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Abstract HTTPS is the standard for confidential and integrity-protected
communication on the Web. However, it authenticates the server, not its
content. We present WebTrust, the first comprehensive authenticity and
integrity framework that allows on-the-fly verification of static, dynamic,
and real-time streamed Web content from untrusted servers. Our frame-
work seamlessly integrates into HTTP and allows to validate streamed
content progressively at arrival. Our performance results demonstrate
both the practicality and efficiency of our approach.
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1 Introduction

The Hypertext Transfer Protocol (HTTP) is the standard protocol in the World
Wide Web that allows clients to request and receive any type of content from
a server such as static, dynamically created, or even live streamed content [9].
HTTP is a pure transfer protocol that does not provide any state information or
security guarantees by itself. For many applications, however, security guarantees
are strictly necessary and various extensions haven been proposed. The standard
protocol to provide security guarantees is HTTPS (HTTP over TLS [31]), which
establishes a secure channel between the client and the server. Although a secure
channel guarantees that the transferred content has not been modified during
the transmission, it neither guarantees the authenticity nor the integrity of the
delivered document itself. Moreover, if an attacker gained access to the server,
any content the attacker would put on the server would be authenticated at the
client’s side, since HTTPS only authenticates the connection. This situation is
completely unsatisfactory, since one can neither rely on the information in pub-
lished documents nor prove their correctness to third parties (non-repudiation).
Consider for example news aggregators that mainly serve information generated
by news agencies: An established HTTPS connection to a news aggregator or
social network cannot guarantee anything about the authenticity and integrity
of the delivered content itself. The problem becomes even more challenging when
we want to ensure the authenticity and integrity of live streamed content.



One intuitive approach to ensure the authenticity and integrity of content
would be to append a digital signature. However, signatures need to be down-
loaded separately and there is no unified solution that integrates into the exist-
ing infrastructure. Moreover, in case of large files, a single signature can only be
verified after the content has been downloaded completely. Individual signatures
also do not fulfill the requirements defined by today’s Web resources that embed
other resources such as images and scripts. Especially for (live) streamed con-
tent, this calls for a flexible and efficient solution that allows to verify content
on-the-fly. In order to prevent an attacker from being able to replace partial con-
tent with other, also signed, content, all relevant interconnected documents need
to be verified together. Mobile broadband providers replace embedded pictures
with their compressed versions in order to save bandwidth [10]. Certain Internet
providers even go as far as to inject advertisements into foreign websites [30].

1.1 Contribution

In this paper we present WebTrust, a comprehensive integrity and authenticity
framework for static, dynamic, and live streamed Web content that seamlessly
integrates into the existing infrastructure. Our framework allows content gen-
erators to publish authenticity- and integrity-protected content (from now on
referred to as WebTrust protected content) on untrusted servers. In addition,
WebTrust offers protection against active network attackers. The integrity and
authenticity of downloaded HTTP documents can further be proven to third
parties in an offline setting (non-repudiation). The verification of documents
takes place on-the-fly (progressive content verification (PCV)) while the docu-
ment is still being downloaded. In particular, WebTrust enables the client to
detect any modified data packet upon arrival without downloading the entire
document. Our solution adapts recent cryptographic primitives and profits from
the lessons learned in previous approaches that focus on subsets of the aforemen-
tioned problems to realize our comprehensive integrity and authenticity frame-
work [32,2,12,23,37,14]. WebTrust further supports efficient data updates and
enables the usage of Web caches (the latter only, if confidentiality is not needed).
Finally, our concept and implementation supports individual verifiability of con-
tent aggregated from different authors via IFrames.

