
Experience-Based Adaptation of Locomotion Behaviors for
Kinematically Complex Robots in Unstructured Terrain

Alexander Dettmann1, Anna Born1, Sebastian Bartsch2, and Frank Kirchner1,2

Abstract— Kinematically complex robots such as legged
robots provide a large degree of mobility and flexibility, but
demand a sophisticated motion control, which has more tunable
parameters than a general planning and decision layer should
take into consideration. A lot of parameterizations exist which
produce locomotion behaviors that fulfill the desired action
but with varying performance, e.g., stability or efficiency. In
addition, the performance of a locomotion behavior at any given
time is highly depending on the current environmental context.
Consequently, a complex mapping is required that closes
the gap between robot-independent actions and robot-specific
control parameters considering the environmental context and
a given prioritization of performance indices.

In the proposed approach, the robot learns from experiences
made during its interaction with the environment. A knowl-
edge base is created which links locomotion behaviors with
performance features for visited contexts. This behavior library
is utilized by a case-based reasoner to select motion control
parameters for a desired action within the current context.
The paper provides an overview of the control approach, the
algorithms used to determine the current context and the
robot’s performance, as well as a description of the reasoner
which selects appropriate locomotion behaviors. In experiments,
different behavior libraries were automatically built when oper-
ators had to control a walking robot manually through obstacle
courses. Afterwards, the collected experiences and a trajectory
follower were used to traverse an obstacle course autonomously.
The provided experimental evaluation shows the performance
dependency of the autonomous control with respect to different
sizes and qualities of utilized behavior libraries and compares
it to manual control.

I. INTRODUCTION

In common control architectures for robotic systems,
e.g., [1], [2], hierarchical layers exist which have differences
in their representation form, response time, predicting ca-
pabilities, and dependence on accurate world models [3].
The purpose of the lowest layer (action layer) is to generate
motion commands for the actuators on basis of desired
actions and processed sensor data. Since short response time
is crucial to act in real world scenarios, reactive control
paradigms are often used. An action, in this sense, is a
command with associated attributes generated by the layer on
top (task layer) where mission-specific tasks are decomposed
into a sequence of actions often realized through deliberative
planning. Since these actions are usually robot-independent,
the reactive action layer needs to decompose each action into

1The author is with the Faculty of Mathematics and Computer
Science, University of Bremen, 28359 Bremen, Germany
firstname.lastname@uni-bremen.de

2The author is with the German Research Center for Artificial Intelli-
gence - Robotics Innovation Center (DFKI RIC), 28359 Bremen, Germany
firstname.lastname@dfki.de

robot-specific control parameters resulting in a specific robot
behavior. When using simple wheel driven systems, a simple
mapping is needed, e.g., mapping a desired robot velocity to
a desired actuator speed. But kinematically complex robots
provide manifold possibilities to execute the same action in
different ways by tuning numerous control parameters. In
addition, the required mapping is highly depending on the
current environmental situation which varies heavily in the
field of locomotion in unstructured terrain.

One way to adapt the control parameters autonomously
is to equip each behavior-producing module in the reactive
layer with an intelligent mechanism that determines the
module’s relevance and reliability and adapts its influence
accordingly [4], [5]. Other approaches try to build a causal
model, which maps actions to control parameters. Since most
applications are too complex to create models based on
physical analysis, rules derived from expert knowledge [6],
[7] or learned mappings [8], [9] are used. The former need
deep domain knowledge which is not desired for developing
a general motion control interface. The latter need a lot
of training data to derive a policy which covers a broad
spectrum of the possible problem space prior to execution
time. Integrating new experiences during execution in real-
time is rather complicated [10]. Instance-based regression
techniques, e.g., case-based reasoning [11] which solves
problems by reusing experiences from similar, previously
solved problems, have the advantage that they can work on a
sparse knowledge base and that new experiences can directly
be integrated.

The idea in the proposed approach is to build up a
knowledge base which holds all relevant robot-dependent
information about known behaviors and their performance in
various state contexts, which are environmental conditions
in the target application of locomotion. This, so called
behavior library (BL), can then be utilized by a behavior
configurator that maps scenario-specific actions to known
parameterizations of the motion control, thus generating
different behaviors (Fig. 1). Since all robot-dependent in-
formation are implicitly stored in the BL, a general robot-
independent mapper can be implemented as interface to the
action generating task layer encapsulating the robot-specific
motion control.

