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Abstract. This paper presents a high-level communication infrastruc-
ture to deal with dynamically changing reconfigurable multi-robot sys-
tems. The infrastructure builds upon official standards of the Foundation
for Intelligent Physical Agents (FIPA). FIPA standards have been suc-
cessfully applied in a variety of multi-agent frameworks, but they have
found little application in the domain of robotics. This paper introduces
an implementation that can complement existing robotic communication
frameworks and allows the robotics community to take better advantage
of multi-agent research efforts. We present the essential components of
the infrastructure and show its interoperability using the widely known
multi-agent framework JADE.

1 Introduction

Robustness and reliability are key aspects for the design of robots that have to
operate autonomously in remote places.

Single robotic systems are widely applied, but reliability can often be achieved
only by increasing redundancy. In contrast, multi-robot systems (MRSs) inher-
ently offer a higher level of redundancy and are thus naturally suited for appli-
cation scenarios where systems are exposed to unforeseen risks of outage. This
holds even more when looking at reconfigurable multi-robot systems (RMRSs),
e.g., [20] presents a RMRS which consists of multiple robotic systems which can
be dynamically extended using modular so-called payload-items (cf. Figure 2).
The modularity of the system is achieved by introducing a standardized electro-
mechanical interface (EMI) that allows to connect two systems. Payload-items
serve as generic containers which can host sensors; they comprise two EMIs.

Due to its modularity an RMRS offers more flexibility to change its mor-
phology and to cope with dynamically arising challenges. In order to exploit the
redundancy of a RMRS an effective coordination mechanism has to be put in
place, e.g., to dynamically build a payload-stack from a number of payload-items.
Additionally, individual systems can appear or disappear in the communication
infrastructure either as part of a nominal operation, e.g., as result of a merge
of two systems, or as part of a non-nominal outage. At the foundation of or-
ganizing the RMRS presented in [20] lies a communication infrastructure that



Fig. 2: A modular, reconfigurable multi-robot system [20], A: Sherpa robot’s manipula-
tor approaching a payload-item, B: stack of two camera and one power payload-item,
C: electro-mechanical interface on the back of the legged robot CREX

accounts for dynamically changing robotic systems which establishes a peer-2-
peer communication network. Compared to [20] we have significantly revised
the infrastructure’s components to improve the applicability. This paper details
the revised infrastructure and its benefits for robotic cooperation. The following
Section 2 presents the state of the art and background information to motivate
the approach. Section 3 provides a detailed presentation of the essential com-
ponents. Subsequently, we present an evaluation in Section 4 and illustrate a
typical application and interoperability. We conclude with a discussion of the
benefits and limitations of the presented approach.

2 Background

A core activity of robotics is the integration of hardware and software, and man-
aging communication within a robotic system takes a significant share of this
work. Nowadays, robotic middlewares or frameworks such as Robot Operating
System (ROS) [17] or Robot Construction Kit (Rock) [11] are key to effectively
implementing robots. These frameworks typically rely on specialized and mod-
ular components that are inter-connected to form an information processing
network designed to solve a given problem. The mentioned frameworks allow
the construction of distributed systems, but focus on setting up single robotic
systems. ROS and Rock, for example, depend on the availability of a central-
ized naming service to access and connect components; while the former relies
on an instance of the so-called ROS Master, the later requires CORBA [13]
to provide the naming service. Several strategies have been applied by these
frameworks to mitigate these effects, but support for fully distributed systems
with no single point of failure has not been achieved. MRSs use communication
patterns such as broadcasting [14], blackboards [1] or cloud-based [8] communi-
cation, mixed with publish-subscribe mechanisms [12] or peer-to-peer solutions.