1.2 Related Work

We discuss related frameworks that also provide authenticity and integrity guar-
antees and we compare them to WebTrust in Table 1. In that table, we com-
pare the approaches w.r.t. the following features: The 1st column indicates if
the framework supports verifiable authorship meaning that the content can be
verified against the author and not (only) against the server. The 2nd column
shows if documents can be revoked, i.e., the author can enforce and immediate
expiration. The property of non-repudiation is compared in the 3rd column and
allows proving the authorship to third parties. The 4th column indicates if the
content can be updated, i.e., updating parts of the content is possible without



Table 1. Comparison of approaches to protect the integrity of HTTP transferred data

Feature 1 2 3 4 5 6 7

SHTTP [32] – – – – – S/D/L –
HTTPS [31] – – – – – S/D/L –
SSL Splitting [18,19] – – – – X S/D/L –
Bayardo and S. [2] X – X – X S/D/– X
Sine [12] – – X – X S/D/– X
HTTPI [6] – – – – X S/D/L –
Spork [23] – – X – X S/D/– –
HTTPi [37] – – X – X S/D/– X
iHTTP [14] – – X – X S/–/– X
WebTrust X X X X X S/D/L X

Legend: 1. Verifiable Authorship 2. Document Revocation 3. Non-repudiation
4. Data updates 5. Caching/CDN-Support 6. Content types (Static, Dynamic,
Live Streaming) 7. Progressive Verification X: yes/full support, – no support.

re-signing the entire dataset. The 5th column shows if caches resp. content dis-
tribution networks (CDN) are supported, i.e., the content can be distributed to
different servers without harming the verifiability. In the 6th column the differ-
ent supported content types are listed such as static, dynamic, and streamed
live content. Handling streamed content is particularly challenging as full pre-
computation is generally not possible. Static content is a mere copy of the file to
the client, while dynamic content is generated on demand, and (live) streamed
content is a stream of data that has an infinite size and is not known in ad-
vance. The 7th column compares the approaches w.r.t. progressive verification
meaning that the content can be verified while loading. Progressive verification
is desired in setting where the clients do not want to wait until the end of a
stream to verify any of the security properties. Due to space constrains we can-
not discuss each approach in detail, but the chart already shows that none of
the existing approaches provides a comprehensive solution to all common usage
scenarios of HTTP. Further approaches exist that focus on efficient methods for
a specific data type (cf. [20,8,29]), or focus on the data transmission of files on
the Internet, or focus on streams such as [13,28] (not in real-time) or [27] for
multicast streams over lossy channels with real-time support. Two less closely
related approaches [11,30] also consider the problem of providing integrity for
HTTP, however, they do not provide security guarantees in a cryptographic
sense. Therefore we omit a more detailed discussion of these papers.

2 System Model

In the following we provide a high-level overview of WebTrust and discuss the
attacker model as well as the underlying assumptions of our system. The global
setup of WebTrust consists of three parties: the client with a Web browser, the
HTTP-based Web server, and the content generator (cf. Figure 1).
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Figure 1. WebTrust system overview

The content generator either creates WebTrust-protected documents a priori
and uploads them to the Web server (static content), or the content is created
on-the-fly by the content-generator and merely relayed by the server to the
client (dynamic content). The client is then able to request protected resources
based on the Unified Resource Identifier (URI) from the Web server and to
progressively verify their integrity and authenticity with the help of the content
generator’s public key during the arrival. Depending on the scenario, the Web
server can also fetch dynamic content from the content generator. The content
generator and the Web server do not have to be different entities. However,
we recommend them to be different whenever possible to mitigate the risks of
key exposure through Web server breaches. Splitting these entities also allows
us to assume an untrusted Web server which is accessible from the Web and
potentially vulnerable.

2.1 Security Objectives

The goal of WebTrust is to provide robust security guarantees to users. In par-
ticular, our system needs to fulfill the following security objectives: authenticity,
integrity, validity, and freshness of Web documents with respect to their author:
– Authenticity ensures that content indeed stems from the alleged author.
– Integrity ensures that content cannot be altered after its generation without

being detected.
– Freshness ensures that a client always receives the latest version of a docu-

ment, i.e., a man in the middle cannot replace a response with an integrity-
protected and authentic, but old copy of a requested document.

– Document revocation ensures that a document was not actively revoked
by its author.

– Non repudiation allows to proof the authenticity of documents to third
parties.

Depending on the scenario, confidentiality of the transmission needs to be pro-
vided as well. This is not explicitly stated as an security objective, since this
is orthogonal to our solution and can be achieved by transmitting WebTrust
protected documents via HTTPS.