In the proposed approach, the robot learns from expe-
riences made during its interaction with the environment.
Therefore, the robot needs to continuously self-evaluate
its actions. Section II briefly describes which performance
features are necessary to characterize locomotion behaviors.
Furthermore, the robot has to determine the significant fea-

Fig. 1. Experience-based interface (green) which extends the motion control in the action layer (orange) to allow scenario-specific commands and to
generate additional information for higher layers. Experiences, i.e. performance information of behaviors in various state contexts, are stored in a behavior
library and are utilized by a behavior configurator to map scenario-specific actions to robot-specific control parameters of the motion control. The estimation
of performance and state context features is based on the robot’s processed sensor values and may already be part of the motion control itself.

tures of the currently investigated environment. A selection
of these, so called state context features, is provided in
Section III. Since especially at the beginning of a robot
mission, only sparse domain knowledge and a few experi-
ences are available, case-based reasoning is used to infer the
best-suited configuration of the motion control for a certain
context which is described in Section IV. The experiments
in Section V show the performance of the proposed ap-
proach by an example of controlling the six-legged robot
SpaceClimber [12] through a demanding obstacle course. In
the last section, a conclusion is drawn and an outlook is
provided.

II. PERFORMANCE EVALUATION

In the proposed experience-based control approach, eval-
uating the robot’s performance during runtime is one key
issue. For a meaningful performance metric, features are
needed which build upon processed sensor values to char-
acterize a robot’s behavior and to allow a quantitative
comparison. Here, a distinction was made between features
which characterize the execution of the desired action, e.g.,
motion and posture commands, and features which deliver
additional meta information, e.g., stability, energy efficiency,
or undesired vibrations of the body. The former have variable
and action-dependent target values whereas the latter always
have a desired optimum. In the following, the performance
features used to characterize locomotion behaviors of Space-
Climber are briefly introduced.

A. Action Performance Features

Most kinematically complex locomotion systems support
longitudinal (velocity x) and lateral movement (velocity y)
as well as turning motions around its geometrical center
(turn rate). These features need to be known very precisely
because they are also the basis for other algorithms like
map building. Thus, it is always suggested to use accurate
external reference systems, e.g, GPS or motion tracking
systems. But since many real world applications do not
support their usage, odometry information needs to be used.
SpaceClimber uses a contact point odometry which takes
the position of each foot during ground contact as input
and averages their changes to the overall robot position
difference. The orientation change is measured by an inertia
measurement unit (IMU). For a more accurate velocity
estimation, more sophisticated motion models [13], complete
slam approaches [14], or fusion of visual odometry can be
applied.

Besides motion commands, in some applications the op-
erator needs to influence the robot’s posture as well, e.g., to
fit through doorframes or to enter flat confined spaces. Thus,
body width and body height are estimated as well. Here, body
width is defined as the largest lateral distance between any
foot of the left and right side. The performance feature body
height is the inverted average of all vertical foot positions
with respect to the robot’s coordinate system.

B. Meta Performance Features

Since kinematically complex robots have numerous possi-
bilities to perform actions in various ways, additional criteria
to compare them are required. Locomotion behaviors can be

Fig. 2. Flow diagram of the procedure to determine state context features
(italic) on the basis of visual data and the current robot pose

characterized by their stability or efficiency, both expressible
by several features.

The static stability margin (ssm) [15] and force-angle
stability margin (or dynamic stability angle, dsa) [16] are
common stability metrics. The former measures the stability
as a minimal distance between the projected center of gravity
and the edges of the support polygon, which is defined as
convex hull formed by the robot’s footprints. This method
was chosen for its simplicity and lower computational cost.
The latter defines the stability as minimal angle between
gravity vector and the vector from the robot’s zero moment
point to the closest edge of the support polygon. This
approach takes, in comparison to ssm, dynamic effects and
the robot height into consideration.

The overall power needed by all joints as well as all
sensor and processing units is a feature that characterizes
a behaviors efficiency. For locomotion, energy per distance
(epd) is common, which multiplies the power with the
processing period and divides it by the position change.
The latter is computed by the average Euclidean distance
each foot moves during ground contact. In this way, turning
movements are also incorporated. The sum of the roll and
pitch angular rotation speeds is used to measure the undesired
body vibration.

