com-
munity Group1 aims at developing and establishing a standard for
describing interactive 3D content that seamlessly integrates with
these technologies. Approaches such as X3DOM [Behr et al. 2009]
and XML3D [Sons et al. 2010] work towards a standard set of cus-
tom 3D related HTML elements to mix 3D scene definitions and
standard HTML markup and, as a result, to make 3D content part
of the DOM. As part of the DOM, all 3D scene content can be
managed using existing and well-known JavaScript libraries such
as jQuery2. With the integration into standard web technologies the
Dec3D community further tries to make 3D content accessible to
the broad audience of web developers with little to no knowledge
of 3D graphics in general and rasterization in particular (see [Behr
et al. 2011; Sons et al. 2010]).

As of today, however, no single standard for declarative 3D on the
web exists and none of the existing approaches is natively supported
by any browser. XML3D and X3DOM, therefore, rely on polyfill
implementations based on WebGL [Khronos 2011]. Jankowski et
al. [2013] describe various levels of integration of 3D graphics on
the web (see Figure 2). The first level is defined to be on par with

1https://www.w3.org/community/declarative3d/
2http://jquery.com

209

Figure 2: Integration levels for 3D content on the Web according to
Jankowski et al. [2013]. Our contribution for the first time provides
an integration at the final level.

<p>outer</p>
<div id="content">

<p>first level</p>
<div class="description">

<p>description</p>
</div>
<div class="details">

<p>details</p>
<span class="disclosure"

data-elem="details">
...

</div>
<div>

Listing 1: A basic HTML structure to realize progressive disclosure
in dependence of the available screen width.

WebGL, an imperative API to define 3D content. This is the level
of integration that libraries such as three.js3 provide. The second
level is defined as the incorporation of 3D specific elements into the
DOM, e.g. mesh and material elements. The third and fourth level
of integration require CSS transformations, debugging functionality
and CSS based material descriptions. XML3D and X3DOM have
achieved a full DOM integration, including events and specific 3D
related HTML elements. However, both support inline style defi-
nitions for CSS based 3D transformations only [Sons et al. 2010;
Behr et al. 2011]. XML3D and X3DOM can thus be considered to
reside in-between the second and third integration level. However,
neither of the two approaches has a full CSS integration and, thus,
intertwines styling and structure in the DOM. This lack of a deeper
CSS integration renders many existing debugging facilities for 3D
content useless and prevents the use of existing CSS libraries and
frameworks.

CSS is a well-known and integral technology for every web devel-
oper and a powerful and expressive tool to define the appearance
of an element and its content on a web page. Two important fea-
tures of CSS are selectors [W3C 2011b] and media queries [W3C
2012]. Selectors provide a way for developers to match a set of
elements based on class names, ids, DOM hierarchy position, inter-
action state and attributes. Every object matched by such a selector
is subject to the specified CSS rule. Media queries on the other
hand allow for the conditional styling [W3C 2013a] of elements
depending on client specifics such as the screen resolution.

3http://threejs.org

.disclosure:not([data-elem=""]) {
display: none;

}
@media only screen
and (max-width: 320px) {

#content {
color: gray;

}
div.details > p {

display: none;
}
.disclosure:not([data-elem=""]) {

display: block;
color: blue;

}
.disclosure:hover:not([data-elem=""]) {

color: red;
}

}

Listing 2: CSS rules for the progressive disclosure example.

Example Consider the example in Listing 1 with two nested divs,
each containing a paragraph. To show the expressiveness of CSS
we will now change the presentation of this content depending on
the width of the available screen space, a technique called progres-
sive disclosure. On less than 320px wide screens we want to hide
all paragraphs underneath a div with the details class. Instead
we want to show the child span with the text content colored in
blue, but only if it has a data-elem attribute set and the class
disclosure attached. When the users hovers over the span, it
should change its color to red. Finally all text inside the content
div will be colored gray on small screens. To achieve these effects
a web developer would use a CSS based solution similar to the one
shown in Listing 2.

If we now imagine an almost equivalent 3D scene, exchanging each
div with an XML3D <group> or X3DOM <transform> ele-
ment and each paragraph with an XML3D <mesh> or X3DOM
<shape>. Because progressive disclosure is not a common tech-
nique in computer graphics, considering that we typically zoom fit
the screen, we will replace the mesh under the details group
with a different level-of-detail. The mesh should still be high-
lighted on hover and the color of all remaining visible meshes
should change to gray on small screens. Since declarative 3D lacks
a proper CSS support we can only achieve this using JavaScript.
We first have to detect the screen width. In case the screen is
less than 320px wide we have to collect all meshes underneath the
details group and all distinct meshes underneath the content
group. Then the new level-of-detail has to be made visible. In
order to change the color, mouseover and mouseout listeners
have to be registered that change the corresponding parameters ap-
propriately. Afterwards, all other meshes underneath the details
group have to be hid. Finally, the color of all the materials of the re-
maining meshes in the content group has to be changed to gray.
However, during this change we have to ensure that we do not ac-
cidentally affect other meshes that share the same material descrip-
tion but are not part of this group. To avoid such unintentional
effects, XML3D provides material override semantics [Sons et al.
2010], but this would require new DOM elements to be inserted
underneath each mesh.

