
Copyright © 2012 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
ETRA 2012, Santa Barbara, CA, March 28 – 30, 2012.
© 2012 ACM 978-1-4503-1225-7/12/0003 $10.00

A Robust Realtime Reading-Skimming Classifier
Ralf Biedert∗

Jörn Hees†

Andreas Dengel‡
German Research Center
for Artificial Intelligence

Georg Buscher§
Microsoft Bing

Abstract

Distinguishing whether eye tracking data reflects reading or skim-
ming already proved to be of high analytical value. But with a po-
tentially more widespread usage of eye tracking systems at home,
in the office or on the road the amount of environmental and exper-
imental control tends to decrease. This in turn leads to an increase
in eye tracking noise and inaccuracies which are difficult to address
with current reading detection algorithms. In this paper we pro-
pose a method for constructing and training a classifier that is able
to robustly distinguish reading from skimming patterns. It oper-
ates in real time, considering a window of saccades and computing
features such as the average forward speed and angularity. The
algorithm inherently deals with distorted eye tracking data and pro-
vides a robust, linear classification into the two classes read and
skimmed. It facilitates reaction times of 750ms on average, is ad-
justable in its horizontal sensitivity and provides confidence values
for its classification results; it is also straightforward to implement.
Trained on a set of six users and evaluated on an independent test
set of six different users it achieved a 86% classification accuracy
and it outperformed two other methods.

CR Categories: I.5.4 [Computing Methodologies]: PATTERN
RECOGNITION—Applications;

Keywords: eye tracking, reading, skimming, machine learning

1 Introduction

The preferred way to detect reading behavior, i.e., deciding whether
observed eye movement patterns are compatible with patterns com-
monly defined as reading, is to measure fixation progress on words
expressed in character units [Hyrskykari 2006], [Buscher et al.
2008]. This approach is thoroughly studied [Rayner 1998a] and
works well in cases where the eye tracking accuracy is high enough
to provide word level resolution.

However, many eye tracking systems and situations are unable to
provide such a high resolution, especially due to stochastic noise,
measurement drift, miscalibrations, and all of these in combination
with small fonts and narrow line spacing. Figure 1 depicts several
of these issues. Because of this noise, even though a text has been
read, the individually measured gaze points can miss most words
and the overall pattern usually jumps diagonally across multiple
lines, rather than following a single line continuously.

∗ralf.biedert@dfki.de
†joern.hees@dfki.de
‡andreas.dengel@dfki.de
§georgbu@microsoft.com

Figure 1: Sample fixation data displaying problems commonly en-
countered when dealing with eye tracking data on text. Most of the
fixations are off and it is unclear to which line of the text they apply
to. Also, most saccades are not strictly horizontal but rather jump
diagonally across the text.

In psychological studies the experiment settings can be controlled
sufficiently, either through the use of head fixation, the manual re-
alignment of gaze data with the help of control points, or by pre-
senting just a single line of text at a time. However, we believe the
principal issue of noisy eye tracking data will be of special con-
cern in mostly uncontrolled interactive scenarios. There, usually
normal-sized texts are read with a partially degraded calibration,
and no manual correction can be performed. We anticipate that
especially future handheld eye tracking systems, similar to the re-
cently developed C121 unit, will be affected by these issues. This
device class suffers from three additional degrees of freedom (de-
vice rotation) in comparison to desktop mounted devices, and when
being hold will be more prone to tilts, shifts and shaking.

But even in such situations where the point of gaze cannot be deter-
mined exactly, it can be desirable to automatically decide to what
extent eye movements resemble a reading pattern or a skimming
pattern in order to automatically respond to this behavior. Exam-
ples applications include ScentHighlight [Chi et al. 2005], which
highlights related sentences during reading; the eyeBook [Biedert
et al. 2010a], where ambient effects are to be triggered in proxim-
ity of the reading position; or QuickSkim [Biedert et al. 2010c],
where non-content words may be faded out in real time with an in-
crease of skimming speed to make reading more efficient. Also,
in the domain of information retrieval it has been shown that ac-
quiring implicit feedback from a reading and skimming detection
can significantly improve search accuracy through personalization
[Buscher 2010].

In this respect it is now an interesting observation that human judges
who inspect noisy eye tracking scanpaths are often able to classify
what segments of the scanpath belong to reading or skimming be-
havior, even though the fixations do not match the underlying text2

(e.g., consider the scanpath in Figure 2). More specifically one can

1See Tobii http://tobii.com
2Although the knowledge that the scan path was related to text—while

123

http://tobii.com

Figure 2: Fixation data with the underlying surface removed. Even though the text is not visible to a human judge it is possible to estimate
what parts of it point to reading behavior. The overall pattern clearly indicates reading-like behavior, the line height is visible, and since most
fonts have a certain aspect ratio also the character width can be estimated, which in turn gives an estimate if the pattern rather indicates
reading or skimming.

notice that a classification of eye tracking data can usually be done
already when only some limited context of the saccade in question
is provided.

