
AN EXPERIENCE-BASED INTERFACE FOR ABSTRACTING THE MOTION CONTROL
OF KINEMATICALLY COMPLEX ROBOTS

Alexander Dettmann1, Sebastian Bartsch2, and Frank Kirchner1,2

1Faculty of Mathematics and Computer Science, University of Bremen, 28359 Bremen, Germany,
firstname.lastname@uni-bremen.de

2German Research Center for Artificial Intelligence - Robotics Innovation Center (DFKI RIC), 28359 Bremen, Germany,
firstname.lastname@dfki.de

ABSTRACT

In order to provide higher mobility and to assist hu-
mans in building up infrastructure in future extraterres-
trial space missions, kinematically complex robots are
needed. One key challenge which needs to be addressed
is to handle their complex motion control and to make
use of their high potential. Utilizing the possibility to
achieve various actions even in different ways by tuning
manually numerous parameters of the motion control can
be very demanding and even unmanageable when also
taking communication delay into account.

Thus, the proposed experience-based interface is encap-
sulating the motion control of complex robots by au-
tonomously mapping application-specific action param-
eters to robot-specific motion control parameters depend-
ing on the current context. Therefore, the robot is using
experiences collected from previously executed behav-
iors. Apart from acquiring experiences during operation
of the real robot, they can also be collected in simula-
tion. The possibility to test in low gravity environments
makes the latter a valuable tool for increasing the robot’s
knowledge base for space missions.

The experiments in this paper show that reconfiguring
the motion control can be beneficial and that in simula-
tion optimized behaviors can easily be integrated in the
experience-based control interface to improve the perfor-
mance of a robot. In addition, the transferability from
simulation to the real system is shown.

Key words: kinematically complex robots, experienced-
based control, behavior adaptation.

1. INTRODUCTION

In current and past space missions for planetary explo-
ration, wheeled systems with a passive suspension sys-
tem have been preferred due to their simplicity and ro-
bustness. Even though they provide a reasonable degree

of mobility, they always face the risk of getting stuck in
a trench, which could result in a complete mission fail-
ure. In future missions, a higher degree of mobility will
be required to reach places of scientific or ecological in-
terest, e.g., steep craters where water ice can be found [6]
or well-illuminated hills for stable power supply. For this
reason and to support complex manipulation tasks, e.g.,
for building up infrastructure, a flexible and active loco-
motor system will be required.

Kinematically complex robots with an active suspension
system like walking robots or hybrid rovers meet the re-
quirements in terms of mobility and flexibility, but de-
mand a more sophisticated motion control. In com-
mon control architectures, e.g., the functional reference
model [7], a mission layer tries to fulfill mission goals,
therefore deriving tasks which lead to a consecutive ex-
ecution of actions. For instance, the mission goal of an-
alyzing a region of scientific interest results in a set of
tasks for reaching and investigating this location. The
deliberative navigation and planning layer then generates
movement commands, which have to be executed, usu-
ally by an reactive action layer. When controlling kine-
matically complex robots, the latter is realized by a rather
complex motion control which in the end generates motor
commands.

However, the motion control has more tunable parameters
than the task layer could take into consideration. Thus, an
operator has to tune most of these manually to produce
the desired behavior, which increases the operator load.
Taking also the problem of communication delay into ac-
count, makes the control of kinematically complex robots
almost unmanageable. In addition, the behavior perfor-
mance is heavily depending on the current context and
numerous possibilities exist to achieve the desired action
but with different performance, e.g., stability or energy
efficiency. Consequently, an appropriate component is
required which autonomously maps scenario-specific ac-
tions to robot-specific control parameters.

In this paper, a motion control interface is proposed
which uses previous experiences to generate a proper
configuration for the motion control depending on the
current environmental context and the desired action pro-



A
c

ti
o

n
 L

a
y
e

r

Motion Control

BehaviorBehavior

Sensor ReadingsSensor Readings

Action with 

Performance 

Prioritization

Action with 

Performance 

Prioritization

Joint TargetsJoint Targets

Experience-Based Motion Control Interface

Performance 

Evaluation

Behavior Configurator

State Context 

Estimation

Behavior Library

B
e

h
a

v
io

r
B

e
h

a
v
io

r

Task Layer

InformationInformation

Figure 1. Experience-based interface (green) which extends the motion control in the action layer (orange) to allow
scenario-specific commands and to generate additional information for higher layers. Experiences, i.e. performance
information of behaviors in various state contexts, are stored in a behavior library and utilized by a behavior configurator
to map scenario-specific actions to robot-specific control parameters of the motion control. The estimation of performance
and state context features is based on the robot’s processed sensor values and may already be part of the motion control
itself.