The simple example above already shows how much application-
logic is required to achieve the same result as five elementary CSS
rules. In this paper we will describe an integration of CSS for

210

declarative 3D content that will enable the exact same powerful
use of CSS for 3D content such that all the application-logic from
the given example is not needed anymore and can be moved into a
declarative CSS based description. We will show how CSS can be
used for material, lights, cameras, and visibility definitions. The in-
tegration of CSS will not only increase the level of integration and
“debuggability”, but provides an expressiveness for material defini-
tions that has not been available yet. However, CSS is not meant
to obsolete other existing concepts needed for external references
to existing 3D content [Klein et al. 2014; Sutter et al. 2014]. The
integration is meant to complement these approaches and to con-
figure and style assets in these formats. Finally, we will describe
an implementation of the proposed CSS integration for the xml3d.js
polyfill [Sons et al. 2013] based on the CSS Custom Properties for
Cascading Variables Module Level 1 working draft [W3C 2014a],
making XML3D the first implementation to reach the fourth level
of integration.

2 Related Work

Alongside HTML, SVG [W3C 2011a] – a declarative language
for describing two-dimensional vector graphics – has adopted CSS
properties to define how graphics elements are to be rendered. In
contrast to HTML, where style properties replaced attributes that
define styling, SVG allows for both: Each property can be defined
using either CSS or attributes. SVG has a predefined set of CSS
properties to configure its fixed function shading model.

Using CSS for 3D content has been envisaged from the very be-
ginning of the declarative 3D initiative [Behr et al. 2009; Sons
et al. 2010]. Both existing implementations, XML3D and X3DOM,
use CSS to define the style of the canvas element that is placed
in the DOM, e.g. width, height or border. CSS Transforms [W3C
2013b] can additionally be used to define an object’s 3D transfor-
mation [Sons et al. 2010]. However, neither XML3D nor X3DOM
provides a full CSS integration for all elements of a scene. Sons et
al. [2010] discuss the importance of CSS for a thorough integration
of 3D content into the web but only in regard to 3D transforma-
tions and an object’s material. Jankowski et al. [2013] propose to
use existing properties, such as color and opacity, and to define new
properties for shading similar to the approach taken for SVG.

In contrast to HTML, where unknown tags are ignored by the
browser and left in the DOM untouched, unknown CSS proper-
ties are stripped from an element’s style and are unaccessible from
JavaScript. The current working draft for CSS custom proper-
ties [W3C 2014a] defines a standard way for the specification of
user-defined CSS properties that are accessible from JavaScript.
Moreover, these new properties can be used as variables, using the
var statement, and can be evaluated in calc expressions. The
working draft requires that all custom properties start with a dou-
ble hyphen (--) to not collide with possible future CSS properties.
The type of the value of a custom property is a literal string that is
passed as is to JavaScript. No interpretation, except for the substi-
tution inside var statements, is done by the browser and it is the
application’s sole responsibility to parse and interpret the provided
value. This value is inherited following the standard rules of CSS
and the resolved style of a node can be queried in JavaScript using
the getComputedStyle functionality.

The use of CSS to specify shader uniforms has already been dis-
cussed in the Filter Effects Module Level 1 working draft from
2013 [W3C 2013c], but has been removed since then. It describes
Custom Filter Functions, a way to define custom GLSL-based
shaders to specify the vertex and fragment shading of an HTML
element’s rendering pipeline. The definition of uniform variables
is discussed and how the necessary data types can be expressed in

CSS. Most of the definitions of our data types are either taken lit-
erally from this draft or are designed to closely match their way of
specifying data types. This should increase the probability that a
possible future reappearance of this feature is as compatible as pos-
sible with our proposed handling of CSS based material descrip-
tions.

The expressiveness of CSS and its cascading nature, notwithstand-
ing its power, often results in the unintentional propagation of
styling into unrelated parts of the DOM, if selectors are not spe-
cific enough. Recent advances such as the Shadow DOM [W3C
2014d] provide a way for web developers to hide parts of the DOM.
This hidden DOM is then unaffected by any CSS that is not specif-
ically targeting these hidden parts. In conjunction with Custom El-
ements [W3C 2014b] the Shadow DOM is the new approach to en-
capsulate, reuse, and instantiate existing sub-trees of a DOM. The
XML3D asset format [Klein et al. 2014] is a novel way to achieve
the same for 3D asset instances. It provides a way to hide an al-
ready configured asset to prevent unintentional changes, while still
providing the ability to fully configure parts of an instance from the
outside by specifically targeting named elements. As the 3D coun-
terpart to the Shadow DOM we will show how we can exploit this
to avoid the accidental leaking of CSS styles into an already con-
figured 3D model, but still enabling a full configuration of the asset
using CSS rules that explicitly target named parts of the model.

3 CSS-based Styling of 3D Scenes

One of the basic principles of CSS-based styling is the in-
heritance of property values from parent elements to child el-
ements inside the DOM tree. The browser provides an API
to access the final style properties of an element using the
window.getComputedStyle method.