Based on this observation we propose a reading detector that learns
to recognize reading, similar to human experts, through an analy-
sis mostly based on scanpaths. This should enable it to perform
a classification even under unfavorable conditions. Since some of
our use cases also require a real time response, with reaction times
less than one second, the algorithm should also be able to classify
incoming gaze data with as little forward-context (i.e, fixations and
which happened after the saccade being considered) as possible.
Furthermore, it should be reasonably simple in terms of parameters
and their meaning and be adjustable in how permissive it is with
respect to various reading speeds. In its very principal structure the
algorithm we propose is somewhat similar to the real time reading
detection described by [Campbell and Maglio 2001], with a num-
ber of important differences. Most notably it does not distinguish
icon search from reading, but is rather a method capable of dis-
tinguishing intensive, careful textual perusal (reading for meaning,
compare [Reichle et al. 1998]) from less intensive, rather searching
textual perusal (skimming, ditto).

However, it should be kept in mind that it is not our intention to
construct an algorithm that emits the labels reading or skimming
in terms of a ground truth on its own. It rather rates how closely
its input resembles what it previously learned about these classes.
Their actual definition might depend on a specific context, such as
book reading in a Germanic language.

The rest of the paper is now structured as follows. We start with pre-
senting an explorative study for generating a ground truth gaze data
set for reading and skimming behavior. Using the training set we
construct a classifier to detect and differentiate reading from skim-
ming, based on features described in section Features & Training.
In the Evaluation section we describe our results on these features
and classifiers and present a linear model to discriminate both be-
haviors. This is followed by our Conclusion and an Outlook onto
future work.

2 Explorative Study

In order to construct a classifier that can learn to distinguish the
classes reading and skimming we need to collect a data set con-
taining both. Thus, we start with an explorative study in which we
record eye movements for a number of persons that are asked to

not strictly necessary—will help to reduce false positives. However, the
scenario we mainly target is when due to drift and errors the measured gaze
position cannot be reliably matched to the text. While the system usually
has knowledge that the user is considering text (and not icons or images) it
cannot reliably determine character progress.

read various texts in different modes. These recording constitute
our training and evaluation dataset.

For the study participants are asked to assume the role of a news
paper editor who has to read various types of articles under time
pressure in order to answer questions at the end of each trial. A
single experiment consists of four trials and each trial started with
the presentation of a fictional mail from their main editor asking
them to write about the given topic. Each mail also contains two to
three attached documents on which their report for the trial should
be based upon. In order to elicit reading and skimming behavior,
some passages presented in each trail contain relevant text which
has to be read intensively to successfully complete the task. Others
contain irrelevant information which must be skimmed or skipped
to finish in time. On average each document contains one paragraph
that is related to the topic while the remaining ones are unrelated.

For our actual study we invited 12 participants to read each of the
texts, their average age was 24.6 years (ranging from 20 to 31), 11
of them male, 1 female and most of them were students at the local
university. Since all texts are written in German we also ensured
the participant’s primary language was German. Each user was in-
structed verbally on the tasks and was given an initial training trial
which was discarded for the subsequent evaluation. The experiment
took place in a web browser with a font size of 16pt, the interaction
was recorded with a Tobii 1750 tracker and processed with the Text
2.0 Framework [Biedert et al. 2010b].

Overall the experiment yielded 12 ∗ 8 = 96 read document passes,
and for our ground truth the recorded eye tracking data has to be
manually classified into the main categories read and skimmed.
With reading we subsume line-wise gaze behavior with real or as-
sumed average saccade distances below approximately 10 charac-
ters (real when the fixations clearly matched text, assumed when it
did not match the text but the distances could be extrapolated from
words nearby; newline regressions within a read context also count
as reading). Skimming subsumes all other gaze behavior that occurs
on text, such as line-wise perusal with offsets larger than 10 char-
acters and obvious vertical movements. Our distinction between
reading and skimming is mostly influenced by the approximate size
of the word identification span (compare, for example [Underwood
1985] and more generally [Rayner 1998b]), and we assume that a
number of saccades larger than this span are an indicator that the
texts covered by these saccades are most likely not read for mean-
ing.

To label the data we next created a rating application. For each
round it presents the visual representation of a randomly selected
window of eight subsequent fixations and their saccades, including
the text, compare Figure 3. The saccade in the middle is called the
saccade under consideration, while each of the three surrounding
saccades are called their past- and future context, respectively. The
saccade in the middle is highlighted, and the experimenter is asked

124

to give a judgement to which class the marked saccades and its
context belongs.

In our study, for each of the read documents approximately 15 sac-
cades under consideration are randomly selected. This results in a
total of 1407 saccades for the training and testing, which are even-
tually presented to two human experts for labeling. Both experts
have more than one year of eye tracking experience and rated the
set independently. In the end both results are merged, and only
matching ratings and considered as valid, while differing ratings
were not considered for training. The agreement rate for both ex-
perts was 74.9%, resulting in 1055 saccades to which both experts
gave the same class of either reading or skimming. From the re-
maining 352 saccades, 1.8% (25) were labeled as unknown3 by both
experts, 8% (113) were labeled as unknown by at least one expert,
the remaining 15.2% (214) had truly differing ratings in terms of
that they were labeled as skimming by one expert and reading by
the other. Overall 40.6% (428) saccades had an agreed rating of
reading, 59.4% (627) an agreed rating of skimming. Ignoring sac-
cades that were unknown to one user, both reviewers achieved an
agreement rate of 83.1% (κ = 0.65). A more detailed look at the
differing saccades revealed that while in some instances the given
classification was most probably mistaken by one expert, many of
them were borderline cases where, depending on how the context
has been interpreted, both ratings appeared to be justifiable4. The
saccades that were labeled as unknown by only one expert were in
most cases (85%, 96 instances) rated as skimming by the other.