Though these communication patterns have their individual benefits, a main
challenge for completely decoupled robots resides in setting up and maintaining
the inter-communication channel. Additionally, distributed agent-based systems
use auctions as a common interaction pattern to solve the resource allocation
problem [21]. However, communication in all the robotic frameworks mentioned
above is based on stateless message exchange and does not naturally extend
to auctions, which have a state-based interaction pattern. In order to facili-
tate the development of physical agents the Foundation for Intelligent Physical
Agents (FIPA) [6] has devised a set of standards, defining — among other things —
an abstract agent architecture including message formats and interaction proto-
cols. The abstract architecture consists of a set of infrastructure services such as
an agent directory with white pages and yellow pages functionality, i.e., a com-
ponent that manages the information about all known agents. Though FIPA
is now a standards committee of IEEE, the application of these standards in
the domain of MRSs is rarely seen. In contrast, a broad application is found in
the area of multi-agent systems (MASs), e.g., Java Agent DEvelopment Frame-
work (JADE) [3] offers a reference implementation of FIPA standards and it is
widely used in the multi-agent community. The best known implementations of
FIPA standards, such as FIPA-OS [16] and JADE [3] are Java-based — a factor
that might hinder a broader application in robotics where C/C++ implementa-
tions are often predominant. Mobile-C [4] offers a C-based implementation, but
sets its focus on a different use case: the transition of software-agents between
multiple machines by relying on a C/C++ interpreter. Our communication ar-
chitecture builds upon FIPA standards as an outcome of the MAS community.
At the same time we close the aforementioned implementation gap.

3 A FIPA-based communication infrastructure

Reconfiguration in the context of MRS refers to a change of morphology, i.e.,
two or more previously separated systems are physically merged to form a so-
called coalition. More formally, a RMRS consists of a set of physical agents
A = {ay,aq9,...,a,}, which can form coalitions C C A. Each coalition again
represents a single physical actor. A distinct set of coalitions is typically denoted
a coalition structure CS, and each agent can be interpreted as a coalition C
of size |C| = 1 [24]. The overall flexibility of the RMRS directly depends on
the modularity of the system and the fact that these systems can be (almost)
arbitrarily combined.

This paper (cf. Figure 3) introduces a high-level communication layer that
can complement existing frameworks such as ROS and Rock to build fully
distributed systems and support the operations of an RMRS and its dynamics.
The main requirements are: (i) transparent handling of coalitions that join or
leave the communication infrastructure, (ii) interoperability and standardization
of high-level communication, (iii) communication protocols for coordination of
reconfiguration, and (iv) applicability to ARM-based devices such as payload-
items [20].
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Fig. 3: Service infrastructure of a reconfigurable system, before and after reconfigura-
tion, i.e., assembling two initially inactive payload-items to one active payload-stack

In a typical MRS the coalition structure is fixed and a single robot leaving
the infrastructure can be considered a non-nominal event. In contrast, a RMRS
takes advantage of a flexible coalition structure so that agents joining and leaving
the system are part of nominal operation. Furthermore, one of the key features
of the RMRS is extensibility and due to a standardized interface new functional-
ity for the overall system can be independently designed. However, to guarantee
interoperability communication has to be standardized as well; this does account
for the inter-robot communication and does not extend to the internal commu-
nication of a single robot. We assume that the high-level communication layer
acts as a control channel and allows for coordination of multiple systems, e.g.,
to perform reconfiguration.

We take the FIPA [6] as guidelinesince it applies to a fully distributed
scenario and is therefore well suited as a guideline to our design inter-robot
communication. In particular, we reuse the concept of a message-transport ser-
vice (MTS) including the related Agent Communication Language (ACL), and
the service-directory service (SDS) in order to establish a robust agent commu-
nication channel. FIPA-based communication accounts for interaction protocols
as patterns of message flows between multiple robots based on so-called ’perfor-
matives’ such as request or query-when. This facilitates the design of coordina-
tion protocols involving operators or autonomous agents, and in the context of
RMRS serves as basis for automated negotiation for reconfiguration. The essen-
tial backbone of this communication infrastructure comprises the SDS and the
MTS, which are described in the following and are implemented in our software
library fipa_services [19)].

Compared to [20] the following changes have been made to increase appli-
cability of the infrastructure: (i) encapsulation of main services into a C++
library, (ii) support for message envelopes (including bit-efficient and XML en-
coding), (iii) support for additional representation types for messages (support
was limited to bit-efficient), and (iv) support for selecting transports.