III. ENVIRONMENTAL CONTEXT

For safe and efficient locomotion in unstructured terrain,
the robot should frequently adapt its motion control param-
eters to the current environmental context. Therefore, the
environment should be characterized through meaningful fea-
tures. In most common approaches, step hazards, inclination,
and structure of the terrain are taken into consideration.
In this section, an overview of determining these terrain
characteristics on basis of point cloud data is provided
(Fig. 2).

At first, a map is continuously updated by synchronized
pose information and point cloud data. The environment
is represented in form of a multi-level surface map [17],
which has the possibility to handle overhanging and vertical
objects, e.g., the representation of confined spaces. Fitting to

Fig. 3. Visualization of generated map, the region of interest (violett area
beneath red rectangle), and estimated state context features

the foot size of the robot, the size of a single cell patch
was set to 8 cm x 8 cm which represents the mean of all
point cloud data in this area. By considering the height
of the robot and its maximum step height, the traversable
surface is built from the environment map, which excludes
all patches unaccessible to the robot. The relevant part of the
environment, which should have an influence on the current
locomotion behavior, is the area beneath the robot and the
region in direction of movement during the next step cycle.
For this region of interest (ROI), the environmental features
are determined (Fig. 3).

A. Step Hazard

The state context feature step hazard represents the highest
height difference between cells with respect to the robot.
Therefore, the ROI is transformed to the robot’s coordinate
system making the step hazard independent from the ground
inclination. Furthermore, the sign of the height difference
is a valuable information. Positive steps should have more
influence on the locomotion behavior because they can block
the intended motion. So, a positive step hazard above a min-
imum threshold min diff is preferred to any negative step
hazard. The entire algorithm can be described as followed:

1: for each patch in ROI do
2: n patch = getNeighbor(patch,motion direction)
3: diff = getHeight(n patch)− getHeight(patch)
4: if |diff | < min diff then
5: diff = 0
6: end if
7: if diff > 0 then
8: step hazard = max(diff, step hazard)
9: else

10: if step hazard < 0 then
11: step hazard = min(diff, step hazard)
12: end if
13: end if
14: end for

B. Inclination and Terrain Structure

To compute the these terrain characteristics, a least-square
plane fitting algorithm is applied to the ROI [18], which is

independent from the terrain inclination and the robot orien-
tation. To determine the inclination of the surface relative to
the gravity vector, but in the longitudinal and lateral direction
of the robot, only the rotation of the robot around the gravity
vector is applied onto the ROI.

The context features slope x and slope y are used to
represent the plane inclination in longitudinal and lateral
direction of movement, respectively. Therefore, the angles
between x and y component of the plane’s normal vector
and the gravity vector are calculated.

The state context feature roughness is computed by the
standard deviation of cell patches along the plane’s normal
vector. It is normalized to the maximum possible step height
of the robot to obtain a robot-meaningful coefficient.

IV. BEHAVIOR ADAPTATION

In the proposed experience-based control approach, the
mapping of desired actions to locomotion behaviors is based
on the current context and the experiences stored in the
BL. This section provides an overview of the structure of
this knowledge base and its utilization to select locomotion
behaviors.

A. Behavior Library Structure and Management
The BL consists of behaviors which are defined through a

motion control algorithm and parameter sets [19], evaluated
contexts, and behavior evaluations. Each of the latter holds
a reference to one behavior and E context evaluations which
represent the experience stored in the BL (Fig. 4). Simulated
data, e.g., produced by behavior learning algorithms, or
real experiences from everyday usage can be stored in the
BL. The type of experience needs to be indicated by a
setup identifier, because these data must not be merged.
Simulated experiences might be needed in certain situations,
but after having real experiences collected for the same
context, they loose importance due to the simulation reality
gap inaccuracy. Information about the evaluated state context
is mandatory as well, which is described by a list of I state
context features (scur1 , ..., scurI). Each of them is discretized
according to a robot-specific value range to limit the pos-
sible number of state contexts which are then referenced
in behavior evaluations. A list of J performance features
(pcur1 , ..., pcurJ), each characterized by a mean value, a mean
of its squared value (needed to calculate the standard devia-
tion of the feature over the number of evaluations), a mean
of the standard deviation of one step cycle, and a unit. The
number of evaluations indicates the reliability of a context
evaluation. It is also required when new experiences arrive
and the mean values of an existing context evaluation need
to be updated. Experiences are stored whenever a behavior
was continuously executed through a whole step cycle. Only
then, context and performance features can be averaged over
this step cycle, matched to the current behavior, and finally
stored in the BL (Fig. 5).