We now extract two subsets from this set of rated saccades . The
saccades of six randomly selected users become part of the train-
ing set, the saccades of the six remaining users become part of the
independent test set, forming two almost equally sized sets that al-
lows us to investigate how a trained classifier is likely to perform
on unknown users, i.e., generalize. With the training set we next
continued to construct a set of feature vectors and train a classifier
learning on them.

3 Features & Training

To build a function capable of distinguishing reading from skim-
ming when given raw eye tracking in screen coordinates, some pre-
processing is required to transform the incoming measurements into
a more suitable representation. Given the eye tracker emits a set of
raw eye tracking points E′ = e′1, ..., e

′
cur we first filter and denoise

the data using a virtual median filter E = vm(E′), so that

ei = (medianx(e′i−2, ..., e′i+2), mediany(e′i−2, ..., e′i+2))

which allows us to robustly rule out measurement outliers without
affecting the filtered position. To the filtered data we then apply a
dispersion window based fixation detection algorithm f ixdis

F′ = f ′1 , ... f
′
n = f ixdis(E)

with 100ms temporal and 25px spacial dimensioning, which trans-
forms them into screen fixations. Next we transform each of these
screen fixations f ′ into document fixations f by converting them
into the document coordinate system based on the document’s win-
dow geometry and viewport at the time of each fixation:

F = todoc(F′)

3The raters agreed that the label unknown should only be given when the
observed pattern was unusual and likely neither reading nor skimming, or
could not clearly be identified in the evaluation tool.

4For example, similar to Figure 3, past contexts of skimming that were
just about to enter reading-for-meaning, or skim-alike-outliers in an other-
wise reading-like stream.

Figure 3: One of the 1400 slices of fixations that were rated inde-
pendently by two eye tracking experts. The red saccade (approxi-
mately horizontal in the middle of the screen) had the focus while
the saccades before and after were the contributing context. The
given example was rated as skimming by both experts, since it was
at the end of a vertical skimming pattern, just about to enter fast
reading.

It should be noted that in terms of mapped fixations in real world
scenarios the stream F usually contains a number of empty fixations
f∅ , since not every fixation observed on the screen actually hit the
document and could therefore be converted, effectively representing
outliers in the stream of observed document fixations.

The stream of mapped fixations now serves as the basic input on
which we build our classifiers and evaluate feature vectors. As we
are interested in a real time classification we also define a window
function

wa,b(F) := fa, ..., fb ∈ F

which returns a consecutive slice of fixations. Due to the real time
demand the effective window size to consider is usually relatively
small and we define wa,b to return the empty set ∅ when one of the
converted elements was outside the document area, i.e., f∅ ∈ F,
effectively signaling that the user was probably visually distracted
and no further classification should be done for the window. Hence
from here on we can assume for simplicity that each extracted win-
dow contains the same defined amount of elements.

Now for the purpose of building feature vectors for machine learn-
ing, the outputs of function wa,b are the principal elements we con-
sider. In training and evaluation they are constructed around a rated
fixation extracted from the gaze stream such that a = x − δ and
b = x + δ, where x is some position in the stream, and 2δ the
mentioned window size comprising δ saccade elements of past and
δ − 1 elements future context. During a realtime classification task
x would naturally represent the (δ+1)-latest observed fixation, and

125

δ would be selected as the smallest value that still gives acceptable
results in terms of overall accuracy. In a non-realtime scenario the
value should be selected so that it simply maximizes the accuracy.
For example, the samples used in training, like depicted in Figure
3, correspond to wx−δ,x+δ slices with δ = 4.

From here on we explore three main variants to construct feature
vectors. The first variant, baseline1, is a traditional reading detec-
tion based on actual character offsets. It maps the observed fixa-
tions to words and measure the progress in the document expressed
in character units. The second variant, baseline2, is some sort of
a naı̈ve implementation of the idea not to express saccades in real
character progress, but rather define and detect reading in terms of
relative saccade patterns. These first two variants serve as our base-
lines against which our actual feature generator will be compared.
Our main feature generator, the contextual saccade shape, uses the
relative saccade patterns, but tries to interpret implicitly encoded
semantical information to simplify the actual classification task. Its
main idea is to express the shape of w with as few but as expressive
parameters as possible.

We consider baseline1 to approximately reflect the state of the
art of character-based classification methods [Buscher et al. 2008]
[Hyrskykari 2006] in quasi-realtime scenarios, in which no manual
correction of gaze data is or can be performed. In addition baseline2
serves as a comparison for the contactual saccade shape algorithm
to test if the transformation of gaze data into a more abstract for-
mat yields any additional benefit. Very coarsely it mimics some of
the vector based approaches reported earlier [Campbell and Maglio
2001] [Kollmorgen and Holmqvist 2007] [Holmqvist et al. 2003]
[Holmqvist et al. 2011]5.

Technically all three variants accept an emitted window w and re-
turn a feature vector v = ν1, ..., νm, which usually consists of one or
more numeric values νi. These values, along with a label, can then
be given to classifiers such as SVMs.