2.2 Attacker Model

We assume an active adversary that is able to eavesdrop and arbitrarily mod-
ify all network traffic. Such an adversary could be, for instance, the Internet
service provider that is in control of the network connection. In addition, we
assume that the adversary is able to fully compromise the Web servers in our



scenario (including the servers of a content distribution network (CDN)). This
effectively grants the attacker access to all files stored on such server and allows
to manipulate all requests and responses processed by them.

2.3 Assumptions

To provide robust security guarantees, it is central for WebTrust that the crypto-
graphic keys used to sign content cannot be accessed by an attacker. Therefore,
WebTrust has the following requirements to achieve its goals:

1. The content generator stores sensitive keys to sign content locally. We assume
that these keys cannot be accessed by an attacker.

2. In case the content generator and the Web server are the same entity (implies
that keys are stored locally on the Web server), we assume that the Web
server cannot be compromised by an attacker. Otherwise, we consider the
Web server untrusted without further assumptions.

3. We assume a standard trusted PKI that provides additional support for
WebTrust content revocation lists (WT-CRLs) (cf. Section 4).

3 Theoretical Foundations

In the following we introduce the cryptographic primitives required byWebTrust,
namely elliptic curve cryptography [22], collision-resistant hash functions [16],
chameleon hash functions [17], digital signatures [16], and verifiable data stream-
ing [34]. We use the following notation: By y ← A(x) we denote the execution
of a probabilistic polynomial time (PPT) algorithm on input x with output y.

3.1 Hash Functions

Collision-Resistant Hash Functions. We assume the existence of compress-
ing collision-resistant hash functions. Roughly speaking, a function H is called
collision-resistant if the probability that an efficient adversary finds two distinct
pre-images m0 6= m1 that map to the same image H(m0) = H(m1) is negligible.
WebTrust supports any state of the art collision-resistant hash function.
Chameleon Hash Functions. A chameleon hash (CH) function is similar
to regular collision-resistant hash functions that are based on number theo-
retic assumptions and it provides additionally a trapdoor. Invertible chameleon
hash functions are defined through the tuple CH = (chGen, ch, col, scol) [17]. Its
key generation algorithm chGen(1λ) returns a key pair (skch, pkch). The func-
tion ch(x; r) is parametrized by the public key pkch and outputs a hash value
h ∈ {0, 1}out for a input message x ∈ {0, 1}in and a randomness r ∈ {0, 1}λ. The
trapdoor skch allows us to efficiently find collisions, i.e., a randomness r′ such
that both (x, r) and (x′, r′) will be mapped to the same hash value. CH functions
can be instantiated from many number theoretic assumptions, such as the dis-
crete logarithm assumption [17,1], the factoring assumption [35], and the RSA



assumption [1,15]. We use the scheme introduced by Nyberg and Rueppel [1].
Its security is proven in the generic group model assuming the hardness of some
variant of the discrete logarithm problem in the cyclic group Zp. Our framework
uses the elliptic curve variant of the Nyberg and Rueppel chameleon hash func-
tion. The advantage of using elliptic curves is that the chameleon hash values
become smaller in size. For our choice of the curve, please refer to Section 7.
Merkle Trees. AMerkle Tree is a binary tree that allows an efficient verification
of distinct elements from larger data sets. Data is stored in the tree’s leafs and
all inner nodes are computed recursively as the hash value of its concatenated
children. The root node’s value is published as the public key and can be used
to verify each leaf individually. The authentication of a certain leaf requires all
hash values that are adjacent to the nodes on the path from this leaf node to the
root node, hence all proofs are logarithmic with respect to the amount of leafs.

3.2 Verifiable Data Streaming (VDS)

The verifiable data streaming (VDS) protocol [34] allows to authenticate data
streams. VDS is based on a variant of Merkle Trees [21], so-called chameleon au-
thentication trees (CAT), which have the following additional capabilities: New
elements can be inserted into the tree without updating the root and already
inserted elements can be updated efficiently. The correctness of each single el-
ement in the tree is publicly verifiable and can be proven to third parties. In
essence, the security of VDS says that only the data owner can insert elements
to and modify exiting elements in the CAT.
VDS Adaptation for WebTrust. The original VDS protocol [34] was designed
to allow a computationally weak client to stream its entire data to a seemingly
all-powerful server. In our scenario, the content generator is the client of the
VDS setting. It streams content to an untrusted server, which is later received
and publicly verified by other clients.