B. Behavior Configurator
Case-based reasoning is used for the real-time adaptation

of the motion control. A case is represented by a behavior

Fig. 4. Content of behavior evaluations

Fig. 5. Procedure to store new experiences in the behavior library

evaluation of the BL. The input problem can be described by
two feature vectors representing the current environmental
state with I state context features and the current desired
action with J performance features, where each feature is a
tuple consisting of value (scuri , pcurj) and weight (wS

i , wP
j).

The J performance features consist of A variable features
describing the desired action and M features describing the
meta information which are constant at their optimal values.

To identify the most suitable case, the proposed selection
algorithm calculates for each case in the BL the similarity to
the input query. To be able to compare feature values, every
feature value is normalized according to robot-relevant limits.
In the first step, the state similarity SimState

e between the
current state features scuri and stored reference state features
sref,ei is calculated for each context evaluation e of each
case (1). The weighted mean squared error is used, as it
is more sensitive to large differences of one single feature
than to small differences of several features compared to the
weighted mean absolute error.

SimState
e = 1−

∑I
i=1(s

cur
i − sref,ei)2 · wS

i∑I
i=1 w

S
i

(1)

The weights for each feature variable wS
i can be used to

include the confidence or importance of the corresponding
state context feature estimation. Finally, the state similarity
for the entire case SimState is represented by the maximum
state similarity of the E evaluations (2).

SimState = max
e∈E

(SimState
e) (2)

To ensure that only the most relevant performance eval-
uation is taken into consideration, the action similarity is
calculated for the evaluation emax with the highest state sim-
ilarity (3), also using the weighted mean squared error (4),

emax = argmax
e∈E

(SimState
e) (3)

SimAction = 1−
∑J

j=1(p
cur
j − pref,emax

j)2 · wP
j∑J

j=1 w
P
j

(4)

where wP
j are the weights of a performance ratio which the

operator or higher layers can define to influence the robot
behavior. Finally, the overall similarity Sim of a case is the
product of both single similarities (5).

Sim = SimState · SimAction (5)

After determining the similarity of each case, the behavior
of the most similar case, which yields the probably best
locomotion behavior, is applied.

V. EXPERIMENTAL EVALUATION

To analyze the application of the proposed approach, a
suitable BL is needed. In the first experiment, SpaceClimber
was controlled manually through two different obstacle
courses by setting its control parameters (22 were available).
The generated locomotion behaviors and their performance
in visited state contexts were recorded to fill BLs. It was
evaluated how BLs evolve to analyze their maturity. In
the second experiment, the generated BLs were used by
the proposed behavior configurator and combined with a
trajectory follower to generate motion commands to traverse
an obstacle course autonomously.

Both experiments were conducted in simulation1 for sev-
eral reasons. First, operators of different skill level par-
ticipated to increase the diversity of chosen locomotion
behaviors. But especially unskilled operators can choose fatal
parameterizations which could damage the robot. Second,
complex test tracks with reproducible conditions could be
generated which allow a high diversity of contexts. And third,
the operators had best conditions to control the robot due to
an experiment setup including a three-dimensional view on
the robot in real-size from different perspectives as well as
two touch screen monitors to visualize the robot’s telemetry
data and to conveniently set the control parameters.

The operators were evaluated to compare their skill level,
to select appropriate operators for building BLs, to force the
exploration of behaviors, and to compare their performance
to autonomous control.
• Position Accuracy: A path was provided to guide the op-

erator through the obstacle course. The average distance
to the path was recorded, whereas a distance of more
than 0.5 m (approx. half of the robot width) resulted
in a score of 0% and a distance of less than 0.1 m in
100%. The small corridor for a full score was introduced

1https://rock-simulation.github.io/mars/

to avoid continuous motion corrections allowing more
behavior evaluations.

• Energy Efficiency: epd was used, whereas a value of
more than 1.4 Wh/m resulted in a score of 0% and
a value of less than 0.14 Wh/m in 100%, which cor-
responds to an average power consumption of 100 W
(power needed to hold up the body and to power the
senors and processing units) at a speed of 1/5th of the
body length per second or 1/50th, respectively.