3.1 Character Based Reading Detection

As mentioned reading behavior is traditionally described by the av-
erage amount of character positions the reader advances with a sac-
cade, measured sequentially from the start of the given block of
text. Thus for our baseline1 we implemented a reading detection
algorithm similar to [Buscher et al. 2008]. Given the set of fixa-
tions in w, each one is magnetically mapped [Hyrskykari 2006] to
the closest word in the document and its character position with re-
spect to the whole text is extracted. An actual feature vector vb1 is
therefore composed of the character offsets o1, ..., om−1 in the docu-
ment

vb1 = o1, ..., om−1

between the fixations f1, ..., fm of the given window. It should be
noted that in contrast to the original algorithm, due to the high
amount of vertical saccades in our scenarios, the employed mag-
netic match had to be considered on a word level basis and not
on a line level. Thus in a setting where skimming mostly consists
of horizontal saccades and realtime is of less concern a line based
magnetic or sticky approach (again, compare [Hyrskykari 2006])
will probably perform better than baseline1.

3.2 Normalized Saccade Vectors

Since it is our intention to perform a classification mostly based on
the gaze data alone and with as little surface knowledge as neces-
sary we implemented what could be considered as a naı̈ve approach

5Also see vld∗ in Section 4.1 and the detailed discussion in Section 5 on
comparability.

for baseline2. In it we use the fixation pattern almost directly, only
applying a conversion into a relative representation.

Comparing baseline1 against baseline2 serves both the purpose of
verifying if not a relative conversion alone might already be suf-
ficient and if further processing the raw data into a more compact
format was justified, since such a compression could either remove
data necessary for a proper classification, or it could denoise the
data and improve accuracy.

For the creation of the feature vector in baseline2 we first trans-
form the sequence of fixations within w into a sequence of saccades
S = s1, ..., sm−1. In S , each saccade is represented in polar coordi-
nates, si = θi, ri, denoting the angle and normalized length in virtual
character units from fi to fi+1.

A virtual character unit, in turn, specifies how many pixels width
a single character of the underlying text approximately requires. It
is computed by acquiring all word boxes that were covered by the
saccades in w in the document area, and the sum of their widths in
pixels is divided by the sum of their lengths in character units. For
the computation of ri we therefore divide the length of pixels of si
by the amount of character units.

An actual feature vector vb2 thus consists of the individual angles θ
and normalized lengths r.

vb2 = θ1, r1, ..., θn, rn

While this feature vector serves as the baseline2, it also serves as the
foundation for the computation of our shape based representation.

3.3 Contextual Saccade Shape

After working with slices of fixations, their visualizations, and
comparing the data labeled as read with the data labeled as skimmed
it appears there are two major factors that contribute to this distinc-
tion. One can best be described as the average angularity of the
saccade and its context, the other is its average forward speed, also
compare Figure 4. Hence we decided to use these two attributes as
the main features for our classifier.

Angularity h in this respect denotes how bent or vertical the win-
dow’s saccades, when considering their concatenated vector shape,
on average appear in contrast to a single horizontal line. Obviously
a number of subsequent fixations within one line of text should
ideally deliver almost no angularity, while vertical perusal of text
should yield a high value. For a given window w we compute it as

h = atan2(
∑
s ∈w

⃗(|sx|
|sy|
)
)

where s are all normalized saccades generated from the window as
described in the previous section. This means a high horizontality
will be expressed in values close to 0, while a mostly vertical pattern
yields values up to π2 .

The average forward speed denotes how much progress in the read-
ing direction of the text was made within the given window. It
reflects how many characters have approximately been read on av-
erage during saccades compatible with reading, where the compat-
ibility is estimated by angular bounds.

p = �{ri ∈ w : |θi| <
π

3
}

In other words the speed p is computed as the average length of all
saccades which point approximately towards the right. The bounds
for this check are deliberately set to the large limits of ± π3 since the

126

Figure 4: Graphical outline of the generation of the vcss feature
vectors. For a given saccade we consider a window around it and
compute the average lengths, expressed in virtual character units,
of all saccades that have an approximate angle aligned with the
direction of the text and the angle of the sum of all absolute vectors.
Both values form the basis for classification.

angularity feature should already sufficiently represent and handle
the vertical and diagonal skimming patterns. Now our final set of
feature vectors for the contextual saccade shape can be expressed
as

vcss = h, p

With this set of features we next perform an evaluation of the algo-
rithms’ performances.

4 Evaluation

As mentioned the recorded and labeled data set was split into a
training set including six users, and an independent testing set, in-
cluding six other users. Even though generated from different users,
both sets had similar distributions of reading to skimming patterns.
The training set consists of 56% skimming data, while the testing
set contains 51%. For the actual evaluation the feature vectors are
generated on both sets. While the training set is used to find the
best classifier and parameters the testing set is left untouched until
optimal parameters are found and only eventually used to verify the
findings.

4.1 Overall Performance Measures

There are two main tasks we need the training set for. The first
is to find the best possible classifiers for the given feature vector
representation, with the best variants we then perform an analysis
of the window size δ. While on the feature level we already se-
lected a number of variants, for the classifier we put our focus on a

Read Skim
Vector C γ P R P R Acc.