X3D and X3DOM use a directed acyclic graph (DAG) as a data
structure, which allows for instancing whole sub-scenes. Applying
CSS on DAGs is possible, but requires additional bookkeeping in
order to track the computed styles for all existing paths to a node.
This is similar to SVG, where the standard states that “. . . the con-
ceptual deep cloning of the referenced element into a non-exposed
DOM tree also copies any property values resulting from the CSS
cascade on the referenced element and its contents.” [W3C 2011a].
Because the conceptually cloned DOM tree is not exposed, it is
not possible to derive the style of the referenced element using
mechanisms such as window.getComputedStyle. Without
this functionality to access the evaluated style, it is hard – if not im-
possible – to integrate CSS into X3DOM without re-implementing
the whole CSS stack.

In contrast, XML3D organizes all graphical objects in a tree struc-
ture. As a result, we can use the available functionality to evaluate
the style of these elements. Hence, we have chosen XML3D to
discuss the integration of CSS into Dec3D.

Jankowski et al. [2013] define the final level of integration solely on
the availability of CSS based material descriptions. However, other
scene components can benefit from the expressiveness of CSS as
well. Because CSS is a mechanism to separate style from content
and structure, it is important to identify the parts of a 3D scene de-
scription that are style related and to separate these from the parts
that provide the structure and content. We identify object visibility,
lights, materials and camera intrinsic as “style-able” properties of a
3D scene. For these aspects we will discuss how existing CSS prop-
erties can be exploited for 3D content, how they have to be used to
increase the interoperability with existing libraries and frameworks,
and where more than a fixed set of CSS properties is necessary in
order to fully support 3D content styling.

211

xml3d > * > * > * > * mesh {
display: none;

}

Listing 3: Hiding all meshes deeper than the fifths hierarchy level
using a CSS child selector and the display property.

3.1 Visibility

Hiding or showing an object is a fundamental operation for 2D as
well as 3D content. Visibility in HTML and CSS is a tri-state at-
tribute definable through two different CSS properties: display and
visibility. The visibility property can hide or show an element on
the web page while it still affects the overall layout and spacing. To
avoid any remaining effect on the layout the display property can be
set to none, in which case the element is neither visible nor does it
have any visible effect. The latter is generally what the user intends
and the default property that is set by libraries, for instance jQuery,
to hide or show an element.

In the context of 3D computer graphics visibility is usually defined
as a binary state, where hidden objects are simply not rendered.
However, the concept of visibility can be extended to incorporate a
third state. Mouse interaction in 3D graphics is done using picking,
which requires every pick-able part of an object to be an individ-
ual mesh. Scanned objects, which are important for domains such
as cultural heritage, are typically comprised of a single large mesh.
To allow for more fine granular interactions multiple transparent
proxy-meshes are overlaid. For this reason we define both prop-
erties, display and visibility, for 3D content. The visibility
property is used to hide an object, i.e. not visible in the final im-
age, that still responds to mouse events. The display property
is used to hide an object from the scene ignoring any interaction.
This use of the display property is consistent and compatible with
the behavior of toolkits such as jQuery.

Usage Example Visibility definitions using CSS is not only
mandatory for our introductory example, but especially helpful for
the visualization of large construction models. In these models
smaller, often uninteresting details, are at very deep levels of the
hierarchy. With CSS it is possible to use single selectors to hide all
objects starting at a certain hierarchy level to reduce visual clutter
and the number of rendered objects. To hide all meshes starting at
the fifth level in the hierarchy, the CSS rule shown in Listing 3 can
be used.

3.2 Materials

Material definitions in declarative 3D implementations come in two
forms. First, using predefined “uber-shaders” such as the Common-
SurfaceShader proposal [Schwenk et al. 2010] for X3D. These ma-
terial models have a well-known set of input parameters that can
be changed to configure the material. This approach allows for the
definition of a fixed set of CSS properties with predefined semantics
to cover all configuration parameters of the material model. Cus-
tom material definitions, on the other hand, render such an integra-
tion method impossible because the set of potential parameters and
their types are user-defined. Especially material models based on
shade.js [Sons et al. 2014], which are able to adapt itself to the de-
fined and available input parameters require more than a finite set
of predefined CSS properties and semantics. Integrating CSS into
a declarative 3D implementation that uses custom material defini-
tions requires custom CSS properties; without, a complete integra-
tion would be impossible. CSS, however, requires that unknown

1 #example-material {
2 material-model: url("./shade.js");
3 --numIterations: 10;
4 --reflectivity: 0.2;
5 --diffuseColor: rgb(255, 128, 0);
6 --specularColor: crimson;
7 --upVector: vec3(1.0, 2.0, 3.0);
8 --coeff: array(1, 2, 3.9, 4);
9 --texModulation: mat2(2, 0, 0, 2);

10 --heightmap: url("./height_map.png")
11 clamp repeat linear nearest;
12 --normalmap-src: url("#normal_map");
13 --normalmap-clamp-s: clamp;
14 --normalmap-clamp-t: repeat;
15 --normalmap-filter-min: linear;
16 --normalmap-filter-mag: nearest;
17 }

Listing 4: An example material definition using all the different 3D
related data types.

properties are removed from any definition. The CSS Custom Prop-
erties for Cascading Variables Module Level 1 working draft [W3C
2014a] specifies an approach for custom properties to be defined
using a special discerning prefix, the double hyphen. Properties
starting with this prefix are not removed and left intact inside a def-
inition. Moreover, the value of these properties is passed literally to
JavaScript to enable the definition of new data types. Because more
than a fixed set of CSS properties is necessary to define all pos-
sible user-defined material parameters we base our CSS material
integration on this specification. By building upon this specifica-
tion we further ensure that the integration can take advantage of all
future improvements to custom CSS properties, for instance CSS
animations for custom properties.