• Stability: The average dsa was used as metric whereas
a positive angle scored up to the limit of 45◦ (100%)
whereas instability (0◦) returned no score.

Before conducting the actual experiment, each operator
had to overcome a replica of the 2013th DARPA robotics
challenge mobility test track2 to analyze the operator’s
skills in controlling SpaceClimber. Only operators which
completed the task with a overall score above 25% were
selected for building a BL, since it was intended to apply
the experience-based control approach on the real system in
a third experiment.

A. Generating Behavior Libraries

To build up BLs, two different obstacle courses were
generated (Fig. 6). The outdoor test track includes obsta-
cles commonly found outside whereas the indoor test track
incorporates obstacles which can be recreated with basic
elements. Both obstacle courses require many adaptations
of the motion control to realize various translational and
rotational movements and to pass one kind of obstacle
without failing another.

Each obstacle course was traversed by five operators
of comparable skill levels. During each experiment, a BL
was built from scratch by recording the chosen locomotion
behaviors, the average context, and the resulting behavior
performance during each step cycle of constant parametriza-
tion. Fig. 7 shows the sizes of the generated BLs. After
having all operator-specific BLs acquired, they were merged
track-wise and all together to generate larger BLs. During
the merge process, identical behaviors and state contexts
are reused. Some evaluated contexts were identical in many
libraries, due to the discretization before storing, resulting in
a smaller size than all of the BLs combined. In contrast, no
behavior was used in more than in one BL.

Since the library size alone does not provide an adequate
measurement of the maturity of the BL, evaluated state
contexts and the range of each performance feature need
to be analyzed as well. A histogram per context feature
is applicable to analyze the former. It provides a good
estimate which contexts are evaluated and which ones need
to be explored before delivering reliable information for
autonomous behavior selection. The expected performance
can be analyzed by boxplots. There, it needs to be dis-
tinguished between action performance features (velocity x,
velocity y, turn rate, body height, and body width) and meta
performance features (ssm, dsa, epd, power, body vibration).

2http://archive.darpa.mil/roboticschallengetrialsarchive/

1. railway tracks
- 22 cm height

2. gravel field

3. scattered
stone field
- 25 cm height

4. small
stone field

- 10 cm height
- 5° incline
- 31,5 cm step

5. bridge
- 20° incline
- 120 cm width

6. hill
- 5° to 20° incline
- 150 cm width

7. stairs
- 14 cm step height
- 30 cm step length
- 150 cm width

start

end

(a) Outdoor test track schematic

1. & 4. random stepping field
- 20 cm x 20 cm steps
- 10 to 40 cm height

start end

2. euro pallets
- 122,5 x 82,5 cm
- 16 cm height

3. 25° slope

4. 30° slope

5. random
obstacle
field

- up to 20 cm
heights

(b) Indoor test track schematic

(c) Outdoor test track simulation (d) Indoor test track simulation

Fig. 6. Test tracks to generate behavior libraries

in_
op

1
in_

op
2

in_
op

3
in_

op
4

in_
op

5
inL

ib

ou
t_o

p1

ou
t_o

p2

ou
t_o

p3

ou
t_o

p4

ou
t_o

p5
ou

tLi
b

ful
lLib

0

200

400

600

800

1000

1200

1400

1600

1800
cases
context evaluations
contexts
total evaluations

Comparison of Library Sizes

Fig. 7. Comparison of individual and merged behavior libraries

Fig. 8(a) shows the boxplot of out op3 which has small boxes
and few outliers, indicating a library of small exploration
which is less general applicable but very confident within
a certain range of action. In contrast, Fig. 8(b) shows the
library of out op2 which covers a broad range of perfor-
mance. But since the number of evaluated behaviors is
similar, its confidence over the whole range of performance
is less. In addition, asymmetries at the action performance
features show an unbalance, e.g., when building the BL of
out op2 no locomotion behavior to turn leftwards could be
stored. The merge of all BLs (Fig. 8(c)) shows a plot with
more symmetric boxes covering a broader spectrum of each
action performance feature, indicating higher flexibility and
confidence. As long as a BL provides sufficient behavior for

the requested actions, its performance is better the closer
the boxes of the meta performance features are to their
optimums.