δ = 1
vb1 .12 10−4 .63 .74 .79 .69 .71
vb2 8192 10−4 .71 .66 .77 .81 .75
vcss 8192 5.02 .76 .82 .86 .82 .82

δ = 2
vb1 .58 10−4 .78 .83 .86 .82 .77
vb2 .58 .0025 .73 .69 .78 .82 .76
vcss 339.4 .06 .85 .82 .88 .89 .86

δ = 3
vb1 2.86 10−4 .75 .79 .84 .81 .8
vb2 339.4 .012 .8 .66 .78 .88 .79
vcss 339.4 .012 .88 .82 .88 .92 .88

δ = 4
vb1 .58 10−4 .82 .64 .77 .89 .79
vb2 .58 .0025 .83 .6 .75 .91 .77
vcss 8192 10−4 .86 .78 .84 .9 .85

testing
δ = 3

vb1 − − .84 .82 .86 .88 .86
vb2 − − .75 .49 .69 .87 .70
vcss − − .86 .86 .89 .89 .88

rel vld3 1.63 4 .68 .66 .75 .77 .72
vld4 1.37 3.07 .69 .74 .79 .74 .74

Table 1: The upper part contains the results on the training set
when testing for window sizes (δ) and features with tenfold cross-
validation. The best values for C and γ parameters were deter-
mined by a grid search, precision (P) and recall (R) values are
given for the classes reading and skimming, as well as the overall
accuracy. The middle part contains the results of the best trained
classifiers on the testing set, i.e., the results a classifier trained with
one set of users achieved when exposed to a new set of users. In the
lower part we show the results for two feature vectors (consisting
of saccade length and fixation duration) similar to those described
in related work.

RBF-SVM for which we conducted a grid search over C and γ; a
method fairly established in machine learning. Also, since the av-
erage reaction time of the final classifier should be below 1000ms
on average, this threshold determines the upper bounds for the win-
dow size to consider. Assuming an average fixation time of 250ms,
δ was therefore limited to 4 in this study6.

Using the labeled training we first do an initial comparison of the
methods vb1, vb2 and vcss. The upper part of Table 1 lists the results
of the classification runs on the training data as well as the best
found parameters for the RBF-SVM, the precision and recall values
for the reading and skimming class as well as the overall accuracy.
It can be seen that in all cases the accuracy delivered by the vcss
feature set is superior to the character based feature vector baseline1
and the raw feature set baseline2, the same holds for the precision
and recall values of both classes.

We also investigate the influence of the window size on the overall
classification accuracy, compare Figure 5. For all three investigated
feature types the accuracy increases from δ = 1, which equals
approximately 250ms reaction time after the fixation beginning the
saccade under consideration, up to δ = 3, approximately 750ms
reaction time, beyond which the accuracy drops again. This means
on the training set, that if after three more fixations a classification
is performed on a saccade under consideration, approximately nine
out of ten of the label emitted by vcss-SVM classifier are correct and
also approximately in nine out of ten true instances of skimming
(eight out of ten for reading) the classifier manages to detect these.

Based on these findings we select δ = 3 as the preferred window
size and for each feature set the best trained classifier is chosen

6It should be noted that the actual reaction time can be significantly
slower or faster, since the fixations times are merely assumed averages and
can vary from less than 100ms to several hundreds of milliseconds (com-
pare [Just and Carpenter 1980]), thus the true reaction times could range
from below 300ms to over 3000ms.

127

0 1 2 3 4 5

Window Size (δ)

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

vb1

vb2

vcss

rnd

Figure 5: Influence of the window size on the best classification
accuracy for the given feature type. The overall optimum was pro-
duced by vcss at δ = 3 with an overall accuracy of 88%. Consider-
ing a window size of 4 already decreases the performance slightly.
Each step of window size changes the reaction time approximately
250ms on average. The absolute baseline is set by rnd, which
equals the guessing level base distribution of reading to skimming
on our training set.

and evaluated on the test set with containing the six other users,
compare the middle part of Table 1. For the feature set vb1 an RBF-
SVM with C = 2.86 and γ = 10−4 is the selected candidate, and
for the vb2 and vcss features the ones with the values C = 339.4,
γ = 0.012 respectively. Using these classifiers it turns out that
while the performance of the classifier trained on the vcss feature
set achieves the same overall accuracy of 0.88, the performance
of the character based approach increases significantly, while the
performance of the classifier trained on the raw feature set drops
down to 0.7; we will discuss these findings in the conclusion.

Eventually we also compute two variants of a feature type we find in
the related work. The features vld3 and vld4 (compare the lower part
of Table 1) are similar to the feature Q′ described in [Kollmorgen
and Holmqvist 2007]. The vector vld4 is built using a window of
four fixations around the saccade under consideration. It consists
of the normalized lengths ri, as well as the fixation durations of all
fixations involved. In contrast to Q′ we did not take into account
blink events. The vector vld3 is similar to vld4, with the exception
that it has a window size of 3, the optimal value we found for our
other feature types so far. Both features are trained using grid search
on a RBF-SVM in 10-fold cross validation. We can see the overall
accuracy values with 0.72 and 0.74 for both vld types are somewhat
low compared to the baselines. We will also come back to this in
the conclusion.