In addition to custom properties we could use existing CSS proper-
ties such as “color”. The different CSS related standards currently
define over 200 properties and their usefulness for material defi-
nitions depends on the underlying material model. We deliberately
confine the CSS material definitions to custom CSS properties. This
is mainly for consistency reasons but also to avoid the necessity of
overriding rules for cases when a custom property with the same
name as an already existing property is defined and used by the ma-
terial model. CSS overriding rules are already very powerful and
complex, and introducing another rule only in order to use existing
properties is not reasonable.

In the context of 3D graphics we need the vector, matrix and
array data types and we have to differentiate between floating
point and integer literals. For the definition of the necessary new
data types we follow the proposition of the Filter Effects Mod-
ule Level 1 draft specification [W3C 2013c], which uses the typ-
ical “constructor-like” syntax to determine the type. For example,
rgba(255, 255, 255, 1) defines a four component opaque
white color in CSS.

In Listing 4 an overview of the possible data types for an exam-
ple material definition is shown. The material-model prop-
erty defines the underlying material model, e.g. a shade.js ma-
terial description. Because this is a fixed property the prefix is
not necessary. Floating point literals (see Line 4) are required to
be a nonempty sequence of decimal digits containing a decimal
point character, similar to the definition in the C programming
language. Matrices (see Line 9) are defined in column major or-
der following the WebGL [Khronos 2011] convention. For color
definitions all existing ways to specify a color in CSS are sup-

212

mesh {
material-model: url("./phong.js");
--color: red;
--shininess: 10;

}
#special-mesh{

--color: green;
}
mesh:hover {

material-model: url("./highlight.js");
}

Listing 5: An example material definition that uses the hover
pseudo-class to highlight meshes underneath the cursor.

ported: named colors, hexadecimals, rgb and rgba constructors (see
Line 5ff.). Textures can be defined using a shorthand. Shorthand
properties are a unique feature of CSS that allow the definition of
two or more related properties using a single one. For instance
the shorthand padding can be used to define padding-left,
padding-right, adding-top, and padding-bottom as
a single property instead of defining all four individually. The
heightmap property defines a texture input using such a short-
hand syntax (see Line 10ff.). In contrast, the normalmap defines
them using the individual properties. Using the url syntax it is not
only possible to reference external resources but to also reference
elements in the DOM using id references. This is especially im-
portant in the case of XML3D that uses Xflow [Klein et al. 2012]
to declaratively define dataflows, whose result may be used as a
parameter for the material.

Usage Examples Highlighting objects depending on the user in-
teraction, e.g. mouseover, is very common in 3D applications. Cur-
rent Dec3D approaches require event listeners to implement high-
lighting. Inside an event listener’s implementation the target ob-
ject’s material is exchanged. Thus, application-logic as well as a
second material definition with an id is required. Styling a DOM
element depending on special states, such as mouseover, are also
typical in 2D web applications. For this CSS defines a mechanism
to apply a context dependent style through so called pseudo-classes.
These classes can be used to limit the scope of a rule to elements
that have a specific position in the DOM or a special state. Special
states include the pseudo-class hover. Even though other classes
may prove useful in the 3D context, this class has the most immi-
nent meaning for 3D. Using our proposed CSS based approach for
material definitions we can now use this pseudo-class for 3D (see
Listing 5) in the same way as it was used for the 2D case in the in-
troductory example. In the example shown in Listing 5 all meshes
will have a default Phong material with a red color. The mesh with
the id special-mesh will have a green color. If the user moves
the cursor over a mesh its material will change to a special high-
lighting material. All CSS properties defined on the mesh through
other rules are still available in this rule. For instance, the highlight
material can use the defined --color property of the mesh. In the
special case of the mesh with the id special-mesh this color
will evaluate to green, for all other meshes it will be red.

Sharing and reusing existing material definitions is an important
topic in computer graphics. Being able to take a well configured
material and apply it to a different 3D object is, however, not trivial.
Meshes can have different vertex attributes available, the render-
ing system may be unable to provide certain features, or the over-
all rendering algorithm can be different. Recent advances such as
shade.js [Sons et al. 2014] have made it possible to write material

.red-material {
material-model: url("shader.js");
--diffuseColor: #FF0000;
--specularColor: #FF0000;
--reflectionColor: #FF0000;
--shininess: 10;

}

Listing 6: An example red colored material definition.

.red-material {
material-model: url("shader.js");
--diffuseColor: var(--color, #FF0000);
--specularColor: var(--color, #FF0000);
--reflectionColor: var(--color, #FF0000);
--shininess: 10;

}

Listing 7: An example red material definition that provides a new
configuration variable “–color”.

models that can adapt its own control-flow depending on the avail-
ability of such features and attributes. In combination with CSS
based material definitions we can reach another step towards eas-
ily sharable and reusable materials in the context of declarative 3D.
Materials can now be shared by referencing an external CSS file
and adding a class name to a mesh, e.g. “red-plastic”. Further spe-
cialization and configuration can then be done using an additional
CSS rule that overrides predefined values. Adapting the material
model to the available features and mesh attributes is done inside
the shade.js material description.