velocity
 x

(-0.1 to 0.4 m/s)
velocity

 y

(-0.1 to 0.1 m/s) turn rate

(-10.0 to 10.0 deg/s)
body height

(0.15 to 0.5 m)
body width

(0.5 to 1.3 m) ssm

(0.0 to 0.5 m) dsa

(0.0 to 65.0 deg) epd

(0.0 to 2.0 Wh/m) power

(50.0 to 450.0 W)

body vibration

(0.0 to 20.0 deg/s)
0.0

0.2

0.4

0.6

0.8

1.0

overall performance feature distribution

(a) Behavior library with few performance exploration

velocity
 x

(-0.1 to 0.4 m/s)
velocity

 y

(-0.1 to 0.1 m/s) turn rate

(-10.0 to 10.0 deg/s)
body height

(0.15 to 0.5 m)
body width

(0.5 to 1.3 m) ssm

(0.0 to 0.5 m) dsa

(0.0 to 65.0 deg) epd

(0.0 to 2.0 Wh/m) power

(50.0 to 450.0 W)

body vibration

(0.0 to 20.0 deg/s)
0.0

0.2

0.4

0.6

0.8

1.0

overall performance feature distribution

(b) Behavior library with large performance exploration, but
few confidence

velocity
 x

(-0.1 to 0.4 m/s)
velocity

 y

(-0.1 to 0.1 m/s) turn rate

(-10.0 to 10.0 deg/s)
body height

(0.15 to 0.5 m)
body width

(0.5 to 1.3 m) ssm

(0.0 to 0.5 m) dsa

(0.0 to 65.0 deg) epd

(0.0 to 2.0 Wh/m) power

(50.0 to 450.0 W)

body vibration

(0.0 to 20.0 deg/s)
0.0

0.2

0.4

0.6

0.8

1.0

overall performance feature distribution

(c) Mature behavior library

Fig. 8. Maturity compare of behavior libraries

B. Fully Autonomous Traversing of an Obstacle Course
In this experiment, the operator was replaced by a trajec-

tory follower to create motion commands with a maximum
of 150 mm/s of longitudinal translation and 10◦/s rotational
speed. Furthermore, the behavior configurator utilized the
previously generated BLs to autonomously map the incoming
motion commands to control parameters of the motion con-
trol. The task was still to traverse the obstacle course along

the given trajectory. For this application, the performance
prioritization was chosen as follows. The weight of turn rate
was set to 1.0 and of velocity x to 0.8 to underline path
following characteristics. Since velocity y is not commanded
by the trajectory follower, its weight was set to 0.2 to
degrade behaviors which move sidewards unintendedly. The
task does not require a specific body height or body width.
Consequently the weight of these action features was set to
zero. The meta performance weights were set to 0.1 so that
behaviors of similar action performance but with more meta
performance are rated higher. Exceptions are ssm and power
which were set to zero since stability and energy efficiency
are incorporated by dsa and epd, respectively.

Fig. 9 shows the performance after traversing the out-
door obstacle course manually (operator) and autonomously
on basis of different BLs. The individual operator-specific
libraries were tested independently and their results than
merged (opLibs). Furthermore, the BLs generated on the
outdoor test track (outLib), the ones generated on the indoor
test track (inLib), and all together (fullLib) were merged
and tested. In addition to the operator evaluation, the plot
lists also the percentage of how often the test track was
completed. The graph and the observation of the experiments
yield following conclusions:

• The performance of the autonomous control using an
individual operator library is performing worst since
none of them accomplished the task. Every BL has
its own weakness, e.g., the library of out op1 has no
behavior which sets the turn rate in slopes resulting in
falling from the hill (obstacle 6), the library of out op2
has no adequate leftwards turn behavior resulting in
exceeding the map limits (at obstacle 2), the libraries
of out op3, out op4, and out op5 have no point turn
behavior which resulted in falling from the edge be-
tween hill and stairs (between obstacle 6 and 7). The
lack of behaviors results from the requirement that a
behavior needs to stay constant for a step cycle to get
evaluated, e.g., an operator who continuously tunes the
control parameters allows less behavior evaluations.