3.1 Service Directory Service

An SDS is a mandatory element of the FIPA Abstract Architecture [6] and all
robots (including payload-items) in our infrastructure (cf. Figure 3) run an SDS,
which overall forms a decentralized Distributed Service Directory (DSD). The
DSD decouples the modular systems in the RMRS, since robots can register
and deregister to this DSD dynamically by attaching or detaching to an MTS.
The usage of a DSD eliminates the single-point of failure that comes with most
existing robotic middlewares, but instead the DSD becomes a critical service
overall for an RMRS. The current implementation builds upon Avahi [15] —
a component for zeroconf [10] and service discovery that is standard to most
Linux-based systems.

3.2 Message Transport Service

Along with the SDS the FIPA specification requires an MTS. The single purpose
of the MTS is to deliver messages (wrapped in envelopes) to attached clients or
to another MTS which can forward this message to one of its connected clients.
Figure 3 shows the overall communication infrastructure. The MTS retrieves a
receiver’s transport address from the DSD and a receiver’s name is interpreted
as a regular expression for this search. This allows for a natural support of
broadcasting and multicasting using wildcards in the receiver name. Each MTS
stamps a handled messages to prevent looping of messages. Connections are
established in a lazy fashion; the MTS tries to connect to the remote MTS only
if a message is directed to a remote client. Each MTS can draw from a list
of supported transports to transfer messages in-between two MTS — currently,
fipa_services supports TCP and UDT [7].
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Fig. 5: (left) Message handling for a nominal and an error scenario, (right) FIPA Mes-
sage structure

Notification about failed delivery is part of the MTS functionality and all
available transports are tried in order to deliver a message. If a receiver cannot
be found in the DSD or the delivery fails at whatever MTS, an error response
is triggered. This error message is propagated back to the sender (if it is still
available), using the reverse communication path. Relay is not part of this in-
frastructure, but achieved by applying dedicated meshing protocols.



Figure 5 outlines the message flow for the nominal message delivery and a
failed delivery. The error scenario considers that delivery fails at the MTS of the
(expected) receiving client.

Messages comprise a set of standard fields (cf. Figure 5) and can be serial-
ized using different representation types. Table 1 lists the currently supported
representation types.

Table 1: Supported FIPA representations (evaluated in Section 4)

Element| Representation types

message |bit-efficient, XML, string
envelope bit-efficient, XML

A message is put into an envelope which is then forwarded to an MTS; the
envelope contains the serialized message as its payload. This allows the MTS to
operate in a content-agnostic way, and decoding of the messages and its content
only needs to be done by the final receiver. The results in Section 4 will illustrate
this characteristic.

3.3 Conversation Monitor

FIPA also describes the application of interaction protocols, which make use of

performatives defined in a message. An interaction protocol describes a message
flow using a state transition system Y. = (S, P, R,v), where S = {sq,s1,...}
is the set of conversation states, P = {accept-proposal, agree, ...} is the set of
performatives, and R = {r1,79,...} is the set of roles. The set of roles typically
consists only of a sender and receiver label. The state transition function is
v:SxPxR-—2%

To take advantage of interaction protocols, we implemented a conversation
monitor to validate state transitions that are triggered by incoming and outgoing
messages. Validation is done with respect to a single agent which is involved in
the conversation. To model interaction protocols we use a custom extension of
State Chart XML (SCXML) [23] and embed default transitions for error handling
and cancellation of interaction protocols to reduce the modeling effort for users.
Figure 6 illustrates how the accounting for default states affects a simple request
protocol.

This functionality allows to outline and validate inter-robot coordination,
especially for reconfiguration and cooperation between multiple robotic systems.

4 Evaluation of fipa_services

In this section we evaluate the performance of our fipa_services library regard-
ing potential effects on bandwidth and computation.. The evaluation shows the
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Fig. 6: Statemachine for the request protocol [6] including default states and transitions
as well as roles: receiver R, sender S and wildcard .x representing any other client.
Transitions are labeled with roles (disjunctive) and performatives required to match.

impact of the selection of the representation type (cf. Table 1) and the applicabil-
ity to embedded systems. The representation-dependent overhead for messages
wrapped into an envelope is illustrated in Figure 7, and shows significant differ-
ences between the different representation types.
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Fig. 7: Net overhead for a message with content size of 1 byte and the header containing
99 byte information filling all message fields (cf. Figure 5)

Figure 9 illustrates the message encoding and decoding performance on a
PC with an Intel CORE i7 2.1 GHz, 12 GB RAM and a Gumstix with ARM
Cortex-A7 CPU 720 MHz, 256 MB RAM !; the evaluation is based on 1000
encoding and decoding cycles that are measured using software timers.