vided by the task layer. The interface and its components
are described in Section 2. Section 3 describes the needed
knowledge base and its utilization. The experiments in
Section 4 analyze how a reconfiguration of the motion
control can be used to adapt the locomotion behavior of
a walking robot. In addition the direct utilization of in
simulation optimized behaviors on a real robot is shown.
Section 5 briefly concludes the paper and provides an out-
look.

2. EXPERIENCE-BASED MOTION CONTROL
INTERFACE

Controlling kinematically complex robots is a challeng-
ing task because numerous parameters have to be tuned
simultaneously to get the desired robot behavior. When-
ever the desired action or current environmental condi-
tion change, new parameters have to be selected simul-
taneously leading to high operator load. In order to
decouple the operator load from the complexity of the
robot’s motion control and to maintain the possibility to
change the overall robot behavior depending on the cur-
rent scenario, it is desirable to control a robot by tuning
application-specific instead of robot-specific parameters.
Consequently, the input for a generic motion control in-
terface is the desired action with an application-specific
performance prioritization which then has to be mapped
to robot-specific motion control parameters with consid-

eration of the current context (Fig. 1). For instance, a cer-
tain path can be followed by focusing on stability, energy
efficiency, precision, or a mix of the former.

The idea in the proposed approach is to build up a knowl-
edge base which holds all relevant robot-dependent in-
formation about known behaviors and their performance
in various state contexts. This so-called behavior library
(BL), can then be utilized by a behavior configurator to
find the required mapping, thus generating different be-
haviors. Since the robot-dependent information is implic-
itly stored in the BL, a generic robot-independent map-
per can be implemented as an interface to the action-
generating task layer encapsulating the robot-specific
motion control. In addition, the experienced performance
information provided by the BL can be utilized by the
task layer to improve planning and navigation or to de-
tect anomalies.

3. EXPERIENCE MANAGEMENT

In the proposed experience-based control approach, the
mapping of desired actions to behaviors is based on the
current context and the experiences stored in the BL.
This section provides an overview of the structure of this
knowledge base and its utilization to select appropriate
behaviors.



3.1. Behavior Library

The BL consists of behaviors which are defined through
a motion control algorithm and parameter sets [5], eval-
uated contexts, and behavior evaluations. Each of the
latter holds a reference to one behavior and multiple con-
text evaluations which represent the experience stored in
the BL (Fig. 2).

The context evaluations hold performance information of
the referenced behavior for evaluated contexts. Each in-
cludes a reference to a visited context which is repre-
sented by a list of application-specific context features.
In the field of exploration in unstructured terrain, fea-
tures like slope in longitudinal and lateral direction, max-
imum step hazard, as well as roughness of the terrain are
meaningful characteristics which have to be estimated for
the area beneath the robot and the region in direction of
movement during the next evaluation period. The latter
is the time needed to execute an action, which corre-
sponds here to a step cycle. Through continuous self-
evaluation, the robot is measuring its behavior perfor-
mance. Here two categories of performance features ex-
ist. First, action-specific features are needed to character-
ize the execution of the current action, e.g., longitudinal
and lateral velocity, as well as turn rate in the field of lo-
comotion. Second, meta performance features are needed
to characterize behaviors which result in the same action
but differ in stability, energy efficiency, undesired body
vibration, etc. Mean value, mean squared value (needed
to calculate the standard deviation of the feature over the
number of evaluations), mean of the standard deviation
of one evaluation period, and a unit for each performance
feature is stored in every context evaluation.

Simulated data, e.g., produced by behavior learning algo-
rithms, or real experiences from everyday usage can be
stored in the BL. The type of experience needs to be in-
dicated for every context evaluation by a setup identifier,
because these data must not be merged. Simulated ex-
periences might be needed in certain situations, but after
having real experiences collected for the same context,
they lose importance due to the simulation reality gap.
The number of evaluations indicates the reliability of a
context evaluation. It is also required when new experi-
ences arrive to update the mean values of existing context
evaluations.