• Merging of all individual outdoor libraries results in BL
of higher maturity because the knowledge of the single
Bls is combined, thus, the performance was increased.
The energy efficiency was better compared to manual
control because there were less situations where the
robot got stuck due to an unsuitable parametrization.
In 60% of the runs, the obstacle course could be
completed. But variances of each run, originated from
multi-tasking computation, paired with comparably low
path following capability led to falling from the edge
on top of the hill.

• The BL merged from the indoor libraries lead to a con-
trol which works in principle even trained on different
obstacles but with similar feature representation. But it
has no behavior to cope with the tight point turn on
top of the hill (between obstacle 6 and 7). Still the
transferability of the proposed approach is shown.

operator
opLibs

outLib inLib
fullLib

0

20

40

60

80

100

28%

34%

40%

25%

42%

97%

60%

81%

99%

53%

48%
50%

44%

50%

80%

0%

60%

0%

64%

35%

58%

42%

73%

energy efficiency position accuracy stability completed overall

Fig. 9. Performance comparison while traversing the outdoor obstacle
course. Note that operator represents the average scores of all five operators
who traversed this terrain manually and opLibs shows the same for au-
tonomous traversing while using the single five individual operator libraries,
respectively. The other three plots are averaged over five autonomous runs
of each merged library.

• The autonomous control using the library containing all
data performed best. It completed the obstacle course
and the position accuracy was increased compared to
the outdoor library.

• In the cases where the autonomous control did not com-
plete the course, missing maneuverability was the rea-
son, which could be improved by intervening with man-
ually setting motion commands. In contrast, the failure
reason during manual control was a bad parametrization
during a descend (at the end of obstacle 4) causing the
robot to tip over. The latter reason is more serious and
may occur more often in situations where the operator’s
task load is very high.

C. Transfer to Real System

To test the applicability of the experience-based adaption
of the motion control in reality, it was used to apply in
simulation leaned behaviors on the real SpaceClimber. The
task was to overcome an obstacle course consisting out of a
step of 12 cm height, followed by a 2 m plane and a random
obstacle field of up to 20 cm tall obstacles.

The pictures of Fig. 10 show, that the robot was perform-
ing its motion as intended. Besides other parameters of less
impact, body and step height were autonomously lifted when
encountering the step. After passing it, SpaceClimber was
returning to its energy-efficient lower locomotion behavior.
Then, a higher walking pattern was chosen to overcome the
random obstacle field. Further investigations on the transfer
from simulation data to the real system is provided in [20].

VI. CONCLUSION AND OUTLOOK

This paper presents an experience-based interface layer for
the motion control of kinematically complex robots. It au-
tonomously maps scenario-specific actions to robot-specific
control parameters by incorporating the current context and

(a) (b)

(c) (d)

Fig. 10. SpaceClimber autonomously switching between energy-efficient
walking in flat terrain and slower walking pattern with taller body and step
height to traverse a step and a random obstacle field.

collected experiences, i.e. performance of behaviors in pre-
viously visited contexts. Thus, the probably best locomotion
behavior is selected which takes an adjustable performance
prioritization into consideration. The determination of appro-
priate state context and performance features is shown on the
example of the walking robot SpaceClimber. The structure of
the BL, in which all experiences are stored, is described. A
case-based reasoner utilizes this information to derive control
parameters generating various locomotion behaviors.

The experiments show that a suitable BL can be generated
by recording the chosen parameters as well as the passed
state context and evaluated behavior performance features
while an operator is manually controlling a walking robot
with his or her expert knowledge. The proposed experience-
based control approach could then be used to traverse a
demanding obstacle course autonomously. Different BLs
with respect to size and maturity are compared. It was shown
that the real SpaceClimber could also autonomously adapt
its locomotion behavior to traverse another obstacle course
by using the experience-based approach with knowledge
generated in simulation.

In the current implementation, more evaluated behaviors
lead to better performance since only the best behavior is
selected. In the future, more advanced regression techniques
are planned to be used to generate better behaviors with
less knowledge. Furthermore, autonomous setting of the
performance prioritization needs to be analyzed. Lifelong
learning including wear out of the robot is also a future
topic as well as the incorporation of more features, e.g, soil
characteristics. In addition, the information stored in the BL
are also valuable areas in other areas, e.g., to improve cost
calculation in path planning or to detect anomalies.