4.2 Linear Classification and Model Adjustments

Since we now established somewhat of a peak classification accu-
racy at which the separability of both classes was highest our last
step is to simplify the classification method itself. Considering that
the feature set vcss yields the best results, visualizing it reveals that
both classes (compare Figure 6), while being partially overlapping,
apparently have a shape simple enough for linear classification.

In contrast to a SVM a linear model with similar performance mea-
sures has several advantages, amongst them that it is easier to im-
plement and more economically to execute, especially on small
scale devices like tablets.

So taking the training set we construct a linear classifier and evalu-
ate it with tenfold cross-validation, which gives an overall accuracy
of 85.5% and precision/recall values of 0.81 / 0.86 for reading and

0.90 / 0.85 for skimming respectively. Evaluating the same classi-
fier on the six users of the testing set yields an overall accuracy of
86.1% and almost the same precision/recall values. The final model
is generated as

class = −2.97 + 5.36h + 0.17p

where class yields values greater than 0 in case the pattern resem-
bles skimming, and values smaller than 0 in case of reading. Since
class reflects the distance of a point from the classification bound-
ary its absolute value of also reflects, to some extent, the certainty
of the classification result. The closer the value is to 0 the more
likely it could fall into the other class. Another very practical ad-
vantage of the linear classification is that the space of vvss becomes,
in contrast to SVMs, predictably partitioned, which allows for an
adjustment of the speed axis for the purpose of individualization.
While on sufficiently large horizontal text a vertical pattern is most
certainly an indicator against reading, the specific threshold when
to classify a horizontal saccade length still as reading is dependent
on the context and task for which this classification is being per-
formed7. With this in mind we introduce an additional parameter β,
which is being used to adjust the speed values prior to their classi-
fication, generating a derived speed:

p′ = β p

The parameter can best be interpreted as a dilatation factor on the
forwards-speed axis, effectively shifting data points with low angu-
larity towards one side of the classification boundary. With it the
influence of the horizontal saccades on the classification result can
be adjusted, while at the same time the points with a high angularity
remain mostly unaffected.

0 5 10 15 20 25 30 35

Forward Speed p [vcu]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ng

ul
ar

ity
h

[d
eg

] Read
Skimmed
Boundary

Figure 6: Visualization of our ground truth when expressed as an-
gularity and forward speed for the window size of δ = 3 and the
trained linear classification boundary. Adjusting β will shift the
points to the left or right and the less angularity there is involved
the more impact the parameter has.

5 Conclusion

Starting from the assumption that gaze patterns alone should con-
tain most information needed to recognize and discriminate be-
tween reading and skimming patterns we first performed a data ac-
quisition experiment. We invited a number of participants to read
and comprehend a number of passages, embedded in mostly un-
related text, to elicit various forms of reading-for-comprehension

7In addition to other factor like for example the rate of non-newline re-
gressions.

128

and searching patterns. We selected saccades as the base unit of
consideration and two eye tracking experts labeled approximately
1400 of them independently into the classes reading and skimming.
This resulted in 1055 saccades that we considered as ground truth
for the construction, training and testing of an automated classifier.
We investigated the expressiveness of three different feature types,
a character-offset based feature type, somewhat in line to currently
established classification methods and psychological knowledge; a
raw vector feature type, only considering angles and normalized
lengths; and a feature set we call contextual saccade shape, which
condenses the overall shape of a saccade and its adjacencies into the
two parameters forward speed and angularity. For all three feature
sets we performed SVM grid searches to find the best parameters
and window sizes and eventually presented a linear classifier that
delivers a comparable performance.

Based on our findings there are a number of conclusions to draw.
Comparing the three investigated vector representations, the con-
textual saccade shape appears to be most robust in terms of gen-
eralization and accuracy. On the training set it gives significantly
better results than both other methods, even on small window sizes.
On the testing set this observation also holds.

While the character based approach comes close on testing, its
higher volatility over different window sizes, and also compared
between both sets, are an indicator of a latent instability. However,
it is unclear if this instability emerges from a principal problem of
overlapping classes in the feature space, the variations in a-priori
class distributions or an insufficient number of training examples
for the given feature size. At a window size of δ = 3 the vector vb1
consists of 6 attributes while vcss of only 3.

The impact of the window size on the overall accuracy is notice-
able for all classifiers and in our study a context of three saccade
into both direction gives the best results. Smaller windows are
most likely to cut off parts of the actual perusal process (e.g., when
considering only two saccades a newline regression might be hard
to distinguish from a scanning pattern), while larger windows are
likely to introduce too much unrelated noise. In case of both base-
lines an increased window size inherently leads to bigger feature
vectors, which could probably be compensated by an simultaneous
increase of training data, while in case of the overall saccade shape
the expressiveness of h and p becomes diluted. All in all however,
a window size of 3, thus 6 saccades or approximately 2 seconds
of gaze data appears to be a reasonable size to distinguish reading
from skimming.

Comparing our approach to existing work we outline a straightfor-
ward way to obtain and evaluate reading and skimming data on text.
Presented to and labeled by two independent experts we generate
ground truth based on fixations and saccades. The data serves as
the foundation for an comparable assessment of the precision and
recall of different algorithms. With the design of our baselines and
implementation of vld∗ we also tried provide at least a basic level of
comparability to previous approaches. There are, however, certain,
limits. Of all the papers addressing an automated reading detec-
tion we are aware of, only few target explicitly the discrimination
of reading-for-meaning from skimming (such as fast perusal while
still maintaining a mostly line-wise pattern) and can thus be com-
pared directly.