Consider the tree as depicted in Figure 2. The root v1,0 of the tree is a hash,
which is part of the content generator’s public key. In the following, we denote
the root value by ρ. Each left node of the tree is computed by a collision-resistant
hash function and every right node is computed via a CH function. Since the CH
function takes a randomness as additional input, it is necessary to store it in the
right nodes. To verify a leaf in the tree, one has to compute an authentication
path as in a traditional Merkle Tree (cf. Figure 3): To verify L0 in the tree, the
algorithm computes v0,0 ← H(L0‖v−1,1) and checks if ρ = H(v0,0‖v0,1).

Now, let us assume that the client requests a video stream of a press con-
ference and the client would like to verify the authenticity and integrity of the
streamed content on-the-fly. The basic idea is to chop the stream in chunks
of data such that a hash of each chunk is stored in a leaf. We illustrate this
idea with a tree of small depth, but our data structure supports a binary tree
of polynomial depth that can authenticate an exponential number of leaves.
For an easier exposition of the main idea, we assume that the first two leaves
L0, L1 are known in advance. To set up the tree, the algorithm picks two dummy
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Figure 2. CAT for four leaves (L0 to L3) with vertices named vheight,index.

elements for the part of the stream that is unknown. In our case, it chooses el-
ements (n0,1, r0,1) uniformly at random. The element n0,1 is the input to the
chameleon hash functions stored at node v0,1 and r0,1 is the corresponding ran-
domness. Now, suppose that another element is streamed to the client that will
be stored in the leave L2. To add this elements to the tree, the server picks a
dummy value for v−1,3 and computes the collision with help of the algorithm
r′0,1 ← col(skch, n0,1, r0,1, (L2‖v−1,3)) and sends (L2, v−1,3, r

′
0,1) to the client.

3.3 Digital Signature Schemes

Digital signature schemes allow to compute a signature σ on a documentm using
a private key sk, such that any party in possession of the corresponding public
key pk can verify the validity of σ. Our construction requires a digital signature
scheme that is secure against the standard notion of existential forgery under
chosen message attacks [16]. WebTrust uses the RSA [33] signature scheme. It is
provable secure in the random oracle model [3] and its underlying mathematical
structure are composite order groups.

4 System Details

WebTrust leverages the previously described cryptographic primitives to achieve
robust progressive integrity and authenticity verification of different content
types with respect to their authors. In the following we describe our framework
in detail and discuss how our security objectives (cf. Section 2.1) can be achieved.
Moreover, we show that WebTrust is backwards compatible and supports caches
as well as CDNs. WebTrust splits all content types into individual segments and
processes them in the signature provider (Sign in the following figures) of the
content generator (cf. Figure 4 for static content and Figure 5 for dynamic con-
tent). Our system currently supports two different signature providers, namely
VDSECC and RSA-Chaining.
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Figure 3. CAT of depth 5 that authenticates the leaves L0 and L1. Root node and left
nodes are computed by a collision-resistant hash function, right nodes by a chameleon
hash. The leaves L2, . . . L7 are unknown. Appending the leaves L4 and L5 to the CAT
(dotted in gray), requires the computation of a collision in nodes v2,1 and v−1,5.

VDSECC. VDSECC combines the VDS protocol with the elliptic curve variant
of the Nyberg and Rueppel chameleon hash. It generates one CAT for each
content object. For each content object its individual segments are hashed and
added to the CAT. The first segment of a content object always includes meta-
information such as the content URI, the creation date, and the expiration date.
The ordering of segments is implicitly ensured through the CAT itself. Once a
segment has been processed by the VDSECC signature provider, the returned
proof is attached to the segment. The verification of each segment is done as
previously described in Section 3.2.
RSA-Chaining. RSA-Chaining produces a signature chain by creating one sig-
nature for each pair of adjacent segments. For each incoming content object all
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its individual segments are first prepended by the same meta-information that
we add to the first packet in the CAT and we additionally add the segments po-
sition in the chain. Afterwards, each segments is hashed and finally signed using
RSA with the content generator’s secret key. Once a segment has been processed
by the RSA signature provider, each signature is attached to the segment. The
client-side verification is based on a classical RSA signature verification against
the content generator’s public key. The chaining ensures that ordering of seg-
ments in the stream cannot be altered.