ACKNOWLEDGMENT

The presented work was carried out in the project
LIMES, a collaboration between the DFKI Robotics Inno-

vation Center and the University of Bremen, funded by the
German Space Agency (DLR, Grant numbers: 50RA1218,
50RA1219) with federal funds of the Federal Ministry of
Economics and Technology (BMWi) in accordance with the
parliamentary resolution of the German Parliament.

REFERENCES

[1] T. Köhler, C. Rauch, M. Schröer, E. Berghöfer, and F. Kirchner,
“Concept of a biologically inspired robust behaviour control system,”
in Intelligent Robotics and Applications, 2012, vol. 7507, pp. 486–495.

[2] P. Putz and A. Elfving, “Control techniques 2,” Dornier GmbH, Tech.
Rep. CT2/CDR/DO/BL, August 1991, issue: 1.1, ESTEC Contract
9292/90/NL/JG (SC).

[3] R. Arkin, Behavior-based robotics. MIT press, 1998.
[4] E. Burattini and S. Rossi, “Periodic activations of behaviours and emo-

tional adaptation in behaviour-based robotics,” Connection Science,
vol. 22, no. 3, pp. 197–213, Sept. 2010.

[5] M. N. Nicolescu and M. J. Mataric, “Experience-based learning of
task representations from human-robot interaction,” in Computational
Intelligence in Robotics and Automation, 2001. Proceedings 2001
IEEE International Symposium on. IEEE, 2001, pp. 455–460.

[6] B. Gassmann, “Modellbasierte, sensorgestützte navigation von lauf-
maschinen im gelände,” Ph.D. dissertation, University Karlsruhe,
2007.

[7] F. Michaud, “Emib - computational architecture based on emotion and
motivation for intentional selection and configuration of behaviour-
producing modules,” Cognitive Science Quarterly, Special Issue on
Desires, Goals, Intentions, and Values: Computational Architectures,
vol. 3-4, pp. 340–361, 2002.

[8] C. E. Rassmussen, “Gaussian processes in machine learning,” Int.
journal of neural systems, vol. 14, no. 2, pp. 69–106, Apr. 2004.

[9] H. Hoffmann, G. Petkos, S. Bitzer, and S. Vijayakumar, “Sensor-
assisted adaptive motor control under continuously varying context,”
Int. Conf. on Informatics in Control, Automation and Robotics, 2007.

[10] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[11] J. L. Kolodner, “An introduction to case-based reasoning,” Artificial
Intelligence Review, vol. 6, no. 1, pp. 3–34, 1992.

[12] S. Bartsch, T. Birnschein, M. Römmermann, J. Hilljegerdes, D. Kühn,
and F. Kirchner, “Development of the six-legged walking and climbing
robot spaceclimber,” Journal of Field Robotics, vol. 29, pp. 506–532,
2012.

[13] J. Hidalgo-Carrio, A. Babu, and F. Kirchner, “Static forces weighted
jacobian motion models for improved odometry,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2014.

[14] J. Schwendner and F. Kirchner, “eslam - self localisation and mapping
using embodied data,” KI-Künstliche Intelligenz, vol. 24, no. 3, pp.
241–244, 2010.

[15] R. McGhee and G. I. Iswandhi, “Adaptive locomotion of a multilegged
robot over rough terrain,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 9, no. 4, pp. 176–182, April 1979.

[16] E. Papadopoulos and D. a. Rey, “The Force-Angle Measure of Tipover
Stability Margin for Mobile Manipulators,” Vehicle System Dynamics,
vol. 33, no. 1, pp. 29–48, Jan. 2000.

[17] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
outdoor terrain mapping and loop closing,” in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on. IEEE, 2006,
pp. 2276–2282.

[18] J. Gu, Q. Cao, and Y. Huang, “Rapid traversability assesment in 2.5 d
grid based map on rough terrain,” Int. Journal of Advanced Robotics,
vol. 5, no. 4, pp. 389–394, 2008.

[19] M. Langosz, L. Quack, A. Dettmann, S. Bartsch, and F. Kirchner,
“A behavior-based library for locomotion control of kinematically
complex robots,” Int. Conf. on Climbing and Walking Robots, pp. 495–
502, 2013.

[20] A. Dettmann, M. Langosz, K. von Szadkowski, and S. Bartsch, “To-
wards lifelong learning of optimal control for kinematically complex
robots,” ICRA14 Workshop on Modelling, Estimation, Perception and
Control of All Terrain Mobile Robots, 2014.