Material models can be complex and their physical plausible con-
figuration heavily depends on the actual implementation and can
require an in-depth understanding of advanced topics in computer
graphics. A user who only wants to change the overall color of
a material does not care about all configuration options. Because
custom CSS properties can also be used as variables it is possible
for a complex material definition to provide explicit configuration
points to users. Consider the example material in Listing 6. For
a computer graphics expert the names of the properties are self-
explanatory and how to change the final color from red to, for in-
stance, green is obvious. Non experts, however, may not know
about the difference between specular or diffuse reflections and
their final contribution to the overall color. Using custom prop-
erties as variables makes it possible to provide a new simplified
property --color, as a basic way to configure the material, while
still allowing experts use all the complex configuration possibili-
ties. Listing 7 shows the same rule but with a specific configuration
variable. The user can now define the property “–color”. If it is
not set, a default red color will be used for all properties. Experts,
however, can still use the individual properties to fully configure
the different material aspects.

3.3 Camera

The extrinsic parameters of a camera are usually defined by the
camera’s position in the transformation hierarchy. The camera’s in-
trinsic parameters are subject to the selected camera model. Both,
X3DOM and XML3D provide camera models based on the per-
spective projection of a pinhole camera or on an orthographic pro-
jection. However, these idealized models do not take into account
effects of real world cameras such as depth of field and motion blur
or parameters of cameras for specific use-cases (e.g. stereoscopic

213

#camera {
camera-model: url("urn:camera:perspective");
--vfov: 61deg;
--clip-planes: 0.1 auto;

}

Listing 8: Defining a camera using CSS.

cameras, fisheye cameras, environment cameras). There might be a
wide range of possibly useful camera models that we do not want
to obstruct by the definition of a fixed set of camera-related CSS
properties. Thus, we follow an approach similar to our proposed
material descriptions.

We propose the new fixed CSS property camera-model,
that defines the camera model to be used for an ele-
ment. A number of predefined camera models should
be available via URN (e.g. urn:camera:perspective,
urn:camera:orthographic). The intrinsic parameters, that
depend on the selected camera model, are defined using custom
CSS properties.

Listing 8 shows the definition of a camera model using the pro-
posed approach. It also demonstrates how we can exploit already
existing CSS facilities such as units and the special auto keyword
for the definition of a camera’s intrinsic properties. Numerical lit-
erals in CSS can additionally carry dimensions, two of which are
degree (deg) and radians (rad), that we can reuse for the definition
of the field of view. The auto keyword has the special meaning
that the value of this property should be determined by the system.
In this case the far plane will be determined automatically, using
the scene’s bounding volume for example, while the near plane
is set explicitly. The clip-planes property is another short-
hand property. Instead of defining two properties for the near and
far plane we can use the property clip-planes and define the
clip-plane-near first and the clip-plane-far last.

Note that with our approach, every element in the scene graph can
act as a camera definition: The extrinsic parameters are derived
from the transformation hierarchy, the intrinsic parameters by cas-
caded style properties.

Example Usage To be visible, the final image of a virtual 3D
scene has to be rendered from the perspective of a specific camera.
In XML3D, for example, this specific camera is defined using the
activeView attribute on the XML3D root tag. Cameras are typ-
ically handled as special and distinct entities in a scene, still scenes
are often rendered from perspectives such as the viewing direction
of a light. Being able to use any object as the active camera, regard-
less of its actual type, is an important debugging facility and allows
for special point of view shots. Without CSS we would need to de-
fine a field of view and the clipping planes on each object that may
potentially be used as a camera. Because of the cascading nature
of CSS the definition of these intrinsics on specific objects or on all
objects in the scene can be handled by a single rule. For example, if
all objects in the scene should be usable as a camera with the same
field of view and the same clipping planes these properties can be
defined on the root element of the scene and they will propagate to
each individual child. Overrides to these “default” properties can
then be defined using a more specific rule as seen in Listing 9.

3.4 Lights

In general, light sources are objects in the scene emitting light. Yet
specific light models such as point lights or spot lights are om-

xml3d {
camera-model: url("urn:camera:perspective");
--vfov: 61deg;
--clip-planes: auto;

}

#specific {
--vfov: 40deg;
--near-plane: 1.0;
--far-plane: 1000;

}

Listing 9: Cascading definition of camera properties using CSS.

.spotlight {
light-model: url("urn:light:spot");
--intensity: 100;
--attenuation: array(1, 0, 0);
--color: rgb(255, 255, 255);
--cone-angle: 40deg;

}

Listing 10: Spotlight definition using CSS.

nipresent in computer graphics. While emitting geometry is what
we already have in advanced path-tracers, we have become accus-
tomed to use fixed light models to illuminate scenes, and real-time
applications require them for performance reasons. Although the
set of common light models (e.g. point, spot, and directional lights)
could be configured with a predefined set of properties, we can
observe work towards user-definable light models, such as light
shaders in XML3D and shade.js [Sons et al. 2010; Sons et al. 2014].
We therefore do not define a fixed set of CSS properties for lights
but rather follow the approach taken for material definitions.