In order to achieve a seamless integration into the existing Web infrastruc-
ture, we now need to embed the signatures either created by the VDSECC or
the RSA-Chaining signature provider into the data transmission in a backwards
compatible manner. We achieve this by leveraging the existing HTTP/1.1 chun-
ked mode. HTTP chunking ([9] section 3.6.1) is designed for documents whose
size is unknown a priori and which are generated and transferred piecemeal to
the client. Since HTTP chunking is a transfer encoding, it does not modify the
content but merely the way it is transported to the client and thus perfectly
meets our requirements. Clients that do not support WebTrust will simply ig-
nore the attached signatures. Clients with WebTrust support will extract the
embedded signatures for incoming segments, compute the hash of each segment,
and finally verify whether the signatures are valid or not.

4.1 Progressive Content Processing

The progressive verification of WebTrust is enabled by splitting content into
segments in combination with the particular design of the signature providers.
Due to the content splitting, every segment is sent to the client with its own au-
thenticity and integrity protection that can be verified immediately after arrival.
Both signature providers are designed to allow the signing of a segment i without
yet knowing the segment i+ 1. VDSECC and RSA-Chaining allow the client to
verify content object partially (e.g., media sub streams) without requiring the
client to know the start, the end, or the file as a whole. WebTrust allows the
progressive verification of all content types.

4.2 Individual Verifiability

Since WebTrust is supposed to be used by authors of content to protect their
data, it allows to combine content of different authors in one website with indi-
vidual verifiability. Our framework realizes this by loading each author’s content
into an individual IFrame of a website. Each IFrame triggers a separate WebTrust
protected HTTP request. The user gets visual feedback about the verification
result of each IFrame as shown in Figure 6.

In certain scenarios it may be desirable to ensure that an attacker cannot
substitute any of the IFrames with a different signed resource. Consider the
following scenario: A client requests the document www.example.com/a.html,
which explicitly references a JavaScript file www.example.com/script.js. As-
sume that another script file signed by the same author with the same key exists



Figure 6. The WebTrust Chrome Extension showing the verified authorship of an
embedded tweet in our modified Twitter page

at www.example.com/anotherscript.js. In this scenario, an attacker may re-
place script.js with anotherscript.js in the web response. To prevent this,
WebTrust supports the incorporation of the content’s full URI into the signature.
This allows the detection of maliciously replaced files. Furthermore, WebTrust
can be configured to include arbitrary HTTP headers in the signature. This may
be particularly useful for critical headers such as cookies.

4.3 Content Updates

CATs allow content updates by design and our RSA signature chains can achieve
the same functionality with the help of WT-CRLs. However, their update algo-
rithms differ fundamentally. In particular, when using a CAT each update re-
quires an update of the public key and involves updating a logarithmic amount
of nodes in the tree. Instead, we introduce a second CAT which aggregates the
roots of all the content object CATs as its leaf nodes. This method allows us to
verify several content objects against only one public key, which is the root of the
second CAT. When using RSA-Chaining, the update algorithm computes signa-
tures for the new segment and adds the old segment to the WT-CRL. Hence,
the size of the WT-CRL is linear with respect to the amount of updates.

4.4 Caching and CDN-Support

WebTrust content can be cached by proxies, cache servers, or CDNs, since the
signature of static content is also static. Outsourcing content to CDNs is common
practice to reduce load on a single server. In addition, CDNs equalize latencies
around the globe by mirroring content at locations with a large distance to the
central server. Dynamic content could also be cached from a technical point
of view, but usually this content would have a no-cache directive set because
caching does not make sense from a logical point of view.