Whenever a behavior was continuously executed during
a whole evaluation period, context and performance fea-

Figure 2. Content of behavior evaluations

tures can be averaged, matched to the current behavior,
and finally stored in the BL (Fig. 3). To have a lim-
ited number of state contexts, each context feature is dis-
cretized before storing. Therefore, each feature has an
application-specific range and is divided into equally dis-
tributed steps where incoming values are mapped to the
closest one.

3.2. Behavior Configurator

The behavior configurator is the instance which generates
a mapping between current context and incoming action
to robot-dependent motion control parameters. The BL
holds the necessary information to build this mapping. In
the proposed approach, a case-based reasoner [4] is used
to select the behavior which fulfills the current desired ac-
tion with the best performance. Therefore, each behavior
is rated by computing the following steps.

First, the similarity of each context evaluation of ev-
ery behavior evaluation to the current context is deter-
mined. Therefore, each feature is normalized according
to a robot specific feature range. The mean squared error
is used as similarity metric, as it is more sensitive to large
differences of one single feature than to small differences
of several features compared to the weighted mean abso-
lute error.

Second, the context evaluation with the highest state sim-
ilarity is selected, because its performance information
will provide the closest behavior performance approxi-
mation. The expected behavior performance is estimated
by computing the weighted mean squared error between
desired action features and corresponding performance
features of the context evaluation. Meta performance fea-
tures are compared with their constant optimal values.
The weight for each feature is used to influence its pri-
oritization. This gives the operator or higher layers the
opportunity to influence the robots behavior, e.g., the op-
erator may define whether the commanded speed or turn
rate has to be followed precisely, stability, energy effi-
ciency, or a mix of the former is of importance in the
current scenario.

Figure 3. Procedure to store new experiences in the be-
havior library



Third, the overall behavior score, which is used to select
the most suitable behavior, is calculated by weighting the
expected behavior performance with the context similar-
ity, because the accuracy of the behavior performance ex-
pectation is depending on it.

In space applications, the selection of the putatively best
behavior is a preferable approach because it is based on
former experiences. In the case of an desired action in
an unknown context, indicated by low similarity values,
there is always the possibility to gain experiences from
experiments with a replicate on earth or with simulation.
The latter of course might yield inaccurate expectations
due to the simulation reality gap. But especially the pos-
sibility to simulate low gravity can lead to more accu-
rate results compared to hardware tests with a replicate.
The transferability from simulated data on the real sys-
tem must be assured, which is exemplary shown in the
next section.

4. EXPERIMENTS

In this section, experiments to evaluate the au-
tonomous selection of appropriate behaviors by using the
experience-based interface are described. In the first ex-
periment, the behavior configuration benefit is analyzed,
and in the second, the integration of optimized behaviors
is tested in simulation. The third experiment investigates
the transferability to the real system.

In all experiments, a locomotion scenario was used,
where the six-legged walking robot SpaceClimber [2] as
an example for kinematically complex robots, had to tra-
verse an obstacle course consisting of a 2.5 m flat plane,
followed by an obstacle of 0.2 m height, and another flat
plane of 1.15 m towards the finish line (Fig. 4). The
needed energy per distance (EPD) was used to evalu-
ate the robot’s performance (Eq. 1), where E is the en-
ergy needed to pass the course, d the overall distance
of 3.65 m, P the average power consumption, and T the
time needed to pass the course.

EPD =
E

d
=

P · T
d

(1)

SpaceClimber has 24 degrees of freedom which are

(a) Simulation (b) Real system

Figure 4. SpaceClimber traversing the obstacle course

controlled by an reactive behavior-based motion con-
trol, which has to be parameterized to produce differ-
ent walking behaviors. The motion control consists of a
Cartesian-based central pattern generator to generate tra-
jectories around posture-dependent foot positions. The
sum of both are transformed by inverse kinematics into
joint space and finally applied to the motors. In addition,
the robot movement is stabilized by an elevation and de-
pression reflex (EDR) which crouches the leg if an obsta-
cle is encountered during touchdown phase or stretches
the leg when expected ground contact is missing during
stance phase. Depending on the parameterizations of the
motion control, SpaceClimber produces different loco-
motion behaviors with distinctive properties.