The usage of character based offsets, presented in [Buscher et al.
2008], inspired our design of baseline1. This work, however, ex-
pressly targets a line-based non-realtime detection and was not eval-
uated against labeled ground truth.

The length-blink-duration approach presented by [Kollmorgen and
Holmqvist 2007] focusses on detecting reading vs. non-reading,
where the latter consisted of activities such as “editing periods
[where a writer’s] gaze may rest on text ROIs, although she is not
reading”. It was trained and evaluated on a set of apparently one
hour of labeled gaze data. The authors report an accuracy of 0.86

(precision / recall 0.8) for realtime classification on their validation
set. They also employed a neural network for classification and
training which achieved precision and recall values of 0.86 for the
reading class with reported training times of several hours. As men-
tioned earlier we implemented their feature set Q′ as vld4 and vld3,
with the exception of not taking into account blink events. On our
reading and skimming data this set performed with an overall accu-
racy of 0.74 and precision / recall values for reading of 0.69 / 0.74
respectively at a window size of 4.

Comparing these results one might be tempted to draw another con-
clusion: The main difference between vb2 and vld∗ is the move from
saccade angles to fixation durations. Hence, it appears that to dis-
tinguish reading from skimming the saccade angles hold more pre-
dictive power than the fixation duration. While in principle we con-
sider this statement to hold, one should keep in mind that for the
generation of ground truth the eye tracking experts did not consider
the fixation duration. This might, in turn, favor a feature set similar
to those observed by the experts.

A very comprehensive report on the classification into three cat-
egories was published by [Simola et al. 2008]. In an experiment
the users had to perform word search, question answering and a
search / reading for the most interesting items in lists. While the
word search was similar to skimming, the latter two categories ap-
parently required intense amounts of reading for meaning. For their
most predictive classifier the authors used a feature vector combi-
nation of fixation duration, saccade length and direction, as well as
a binary regression flag. On their testing data a trained HMM was
able to achieve an accuracy of 0.6, however on a much harder three-
class problem with two similar categories. Treating their class W
as skimming and A + I as reading instead (see Table 2 in [Simola
et al. 2008]) we can compute an overall accuracy of 0.8 based on
their reported data.

The reading detector described in [Holmqvist et al. 2003] and
[Holmqvist et al. 2011] appears to consider saccade windows with a
context of size 1 and is calibrated with samples from each recording
to classify. It aims at detecting reading in contrast to non-reading,
i.e., mostly scanning in their case. However, no classification re-
sults on labeled ground truth are being reported.

The approach described by [Campbell and Maglio 2001] aims at
distinguishing reading from icon search. In contrast to all other ap-
proaches it does not use fixation and saccade data, but aggregated
data over 100ms segments for both x- and y-directions. The relative
movements are then evaluated according to some length-criterion
and rated. Reading is considered once a certain threshold of aggre-
gated points are reached. In an experiment where four participants
either read a text carefully or performed a search for the Windows
Excel document icon achieved approximately 0.90 accuracy. The
reported recognition speed of their algorithm ranged “from 200 to
3000ms, with an average of just over one second (1106ms)”.

Considering our achieved accuracy levels, the experts’ agreement
and surveying the reported publications we got the impression that
we came close to a realistic peak classification accuracy on our la-
beled data, similar to [Kollmorgen and Holmqvist 2007]. While
an overall accuracy in the ‘upper nineties’ would, for ideas such a
QuickSkim, surely be advantageous, we have to consider that both
experts also only agreed to 83% on unproblematic data. In light
of a limited saccade context and finite classification resources some
patterns are apparently just too ambiguous. On the other hand this
finding is hardly surprising. The transition from slow skimming
to fast reading is a soft one. Both classes do not exist as well de-
fined, crisp entities, but instead as regions around a zone of con-
fluence. Hence in any classification scenario one should not only
rely on the computed classification output, but also on the classi-
fiers’ confidence—in our case the distance from the classification
boundary.

In overall we present a classification method that can be trained to

129

distinguish both patterns with high a precision, recall and overall
accuracy. The low variance of the the feature vector we propose,
in contrast to both baselines, is a good indicator that the algorithm
should be reasonably robust, even considering new users. By vary-
ing the window size it allows for a certain tradeoff between latency
and overall accuracy. It is furthermore straightforward to imple-
ment and requires only a few lines of code, making it a suitable
candidate for small scale devices or embedded hardware. The clear
notions of its features simplifies its understanding. With the intro-
duction of β it can also be adjusted in its sensitivity regarding its
assignment of inconclusive gaze data to ’fast reading’ and ’slow
skimming’.

Eventually we would like to point out that our method requires little
knowledge about the underlying text. Ideally it should be provided
with information whether in the region was text after all8 and the
approximate character size. However, it can also be a suitable can-
didate in scenarios where such information is unavailable or expen-
sive to generate. Possible examples could be mobile eye tracking
applications, where a textual stimulus is read in the real world and
only recorded by a scene camera. A reading result might then yield
candidates where to perform an OCR analysis.