A light definition has a property called light-model that is used to
specify the light type as a URI. In the future we expect this to be
used to point to user-defined light models. The definition of a typi-
cal spotlight using CSS is shown in Listing 10.

Example Usage The effective and atmospheric placement of
lights in a scene is a non trivial task, especially the lighting and
shadowing with spotlights. Looking through the “eyes” of the spot-
light is invaluable in such situations. Cameras and lights, however,
are in general treated special and have different configuration prop-
erties. To see the scene from the spotlight’s point of view a camera
has to be setup and made active, the field of view has to be calcu-
lated from spotlight’s cone angle, and the light’s transformation has
to be applied to the camera. Configuring the camera and lights us-
ing CSS allows for a very generic handling of scene objects where
the mere presence of a property can turn an object into one or mul-
tiple different scene component types. To turn the spotlight defined
in Listing 10 into a perspective camera we can use the CSS rule in
Listing 11. Because custom properties can be used as variables we
can further use the definition of the spotlight’s cone angle to ini-
tialize the field of view of the camera using a simple calculation.

3.5 Summary

We propose moving four essential functionalities of declarative 3D
scene descriptions (c.f. [Jankowski et al. 2013]) from DOM-based
definitions to CSS-based properties: The existing visible and dis-

214

.spotlight-camera {
camera-model: url("urn:camera:perspective");
--vfov: calc(var(--cone-angle) * 2.0);

}

Listing 11: Turning a spotlight into a perspective camera.

<model src="#asset">
<assetmesh name="part">

<float3 name="diffuseColor">
1.0 0.0 0.0

</float3>
</assetmesh>

</model>

Listing 12: Overriding the color of a sub mesh inside an asset.

play properties for the control of visibility and picking, and new
properties for the definition of material, camera and light models
for subgraphs of the scene. The parameters of these models de-
pend of the model itself, hence we took the approach to use custom
CSS properties in order to configure the models. We consider this
approach not only to be consistent and future-proof, but it is also
mandatory for programmable models such as shade.js for materi-
als.

4 CSS and Reusable Asset Instances

The Shadow DOM [W3C 2014d] is a working draft to enable en-
capsulation and isolation of DOM content. Content within the
Shadow DOM is not visible in the website’s actual DOM, but still
rendered. For CSS this means that no rule can interfere with con-
tent that resides in the Shadow DOM, if it is not explicitly targeting
this content with special selectors. In conjunction with the Cus-
tom Element working draft [W3C 2014b] reusable and encapsu-
lated HTML elements can be created.

Reusing existing assets has always been an important topic in com-
puter graphics. A new approach to configurable instances for
declarative 3D has been proposed by Klein et al. [2014]. This ap-
proach is used in XML3D and provides a way to reuse existing as-
sets, hiding all its complexity, while making explicit configuration
and external changes possible. The encapsulation and isolation of
this approach is very similar to that of the Shadow DOM. Listing 12
shows an example of how an asset is instanced and configured. In
this example the sub-mesh with the name part is configured to
have a different diffuseColor than specified in the asset’s def-
inition.

The boundary introduced by the Shadow DOM avoids CSS rules
to interfere with its content. In the same way this should hold for
the definition of an instanced asset. It would be confusing for the
user if an unrelated CSS rule could accidentally match and modify
an instanced asset in an unpredicted way. Nevertheless, should it
be possible to configure, respectively style, parts of an asset using
CSS, but limited to the parts explicitly targeted by the user. The
specification of the part that should be affected by CSS has to be
named by the user in the same explicitness as in the markup in
order to configure a part of an asset. If we reconsider the instancing
example from Listing 12, to change the color of the sub-mesh part
we can use the first CSS rule in Listing 13. This rule is specifically
targeting this asset mesh. More coarse-grained rules such as the
second and third rule would have no effect, because assets are a
boundary that prohibit CSS to propagate into hidden parts of it.

model[src=#asset] assetmesh[name="part"] {
--diffuseColor: rgb(255, 0, 0);

}
model[src="#asset"] assetmesh {

--diffuseColor: rgb(255, 0, 0);
}
model {

--diffuseColor: rgb(255, 0, 0);
}

Listing 13: Using CSS to configure an asset. The first rule specifi-
cally targets the named mesh part of the asset and will change its
color to red. The following two rules will have no effect due to the
boundary defined by the asset.

5 Results

We evaluated the proposed integration of CSS for declarative 3D
using an implementation based on the CSS Custom Properties for
Cascading Variables Module Level 1 [W3C 2014a] working draft
and XML3D. Based on the discussed CSS integration and our cur-
rent implementation we can revisit the initial example from List-
ing 1 and provide a solution for XML3D (see Listing 14). The class
names are left unchanged and the paragraph texts are used as names
for the external mesh references. Because our implementation re-
lies on the custom properties specification, all fixed CSS properties
discussed so far are prefixed with a double hyphen. The CSS rules
for the XML3D scene shows how well CSS applies to 3D content.
Beside the 3D specific properties and changes to the tag names all
rules are identical to the original 2D case from Listing 2.