4.1. Behavior Adaptation

To be able to traverse the obstacle course, SpaceClimber
needs to walk with high body and step height and with
activated and sensitive EDR. The parameters (Table 1,
col. 4) produce this desired obstacle behavior. When uti-
lizing the autonomous selection of the behavior configu-
rator, a second behavior (plane behavior, Table 1, col. 2)
can be used in the plain parts of the obstacle course to
improve stability and energy efficiency. The parameters
were derived by expert knowledge and were already ex-
tensively tested in previous experiments [1].

A simulation1 was used to evaluate both locomotion be-
haviors in both contexts (plane and obstacle context, dis-
tinguished by step hazard of zero and 20 cm respectively).
The experiences were stored in the BL.

As reference, the obstacle behavior was used to traverse
the obstacle course. Then the behavior configurator was
used to switch the locomotion behavior when encounter-
ing the obstacle. Fig. 5 shows the resulting average power
consumption (five runs per setup). When starting on the
flat plane, the behavior configurator chose the plane be-
havior because it was more energy-efficient in the past.
It is visible that the robot is saving energy until reach-
ing the obstacle compared to the obstacle pattern. When
detecting the obstacle (at t=35 s), the increased step haz-
ard caused the behavior configurator to choose the obsta-
cle behavior since it had a higher performance score for
this context. This led to an increased power consumption,
but the obstacle was passed. Since time was saved in the
plane part of the obstacle course, the robot reached the
finish line earlier (at t=93 s) compared to the setup where
only the obstacle behavior was used. The resulting EPD
with reconfiguration was 26% less than without reconfig-
uration (Fig.6).

1MARS (Machina Arte Robotum Simulans) is a simulation and vi-
sualization tool for developing control algorithms and designing robots.
It consists of a core framework containing all main simulation compo-
nents, a GUI, OpenGL-based visualization, and a physics core that is
currently based on ODE (http://www.ode.org). It is available at
https://rock-simulation.github.io/mars/



Table 1. Parameters of used walking behaviors (all other parameters are kept at their default value and are omitted for
clarity)

behavior plane plane obstacle obstacle
expert knowledge optimized expert knowledge optimized

body shift x in mm 0 100 0 90
body height in mm 250 275 450 440

speed x in mm/s 50 50 25 25
length factor [0...1] 0.5 0.5 1.0 0.6

lift time in ms 200 240 400 840
shift time in ms 1400 1560 1000 1120

touchdown time in ms 200 1600 1000 1360
phase shift [0...1] 0.0 0.0 1.0 0.6

swing amplitude in mm 100 100 300 280
EDR sensitivity [0...10] 2 2 5 4

EDR touchdown delay in ms 120 120 80 40
EDR max crouch in mm -100 -100 -250 -150
EDR max stretch in mm 100 100 0 110

Figure 5. Average power consumption while traversing
the obstacle course in simulation

4.2. Integration of Optimized Behaviors

The proposed experience-based motion control interface
provides the possibility to apply optimization results on
the fly to influence the behavior of the robot. Therefore,
two further locomotion behaviors were learned in simu-
lation. CMA-ES [3] was used to optimize the parame-
ters from the expert knowledge derived behaviors, except
speed, which was kept constant to maintain comparabil-
ity. SpaceClimber had to traverse a plane and an obstacle
covered ground, respectively. The EPD metric was eval-
uated after a specified time limit and used to rate the in-
dividuals. The optimized parameters (Table 1, col. 3 and
5) indicate that a longer touchdown phase reduces ground
impact and therefore increases energy efficiency. It is also
noticeable that the body is shifted slightly to the front to
improve the stability. The resulting parameter behaviors
as well as all information about their performance in these
specific contexts were stored in the BL.

Because the proposed behavior configurator can directly
utilize new experiences from the BL, SpaceClimber was
able to choose from four possible locomotion behaviors
without restarting its motion control. The optimized be-
haviors were automatically chosen during the obstacle
course due to their better EPD value in both encounter-

Figure 6. Resulting energy per distance for accomplish-
ing the obstacle course in simulation

ing contexts (plane ground and obstacle). The resulting
EPD value for reaching the finish line with reconfigura-
tion was 4% less than using the expert knowledge be-
haviors. This is because SpaceClimber walked smoother
with less power peaks (Fig. 5).