4.5 Key Security

Content generators use secret keys to generate WebTrust protected content.
These keys need to be protected against malicious access. In particular, in the
case where the Web server and the content generator are the same entity, keys
should be protected by a Hardware Security Module (HSM) as shown in Figure 5.
With an HSM in place, an attacker that breaks into the Web server could still
forge signed content by using the HSM as a signing oracle. However, he would
never get hold of the key itself. This achieves the same level of security as storing
HTTPS/TLS certificate private keys in an HSM.

5 Implementation

5.1 Server

We implemented the WebTrust server extension as a patch to the Apache Tomcat
Web server 7.0.39. Our patch extends the existing processing routines for the
HTTP chunked transfer encoding using a filter in the HTTP chunking driver of
Tomcat. The HTTP 1.1 chunked mode allows so-called chunk-extensions that
can be embedded into a chunk’s header. The specification starts with the number
of bytes in hexadecimal format, which can be followed by extensions of the format
;key=value,key=value,.... The extensions are then followed by a line break
before the actual chunk data. This overall format is repeated for every chunk. We
attach the base64-encoded WebTrust protection as extension in the requested
format (the example has a chunk size of 2761 bytes, 0xAC9 bytes in hex):

AC9;SIG=8CD3ABU8ULS2KMDN4HW3NK6A5BPP84HB6A7CC

Since the transmitted bytes are still well-formed HTTP, legacy clients will
only extract the unmodified content. We successfully verified this compatibility
of HTTP chunking extensions with Firefox, Chrome, Safari, Internet Explorer,
wget, curl and Java. The public key for the overall verification is specified in
the HTTP header itself, since it does not change for a single request. For that
purpose, we added two additional HTTP headers to indicate the used WebTrust
algorithm (here, VDS with SHA-1) and the corresponding public key:

Content-Verification-Scheme: 1.0/SHA1-VDSECC
Content-Verification-Key: 61KJHQ1J4NED97NBP2SJ44FP0

Similarly, chained hashes that are signed with RSA are implemented (1.0/SHA1-RSA).
The signature cache for static content is implemented using the default

servlet of Tomcat. The default servlet is used when there is no dynamic servlet
to generate content and the URI points to an actual file on the server. For each
such file, we keep a list of chunk sizes and attached signatures. The default
servlet implementation ensures that every response uses the same chunk size
and hence can benefit from the stored signature chain. For the dynamic case,
the implementation is slightly more complex: Servlets decide on their own how
many bytes to flush to the network. For example, every time they call flush(),



the bytes written so far are sent to the WebTrust filter which takes care of
accumulating them and eventually adding the signature. This ensures that if the
servlet generates exactly the same output over two different runs, we generate
exactly the same chunks. As those chunks appear to be static, we can cache
them. The look-up procedure is realized using a hash map that is indexed by a
tuple consisting of the SHA-1 hash of the content and the preceding signature.

To further reduce the server load we enable the WebTrust extension only if
the client has requested its usage by sending the ’Accept-Content-Verification:
SHA1-RSA’ header, where SHA1-RSA defines one of the supported schemes. De-
pending on the flag set by the client, the server responds using the requested
scheme. The implementation of the cryptographic primitives on the server side is
based on the SunRsaSign and Sun cryptography providers for non elliptic curve
primitives as delivered with Oracle’s Java [26], and based on Bouncycastle [4]
for the elliptic curve primitives, and our own Java implementation for the CAT.

5.2 Client

We implemented the client-side prototype as a patch to the open source Chromium
browser 29 [7] in combination with a browser extension. The patch targets the
chunked-mode handling of Chromium and is used to parse and verify the Web-
Trust integrity and authenticity proof of incoming documents. Moreover, it in-
cludes the routines for adding the WebTrust headers into Web requests, which
can be switched on and off. The required cryptographic primitives build upon
the OpenSSL library [25] and include our own implementation for CATs in C++.
The browser extension is used to prototype the UI for providing the user with
feedback about the verification result. It also supports to give feedback for the
individual verifiability of documents loaded inside of IFrames as described in
Section 4.1. We would like to stress that this approach is merely used for pro-
totyping the client application. A future release of the system is supposed to
directly integrate the individual verifiability into Web browsers instead of an
extension to optimize usability and performance. We would like to point out
that although our concept leverages a PKI for freshness and revocation, our
client-side prototype focuses primarily on the implementation and evaluation
of our new signature providers and hence does not have an implementation for
revocation.