The ability to use CSS for the definition of materials, visibility,
lights, and camera properties is not only important to reduce the
necessary application logic for styling but to use all the available
CSS debugging facilities of today’s browsers. The DOM integra-
tion let us use the DOM inspector, CSS integration now enables the
usage of the CSS rules viewers and style editors. In Figure 1 the de-
bugger of the Firefox browser is shown. Since CSS is used for the
material definition in this scene we can see on the right hand side of
the debugger, in the “rules view”, all material related properties of
the selected mesh. This view shows which properties are defined,
which are inherited, and which are overridden. It is now possible to
change the visibility, color, or any other property from within this
view and and see all changes immediately reflected in the 3D scene.
With the “style editor” we can introduce new rules or edit existing
ones to affect more than a single scene object.

Two currently existing limitations require an additional plug-in
for the Mozilla Firefox Browser: activating pseudo-classes using
JavaScript and observing all possible kinds of style changes. Be-
cause the browser has no information about the content of the can-
vas element it cannot get information about the DOM node that cor-
responds to the currently picked object. Therefore, pseudo-classes
such as hover are not set by the browser. Unfortunately no standard
JavaScript API exists to trigger these states manually. The plug-in
is necessary to provide such an API.

Various modifications to the DOM can change the style of an object.
An object’s class list can be mutated, its id changed, or it can be
moved in the DOM hierarchy. Any of this can change the final style
of an element and, through inheritance, all of its descendants. While
these changes can be handled by tracking those mutations using
MutationObservers in JavaScript, external changes that affect the
style of an object cannot be handled through such a mechanism. Ex-
ternal changes that can alter the style of an object are media-queries
and changes to the style through the browser’s debugging facilities.

215

<style>
.disclosure:not([data-elem=""]) {

display: none;
}
@media only screen
and (max-width: 320px) {

#content {
--diffuseColor: grey;

}
group.details > mesh {

display: none;
}
.disclosure:not([data-elem=""]) {

--diffuseColor: blue;
display: block;

}
.disclosure:hover:not([data-elem=""]) {

--material-model: url("highlight.js");
--highlight-color: red;

}
}
</style>
<xml3d>
<mesh src="./outer.json"></mesh>
<group id="content">

<mesh src="first_level.json"></mesh>
<group class="description">

<mesh src="description.json">
</mesh>

</group>
<group class="details">

<mesh src="details.json">
</mesh>
<mesh class="disclosure"

data-elem="details"
src="ellipsis.json">

</mesh>
</group>

</group>
</xml3d>

Listing 14: Introductory example in XML3D using CSS based
styling.

Media-queries, as explained in the initial example from Listing 1,
can be used to conditionally define the style of an element. These
queries are, however, not static but reevaluated if, for instance, the
browser window is resized. Because JavaScript does not provide
a style observer API4 similar to the MutationObserver, these
changes go unnoticed unless we poll each node’s computed style
every single frame. For efficiency reasons, the plug-in handles these
cases and sends an event to the implementation in case any style
change happened due to media-query evaluation or the debugging
facilities of the browser.

6 Conclusion and Future Work

In this paper we propose a full CSS integration model for declara-
tive 3D. This model allows for the definition of material, visibility,
light and camera properties using CSS. Our approach exceeds all
existing integration models. For the first time, we achieve an inte-
gration even beyond the initial discussed fourth level proposed by
Jankowski et al. [2013].

Additionally, we have shown, how declarative 3D can benefit from
the separation of content and style and in particular from the ex-
pressiveness of CSS, including techniques such as CSS inheritance,
selectors and media-queries. This separation of concerns has not
been done in computer graphics before and it enables the reduction
of application logic and extended use of of the browsers’ debugging
facilities.

A common assumption of the Dec3D community is that the integra-
tion into the HTML and web technology stack makes 3D content
and computer graphics more accessible to web developers. With
the integration level we achieve with our approach and its accom-
panying implementation, we believe that we are now approaching
the possibility of an empirically evaluation of this claim.

Recent development towards a new specification for media-queries
specifically targets custom queries [W3C 2014c]. Based on these
custom queries we can then define 3D specific queries based on the
distance to the camera, the bounding volume size, or pixel cover-
age. With these media-queries we can explore the possibilities of a
declarative level-of-detail approach in order to combine techniques
such as POP Buffer [Limper et al. 2013] with CSS.

Post-processing is a vital part of every rendering pipeline and of
great importance for a realistic image. The Filter Effects working
draft [W3C 2013c] specifies how post-processing on HTML ele-
ments is specified in CSS. We have shown how CSS can be used
for the definition of camera intrinsic properties. Following the Fil-
ter Effects approach this can be a way towards declarative post-
processing definitions.

Native implementations of a declarative 3D standard are the ulti-
mate goal of the Dec3D community group. Recent advances such
as Web Components5 and our achieved level of integration for the
xml3d.js polyfill raises the question if native browser support is ac-
tually necessary or if we should try to improve existing technolo-
gies to remove the remaining limitations in order to provide a pure
JavaScript based solution for declarative 3D on the web.

Acknowledgments

The research leading to these results has received funding from
the European Union’s Seventh Framework Programme under grant
agreement no. 603662 (FI-CONTENT2), 632893 (FI-Core),

4http://xml3d.org/xml3d/specification/cssobserver/
5http://webcomponents.org

216

604674 (FITMAN), and under grant agreement no. 641191 (CIM-
PLEX) in the European Union’s H2020 Framework Programme.