This evaluation shows that bit-efficient message encoding is best suited for
environments with limited bandwidth. It comes with a slight performance draw-

1 All modular payload-items host a Gumstix Overo Fire.



back for small messages compared to the XML representation, but performs bet-
ter for messages with large content. The string representation shows the worst
performance for large messages on the Gumstix, while it remains ahead on XML
on the PC.
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Fig.9: (left) Message handling performance for 1000 cycles of encoding and decoding
and 1 KB and 1 MB sized contents, (right) Evaluation of envelope handling for 1000

cycles of encoding and decoding and each envelope containing a message with 1 MB
content

Figure 9 presents the performance for different combinations of envelope and
message representations. The performance on the ARM-based system illustrates
the achieved effect that an envelope’s payload does not need to be decoded for
transport on an MTS. Bit-efficient encoding for envelopes comes with a small
performance drawback, but is also exhibits a significantly smaller standard de-
viation.

This implementation [19] fully supports bit-efficient encoding and is to our
best knowledge the only publicly available implementation of FIPA’s final stan-
dard; an implementation for the experimental standard exists in the form of a
JADE plugin, but is limited to the message representation [9]. A fair comparison
against the reference framework JADE could not be made due to the warm-up
behavior of the Java Virtual Machine (JVM), i.e., code optimization is done at
runtime. The influence of this feature in an application scenario will have to be
investigated. However, initial findings indicate that after warm-up JADE will
show a superior performance compared to fipa_services.

The benefits of using FIPA-based communication can be attributed to the
partial standardization of coordination. All components in fipa_services have
been developed to allow for simple integration into various robotic frameworks.
We have embedded fipa_services into Rock and illustrate the application within
this robotic framework for coordination of robotic reconfiguration and its inter-
operability in the following.



4.1 Application

To illustrate the application of the infrastructure we take two examples of robotic
coordination: a mulit-robot reconfiguration process and distributed mutual ex-
clusion.

Multi-robot reconfiguration High-level coordination is required to perform phys-
ical reconfiguration, i.e. merging, of two or more robots. To apply coordination
the definition of a content language can introduce decoupling which allow for a
more generic application. Here, we complemented our communication architec-
ture using a content language to control a robot’s actions; the content language
is text-based and human-readable to permit interpretation on any system and
facilitate debugging. The content language also allows querying available robot
actions, along with the status of running actions. The content language enables
robots to control each other and has been successfully applied as part of the
unrevised infrastructure for the docking process in [20] in order to merge two
systems: one master robot guiding another client robot to connect to one of
the master’s electro-mechanical interface (EMI) (cf. Figure 2). We successfully
applied our revised infrastructure to perform the visually guided docking of the
Sherpa robot’s manipulator to the CREX robot [20]. Sherpa’s manipulator was
moved to a fixed position, and the CREX robot was remotely guided by the
Sherpa robot.

Distributed mutual exclusion A main feature of an RMRS is the exchange of
resources. But to perform automated reconfiguration as mentioned in the pre-
vious application scenario, the participating resources should be exclusively re-
served beforehand. We implemented Ricart-Agrawala’s [18] non-token-based and
Suzuki-Kasami’s [22] token-based algorithm using fipa_services. Both algorithms
cannot deal with a dynamically changing set of agents or agent-failure. To over-
come this limitation the detection of resource owners and agent-failure have been
added to the implementation. Detection of the resource owner relies on a query
message and the owner’s response that is sent as broadcast. The detection of
agent-failure is based upon sending heartbeat messages at low-frequency (0.2 Hz)
in-between participants that depend upon each other, i.e., the (physical) owner
of a resource, the lock holder and system waiting to lock the resource. This allows
to mark a given resource to be unreachable and trigger further error handling.
This approach leads to three overlapping interactions between multiple agents:
(1) probing, (2) discovery of the owner of a resource, and (3) performing the
actual locking. The three types of interactions are modeled with corresponding
protocols. Figure 10 illustrates the protocol for the (extended) Ricart-Agrawla’s
algorithm. When an agent acquires or releases the lock it communicates this in-
formation to the resource owner using the performatives confirm and disconfirm.
In addition to using interaction protocols, the use of a content language, e.g.,
for Suzuki-Kasami’s algorithm to exchange the token between different agents,
provides a further mean to separate and validate the flow of messages.
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Fig.10: Three separate interaction protocols that are part of the (extended) Ricart-
Agrawala’s algorithm; A: probing of inter-dependent agents, B: discovery of the resource
owner (owner information is sent as broadcast), C: the message flow when performing
the actual locking algorithm. Failure handling is embedded into default transitions
(which are not depicted) and S denotes the conversation initiator’s role and R the
recipient’s role.