6 Outlook

In our scenario we are able to train a classifier on one set of users
that is capable of generalizing to the reading patterns of other users.
Being able to do so was not unexpected since the general pattern of
reading for meaning on sufficiently large text in a given language
is, to a large degree, influenced by the general layout and grammar.
The main question was rather to what extent such a generalization
would be possible, especially when disregarding most of the tex-
tual stimulus. However, when these preconditions are not given
anymore, the overall patterns evoked will look significantly differ-
ent, examples include small columns of text, bullet point lists or
any other scenario where a mostly horizontal reading pattern has
no space to evolve. Investigating a feature representation and clas-
sification method that can deal with or consider these layout details
will expand the field of use of such a real time classifier.

Also we have to acknowledge that the our set of users was, with
regard to the general public, obviously not representative, consid-
ering that the majority of our users were male university students.
Therefore two interesting steps would be to analyze how our ac-
tually reported linear classifier performs on a completely different
user group, and how a newly trained classifier including these or
both groups would perform. First results from demo applications in
which we integrated the presented linear classifier and used it on a
set of different texts, font sizes (e.g., 11pt) and languages (English
instead of German) indicate that even in these cases its generaliza-
tion to different users does work.

Lastly we think that having a classifier capable of robustly distin-
guishing reading from skimming patterns on text in real time facil-
itates many new interactive and reading-context enriched end user
application. They can use the knowledge about what has been read
and what currently is being read to contextualize personalized infor-
mation processing and change the interface according to the user’s
current state of mind.

7 Acknowledgements

We would like to thank Horst Bunke and Seiichi Uchida for their
valueable remarks on SVM classification. This work was supported

8For example, not to misinterpret a skimming result when the user just
performed GUI tasks such as icon search instead. In fact for most desktop
scenarios, when there was no text nearby, the algorithm does not even need
to run.

by the German Federal Ministry of Education, Science, Research
and Technology (bmb+f), (project Perspecting, grant 01IW08002).

References

Biedert, R., Buscher, G., and Dengel, A. 2010. The eyeBook - Us-
ing eye tracking to enhance the reading experience. Informatik-
Spektrum 33, 3 (June), 272–281.

Biedert, R., Buscher, G., Lottermann, T., Schwarz, S., Möller,
M., and Dengel, A. 2010. The Text 2.0 Framework. Workshop
on Eye Gaze in Intelligent Human Machine Interaction.

Biedert, R., Buscher, G., Schwarz, S., Hees, J., and Dengel, A.
2010. Text 2.0. CHI EA ’10: Proceedings of the 28th of the
international conference extended abstracts on Human factors
in computing systems (Apr.), 4003–4008.

Buscher, G., Dengel, A., and Elst, L. v. 2008. Eye movements
as implicit relevance feedback. CHI ’08 extended abstracts on
Human factors in computing systems, 2991–2996.

Buscher, G. 2010. Attention-Based Information Retrieval. PhD
thesis, University Kaiserslautern, Kaiserslautern.

Campbell, C. S., and Maglio, P. P. 2001. A robust algorithm for
reading detection. In Proceedings of the 2001 workshop on Per-
ceptive user interfaces, New York, NY, USA, 1–7.

Chi, E. H., Hong, L., Gumbrecht, M., and Card, S. K. 2005. Scen-
tHighlights: highlighting conceptually-related sentences during
reading. Proceedings of the 10th international conference on
Intelligent user interfaces, 274.

Holmqvist, K., Holsanova, J., and Barthelson, M. 2003. Reading
or scanning? A study of newspaper and net paper reading. In The
Mind’s Eye: Cognitive and Applied Aspects of Eye Movement
Research. Elsevier Science Ltd.

Holmqvist, K., Nystrom, M., Andersson, R., Dewhurst, R., Jaro-
dzka, H., and van deWeijer, J. 2011. Eye Tracking. A Compre-
hensive Guide to Methods and Measures. Oxford Univ Pr, Nov.

Hyrskykari, A. 2006. Eyes in Attentive Interfaces: Experiences
from Creating iDict, a Gaze-Aware Reading Aid. acta.uta.fi.

Just, M. A., and Carpenter, P. A. 1980. A theory of reading:
From eye fixations to comprehension. Psychological Review 87,
329–354.

Kollmorgen, S., and Holmqvist, K. 2007. Automatically detecting
reading in eye tracking data. Lund University Cognitive Studies.

Rayner, K. 1998. Eye movements in reading and information pro-
cessing: 20 years of research. Psychological Bulletin 124, 3,
372–422.

Rayner, K. 1998. Eye movements in reading and information pro-
cessing: 20 years of research. Psychological Bulletin.

Reichle, E., Pollatsek, A., Fisher, D., and Rayner, K. 1998. To-
ward a model of eye movement control in reading. PSYCHO-
LOGICAL REVIEW-NEW YORK-.

Simola, J., Salojärvi, J., and Kojo, I. 2008. Using hidden Markov
model to uncover processing states from eye movements in in-
formation search tasks. Cognitive Systems Research 9, 4 (Oct.),
237–251.

Underwood, N. 1985. Perceptual span for letter distinctions during
reading. Reading Research Quarterly, 20, 153–162.

130