References

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3DOM: A DOM-based HTML5/X3D Integration Model. In
Proceedings of the 14th International Conference on 3D Web
Technology, ACM, New York, NY, USA, Web3D ’09, 127–135.

BEHR, J., JUNG, Y., DREVENSEK, T., AND ADERHOLD, A.
2011. Dynamic and Interactive Aspects of X3DOM. In Pro-
ceedings of the 16th International Conference on 3D Web Tech-
nology, ACM, New York, NY, USA, Web3D ’11, 81–87.

JANKOWSKI, J., RESSLER, S., SONS, K., JUNG, Y., BEHR, J.,
AND SLUSALLEK, P. 2013. Declarative Integration of Interac-
tive 3D Graphics into the World-Wide Web: Principles, Current
Approaches, and Research Agenda. In Proceedings of the 18th
International Conference on 3D Web Technology, ACM, New
York, NY, USA, Web3D ’13, 39–45.

KHRONOS, 2011. WebGL Specifica-
tion Version 1.0, Khronos Specification.
https://www.khronos.org/registry/webgl/specs/1.0.0/, Feb.

KLEIN, F., SONS, K., RUBINSTEIN, D., BYELOZYOROV, S.,
JOHN, S., AND SLUSALLEK, P. 2012. Xflow - Declarative Data
Processing for the Web. In Proceedings of the 17th International
Conference on 3D Web Technology, ACM, New York, NY, USA,
Web3D ’12, 37–46.

KLEIN, F., SPIELDENNER, T., SONS, K., AND SLUSALLEK, P.
2014. Configurable Instances of 3D Models for Declarative 3D
in the Web. In Proceedings of the Nineteenth International ACM
Conference on 3D Web Technologies, ACM, New York, NY,
USA, Web3D ’14, 71–79.

LIMPER, M., JUNG, Y., BEHR, J., AND ALEXA, M. 2013. The
POP Buffer: Rapid Progressive Clustering by Geometry Quanti-
zation. Computer Graphics Forum 32, 7, 197–206.

SCHWENK, K., JUNG, Y., BEHR, J., AND FELLNER, D. W. 2010.
A Modern Declarative Surface Shader for X3D. In Proceed-
ings of the 15th International Conference on Web 3D Technol-
ogy, ACM, New York, NY, USA, Web3D ’10, 7–16.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. XML3D: Interactive 3D Graphics for the
Web. In Proceedings of the 15th International Conference on
Web 3D Technology, ACM, New York, NY, USA, Web3D ’10,
175–184.

SONS, K., SCHLINKMANN, C., KLEIN, F., RUBINSTEIN, D.,
AND SLUSALLEK, P. 2013. xml3d.js: Architecture of a Polyfill
Implementation of XML3D. In Proceedings of the 6th Workshop
on Software Engineering and Architectures for Realtime Interac-
tive Systems, IEEE, New York, NY, USA, SEARIS ’13, 17–24.

SONS, K., KLEIN, F., SUTTER, J., AND SLUSALLEK, P. 2014.
shade.js: Adaptive Material Descriptions. Computer Graphics
Forum 33, 7 (Oct.), 51–60.

SUTTER, J., SONS, K., AND SLUSALLEK, P. 2014. Blast: A
Binary Large Structured Transmission Format for the Web. In
Proceedings of the Nineteenth International ACM Conference on
3D Web Technologies, ACM, New York, NY, USA, Web3D ’14,
45–52.

W3C, 2011. Scalable Vector Graphics (SVG) 1.1 (Sec-
ond Edition), W3C Recommendation (work in progress).
http://www.w3.org/TR/2011/REC-SVG11-20110816/, Aug.

W3C, 2011. Selectors Level 3, W3C Recommendation (work
in progress). http://www.w3.org/TR/2011/REC-css3-selectors-
20110929/, Sept.

W3C, 2012. Media Queries, W3C Recommendation (work
in progress). http://www.w3.org/TR/2012/REC-css3-
mediaqueries-20120619/, June.

W3C, 2013. CSS Conditional Rules Module Level 3,
W3C Candidate Recommendation (work in progress).
http://www.w3.org/TR/2013/CR-css3-conditional-20130404/,
Apr.

W3C, 2013. CSS Transforms Module Level 1, W3C Working
Draft (work in progress). http://www.w3.org/TR/2013/WD-css-
transforms-1-20131126/, Nov.

W3C, 2013. Filter Effects Module Level 1, W3C Working
Draft (work in progress). http://www.w3.org/TR/2013/WD-
filter-effects-1-20131126/, Nov.

W3C, 2014. CSS Custom Properties for Cascading Vari-
ables Module Level 1, W3C Last Call Working Draft (work
in progress). http://www.w3.org/TR/2014/WD-css-variables-1-
20140506/, May.

W3C, 2014. Custom Elements, W3C Working Draft (work in
progress). http://www.w3.org/TR/2014/WD-custom-elements-
20141216/, Dec.

W3C, 2014. Media Queries Level 4, W3C Working Draft (work
in progress). http://www.w3.org/TR/2014/WD-mediaqueries-4-
20140605/, June.

W3C, 2014. Shadow DOM, W3C Working Draft (work
in progress). http://www.w3.org/TR/2014/WD-shadow-dom-
20140617/, June.

217