6 Security Evaluation

In the following, we discuss how WebTrust fulfills the security objectives defined
in Section 2.1 and how WebTrust is protected against attacks.

6.1 Integrity, Authenticity, and Non Repudiation

Our integrity check is based on hashing content segments with a collision re-
sistant hash function. The property of collision resistance guarantees that an



attacker cannot find a second chunk that maps to the same hash value. To en-
sure that content segments cannot be replaced, all hashes are authenticated by
one of the signature providers. Since the attacker can neither access the author’s
secret keys, nor forge valid signatures for RSA-Chaining or VDSECC without
the secret key, the hash as proof of integrity cannot be replaced or modified.
Since the proofs of integrity are verified against a specific user’s public key, this
immediately provides authenticity. Therefore, the integrity and authenticity of
data is guaranteed and our signature providers allow to prove the correctness of
the WebTrust protected segments to third parties (non repudiation). Whenever
embedded content or a client-side script fetches another resource, this triggers
another HTTP request, which is then also verified by WebTrust.

6.2 Freshness and Content Revocation

Our framework supports freshness, i.e. the user always obtains the latest version
of the requested content object. This is achieved by incorporating an expiry date
into the content object. If content is replaced before it is expired, the old version
is revoked and does no longer verify successfully. In the case of RSA-Chaining
this revocation is achieved by adding the old version to the WT-CRL at the
PKI. This explicit revocation is not needed for the VDS protocol, which updates
the public key on every update thereby rendering old versions invalid.

6.3 Active Network Attacker

The active network attacker can modify or replace data packets containing doc-
uments or signatures. However, any modification or replacement would either
result in an invalid signature since the document and its corresponding signa-
ture would no longer match, or result in a document signed with the untrusted
key of the attacker. The attacker cannot access the secret key that was used
by the content author to sign the original data and hence cannot re-compute
the signature. The attacker can also try to substitute the response with a valid
response of another or older document. Replacement with another document is
prevented by the embedded absolute URI as part of the signature chain, which
reveals the substitution. The older document is prevented by the previously de-
scribed freshness properties. Since HTTP is per se stateless, session cookies are
often deployed to transfer state information. This way, the same URI can trans-
fer different Web resources. WebTrust allows to uniquely identify these different
documents, since the session information is part of the signed HTTP header.

6.4 Active Attacker against CDN and Web Server

Our solution successfully protects against the CDN Attacker. The CDN stores
solely documents that are already WebTrust protected. If an attacker exploits
a known vulnerability in the CDN server, documents can be replaced. However,
the attacker cannot forge valid signatures for this malicious content since there
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Figure 7. Average transactions per second under maximum load

is no possibility to access the required secret key. Hence, our solution preserves
the authenticity and integrity of documents. Since we assume that static and
dynamic content signing takes place at the content generator where an attacker
cannot gain access, content can only be manipulated after it has left the content
generation server. In this stage, it is already digitally signed and can no longer
be manipulated without detection.

7 Experimental Evaluation

In the following, we provide the experimental evaluation of our prototypical Web-
Trust implementation. The evaluation encompasses the computational overhead
at the client and the content generator as well as the network overhead. However,
the measured overhead does not include any processing of or communication
with the PKI, which may slightly skew the measured performance. Moreover,
we discuss usability issues of the current implementation.

7.1 Performance Evaluation

We conducted a comprehensive performance evaluation to measure the runtime
and network overhead induced by WebTrust. The server side evaluation was
performed with our patched Apache Tomcat version running on a Dell Opti-
plex 9010 Workstation equipped with an Intel Core i7 CPU and 32 GB of Ram.
The client side evaluation was performed on an identical machine with 16 GB
of Ram instead. We chose the security parameters of the cryptographic schemes
according to the latest NIST recommendations [24], i.e. 2048 bit for RSA. To
achieve a comparable level of security, we chose the elliptic curve P-224 for the
chameleon hashes inside the CAT.