4.3. Transferability to the Real Robot

Finally, the transferability to the real system was anal-
ysed by repeating the tests with the real robot (Fig. 7).
The results show that the time needed to complete the
obstacle course between each run had more fluctuations
(indicated by the stepwise decrease at the end of each
averaged power curve). In addition, the nominal power
consumption and resulting EPD was smaller compared
to the simulation results, indicating the simulation reality
gap. However, changing the parameters of the locomo-
tion control by switching from plane to obstacle behav-
ior reduced the EPD metric by 18% (Fig. 8). In addi-
tion, the optimized behaviors outperformed the ones de-
rived by expert knowledge by 15%. Due to less inter-
action force between foot and ground during touchdown
phase, slippage was reduced which resulted in complet-
ing the required distance in less time. This is underlined
by the fact that the optimized obstacle pattern without re-
configuration finished earlier than the expert knowledge



Figure 7. Average power consumption of the real system
while traversing the obstacle course

Figure 8. Resulting energy per distance for accomplish-
ing the obstacle course with the real system

patterns with reconfiguration. The experiments with the
real SpaceClimber show that the difference between op-
timized and expert knowledge patterns was larger than
in simulation. But it was also noticeable when using
the optimized obstacle pattern, that SpaceClimber almost
tipped over indicating a too large longitudinal body shift.
This example shows that optimized behaviors in simu-
lation are not optimal on the real system. Nevertheless,
they provide a good basis for further online adaptations
on the system.

5. CONCLUSION AND OUTLOOK

The proposed experience-based motion control interface
autonomously maps scenario-specific actions to robot-
specific parameters while incorporating the current con-
text. A case-based reasoner is used to select the puta-
tively best behavior based on experiences stored in a BL.
Higher layers can command a desired action and prior-
itize scenario-specific performance features to influence
the robot behavior instead of tuning robot-specific param-
eters. Consequently, the motion control is encapsulated,
generating an abstract interface which facilitates the us-
age of different kinds of kinematically complex robots.

By continuously collecting new experiences during oper-
ation, the robot implicity learns because the BL is grow-
ing, thus gaining confidence and incorporating system
wearout over lifetime. In addition, especially useful in
extraterrestrial exploration, when encountering a situa-
tion where no adequate behavior is known, a simulation

or a replica on earth can be used to find a suitable be-
havior which then can be stored together with collected
experiences in the BL to increase the robots competence
online.

The experimental results show that adapting the control
layer to a changing context can be beneficial. Taking a
locomotion scenario as an example, the best known be-
haviors concerning energy efficiency were selected by the
robot while traversing an obstacle course. In addition,
the operator or higher layers did not have to manage all
available locomotion parameters. Another advantage of
the proposed approach is shown by the direct usage of
optimization results in the robot control. The better ex-
pected performance of the optimized behaviors, based on
the experiences stored in the BL, led to their selection,
and finally proved to increase the robot’s performance.
The transferability from simulation to reality was shown,
which motivates the approach to support space missions
with simulation results.

Since in simulation optimized behaviors are not optimal
on the real system, further work has to be done to adapt
their parameters online which finally leads to a life-long
learning approach. In addition, the generation and uti-
lization of larger BLs has to be analyzed in more complex
scenarios.

ACKNOWLEDGMENTS

The presented work was carried out in the project
LIMES, a collaboration between the DFKI Robotics In-
novation Center and the University of Bremen, funded
by the German Space Agency (DLR, Grant numbers:
50RA1218, 50RA1219) with federal funds of the Fed-
eral Ministry of Economics and Technology (BMWi) in
accordance with the parliamentary resolution of the Ger-
man Parliament.

REFERENCES

[1] Bartsch, S. 2013, PhD thesis, University of Bremen
[2] Bartsch, S., Birnschein, T., Römmermann, M., et al.

2012, Journal of Field Robotics, 29, 506
[3] Hansen, N. & Ostermeier, A. 2001, Evolutionary

Computation, 159
[4] Kolodner, J. L. 1992, Artificial Intelligence Review,

6, 3
[5] Langosz, M., Quack, L., Dettmann, A., Bartsch, S.,

& Kirchner, F. 2013, Int. Conf. on Climbing and
Walking Robots, 495

[6] NASA.gov – LCROSS. 2009, LCROSS Impact
Data Indicates Water on Moon, http://www.
nasa.gov/mission_pages/LCROSS/main/
prelim_water_results.html

[7] Putz, P. & Elfving, A. 1991, Control Techniques 2,
Tech. Rep. CT2/CDR/DO/BL, Dornier GmbH, issue:
1.1, ESTEC Contract 9292/90/NL/JG (SC)