Modeling interaction protocols allows verification of the message flow at run-
time and facilitates debugging. Protocol compliance of all participating agents
can be enforced by using the conversation monitor (cf. Section 3.3).

4.2 Interoperability

Our motivation to use standards is to achieve extensibility and interoperabil-
ity, e.g., due to the standardization of messages and infrastructure we can con-
nect Rock to JADE using the existing extension mechanisms [2] and connecting
JADE to the DSD. Since the DSD is based on Avahi it uses multi-cast DNS for
communication. Registering services within JADE’s infrastructure can thus be
achieved by using JmDNS [5]. A problem was encountered upon registration of
JADE agents since dots in service names cannot be handled by JmDNS; dots in
agent names had to be replaced by the question mark wildcard for registration
(cf. Figure 11). However, this change is transparent to users and agents, which
can refer to other agents only by their real name.

Agents from both ecosystems communicate via XML encoded envelopes and
messages. The bit-efficient encoding implementations of the two systems turned
out to be incompatible — as mentioned, the only corresponding JADE plugin
implements the experimental standard, while fipa_services implements the latest
standard.

To validate the integration we placed an EchoAgent in the JADE infrastruc-
ture and attached a client rock_agent to an MTS in the Rock infrastructure;
all components resided on the same local machine (Intel CORE i7 2.1 GHz).
Figure 11 illustrates the resulting services registered in the DSD. The average
round-trip time measured for a sequence of 10000 conversations and a message
content size of 100 bytes was: 2445.6 ms. For future applications, this integra-
tion allows to use JADE'’s infrastructure and tooling for high-level coordination
in parallel to Rock’s infrastructure and tools.



File Actions Tools Remote Platforms Help

BEEEEEIEEIETREEE

¥ B AgentPlatiorms
¢ £2"10.250.7.100:1095/|ADE"

Main-Containery

B ams@10.250.7.100:1093/JADE

df@10.250.7.100:1099/JADE

@ echoAgent@10.250.7.100:1099/JADE

@ rma@10.250.7,100:1099/)ADE

8 tcpMTS@10.250.7.100:1099/JADE

Avahi Discovery >

rock_agent

rma@10?250272100:1099/JADE
ams@102250?772100:1099/JADE
df@102250272100:1099/JADE
echoAgent@102250272100: 1099/JADE

tcpMTS@102250277100: 1099/JADE

11
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discovery GUI to browse visible services, i.e., the set of registered services

5 Conclusion

An RMRS requires coordinating reconfiguration at various levels: (i) finding
available resources, (ii) allocating resources, (iii) performing required reconfigu-
ration maneuvers, and (iv) handling errors. This demands a structured approach
and tool support in order to reach practical and scalable solutions. The presented
infrastructure provides a basis using standardized components and allows verifi-
cation of robot communication by relying on FIPA standards. The implemented
libraries are open-source [19] and hosted along with Rock.

The criticism of [24] points out the semiformality of FIPA, but still ac-
knowledges its practicality. Our experience confirms this standpoint and with
fipa_services we provide the robotics community with easier access to these ben-
efits with the intention to facilitate the application of multi-robot systems. In
addition, while FIPA provides an architectural template, the individual services
such as the DSD can remain completely out of the FIPA context.

Obviously, specific interaction scenarios can be easily solved by creating spe-
cial message types and the presented infrastructure adds overhead for abstraction
and standardization. However, in order to maintain a truly extensible and fully
distributed RMRS, we advocate the presented approach.
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