The performance and network overhead depends on the total amount of sig-
natures that are sent over the network, i.e. the ratio between transmitted bytes
of data and transmitted bytes used for signatures. The smaller the size of each
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Figure 8. Round trip times for a 100 KB document

chunk, the more signatures are need for the same amount of data. In our proto-
type, we evaluated different chunk sizes, namely 8 KB, 32 KB and 128 KB. If we
consider a video stream of moderate standard definition quality with 2 Mbit/s
data rate, then 128 KB chunks would correspond to one second of video – which
seems to be an acceptable frequency for content verification. The experiments
were conducted using the Siege [36] benchmark tool that downloaded a 100 KB
file 10,000 times while simulating 100 concurrent users accessing the server. The
server and the client were both connected to the Internet via a 1 Gbit/s uplink
and they are 11 hops apart. We measured the maximum transactions that the
server was capable of delivering without WebTrust, with WebTrust RSA and
VDSECC and over HTTPS (see in Figure 7).

This number of transactions is limited by the computational burden on the
server side. The client-side verification adds an additional delay for verifying each
chunk. This delay is 121µs for one RSA signature verification and 371µs for one
CAT node verification. The resulting round trip times are depicted in Figure 8.
Our results show that in the case of static content, the cached versions have a
negligible overhead compared to plain HTTP connections. Without server-side
caching, i.e. the server has to calculate the corresponding RSA signatures or
CAT trees for each chunk, the computational load on the server side increases.
However, RSA signature chaining still outperforms HTTPS with RSA 2048 bit
Diffie-Hellman key exchange and AES-256-CBC encryption. Even though the
VDSECC-based authentication without caching provides less throughput than
HTTPS, VDSECC is the only primitive whose revocation mechanism does not
need to keep a list for each revoked document (see section 4).
Network Overhead. WebTrust introduces a small overhead in size for every
signature that is transmitted from the Web server to the client. The overhead for
a single signature depends on the signature scheme and its security parameter.
The signature size of RSA 2048 bit is 344 bytes. The size of one VDSECC data
structure is 167 bytes. These sizes resemble a space overhead of 4% (RSA) and



2% (VDSECC) in the worst case of very small 8 KiB sized chunks. For more
realistic sizes of 128 KB chunks, the overhead is a mere 0.3% for RSA and 0.1%
for VDSECC, respectively.

7.2 Usability

The prototypical implementation seamlessly integrates into HTTP’s chunked
transfer encoding, which provides full backward compatibility. At the client-side,
the prototype is integrated into Chromium and uses in addition an extension for
providing the individual verifiability.

Discussion. If the distinctive features of the CAT are not required and band-
width considerations are less important than the computational overhead RSA
is the primitive of choice. Otherwise CAT provides the full set of functionality at
a speed that is still reasonable for today’s Internet connections. Our round-trip
time measurement indicates that delay introduced by the network transmission
still dominates the computation times the client and the server. The CAT-based
solution leaves still room for performance optimizations. Depending on the use-
case one could pre-calculate several keys to further reduce the computational
load [5], especially on the client side. Moreover, we did not use multi-threading
for verifying chunks simultaneously. Depending on the scenario one could also
reduce both the computational and the network overhead can be tweaked by
changing the verification ratio via the chunk size.

8 Conclusion

Verifying the integrity and authenticity of dynamic Web content and real-time
Web streams on-the-fly is infeasible with existing solutions. Motivated by this
lack of solutions, we developed WebTrust, the first comprehensive solution to
provide integrity in all major Web scenarios. WebTrust allows to verify integrity
and authenticity of static, dynamic, and streamed Web content and integrates
seamlessly into the existing Web infrastructure. Our performance results demon-
strate both its practicality and efficiency, even in the mobile setting. The results
of our evaluation show that there is not one primitive for all scenarios that clearly
outperforms all others. Which technique and which cryptographic primitive to
use highly depends on the task since no primitive provides all security features,
a small overhead in size, enables caching, and provides a high performance both
on the client and the server side.
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