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Handling few training data: classifier transfer
between different types of error-related potentials

Su Kyoung Kim, Member, IEEE and Elsa Andrea Kirchner

Abstract—This paper proposes an application oriented ap-
proach that enables to transfer a classifier trained within an
experimental scenario into a more complex application scenario
or a specific rehabilitation situation which do not allow to collect
sufficient training data within a reasonable amount of time. The
proposed transfer approach is not limited to be applied to the
same type of event-related potential. We show that a classifier
trained to detect a certain brain pattern can be used successfully
to detect another brain pattern, which is expected to be similar
to the first one. In particular a classifier is transferred between
two different types of error-related potentials (ErrPs) within the
same subject. The classifier trained on observation ErrPs is used
to detect interaction ErrPs, since twice as much training data is
collected for observation ErrPs compared to interaction ErrPs
during the same calibration time. Our results show that the
proposed transfer approach is feasible and outperforms another
approach, in which a classifier is transferred between different
subjects but the same type of ErrP is used to train and test the
classifier. The proposed approach is a promising way to handle
few training data and to reduce calibration time in ErrP-based
brain-computer interfaces.

Index Terms—human-machine interaction, brain-computer in-
terfaces, electroencephalogram, interaction errors, observation
errors, error-related potentials, single-trial detection, classifier
transfer.

I. INTRODUCTION

BRAIN-computer interfaces (BCIs) link [1], a user and
an external system by detecting a specific brain activ-

ity correlated with the user’s intent (e.g., movement inten-
tion/planning [2]–[7]), mental states or cognitive processes
[8]–[12]), which is measured by, e.g., electroencephalography
(EEG).

EEG-based BCIs have been developed in different applica-
tion contexts (for reviews, see [13], [14]), e.g., for enabling
users to communicate with the external world (P300-based
BCIs for review, see [15] or visual-evoked potential (VEP)-
based BCIs [16], [17]), for assisting users’s motor functions
in a daily life environment and in rehabilitation respectively
[18]–[23], or for other applications, like simulated driver
support [24] or in robotics [25]–[28].
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A core ability of adaptive systems (e.g., autonomous robots)
is self-monitoring of their own performance to automatically
self-correct erroneous behavior. Learning models used for
such self-adaptation of system’s behavior can be improved
by using external evaluations, e.g., using the so called error-
related potentials (ErrPs) measured on a human evaluator. In
recent years, ErrPs have been used to improve the system’s
performance by correcting the errors within the system itself
or in the interfaces that link human and machines [26], [29]–
[43].

Such improvement of system performance can be realized
by single-trial detection of ErrPs. Two types of ErrPs, among
others, have widely been used to adapt systems: a) interaction
ErrPs and b) observation ErrPs (for review of ErrP-based BCIs,
see [44]). Interaction ErrPs have been used in cases that the
interface fails to interpret the user’s intent and delivers a wrong
command to an external device. Such a failure of an interface
(i.e., interaction errors) elicits a specific brain activity called
interaction ErrPs [31], [33]. Thus, the detection of interaction
ErrPs has been used as a verification tool for other BCI-
systems such as P300-based BCIs [37]–[40] or in VEP-based
BCIs [41]. In robotic applications, the behavior of a robot
has been adapted with respect to the context of situations by
single-trial detection of observation ErrPs, which are elicited
in an observer’s EEG who monitors the robot’s erroneous
behavior [26].

However, real-world applications using ErrPs are challeng-
ing for different reasons. First, in general erroneous behavior
does not often occur in real-world applications. This leads to
a long recording time to obtain enough training data. Second,
the daily use of BCIs in real-world environments (e.g., in
specific rehabilitation situations) is often limited with respect
to recording time. For example, it is not always possible for
patients to train an interface for a long time, since their health
condition may change.

One possibility to handle few training data in a real-
world scenario is to develop an experimental scenario which
enables to collect enough training data and then transfer the
classifier trained within the developed scenario to a real-word
application scenario.

In general, such classifier transfer between scenarios can
reduce the recording time during data collection (i.e., cali-
bration time). However, the scenario used to train a classifier
does not always allow to collect a sufficient amount of training
instances within a reasonable time. We propose that in such
cases, a classifier transfer between ERP types which are
similar to each other can reduce the calibration time, when
we can collect considerably more training instances for one
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type of ERP compared to the other type of ERP during the
same recording time.

In this study, we propose an application oriented approach
to handle few training data and to reduce the calibration time
by transferring a classifier between different types of ErrPs. To
test the applicability of such a transfer approach, we detect two
different types of ErrPs. The idea of the proposed approach is
to use a classifier trained on one type of ErrP and to test on
another type of ErrP in case that considerably more training
data is obtained for the former type of ErrP compared to the
latter during the same time of data collection. Such classifier
transfer allows us to reduce the calibration time, which is
needed for a user-specific calibration of a BCI. In recent
studies [42], [43], the feasibility of classifier transfer between
different tasks has been investigated within the same type of
ErrP. In both studies, the same mental task was performed to
elicit observation ErrPs (i.e., subjects observe the behavior of
a cursor or a robotic arm). However, the type of stimulus (e.g,
different types of cursor presentations or robotic arm instead of
cursor) was differently presented with the goal of varying the
cognitive workload. Such differences resulted in differences in
temporal features of the observation ErrPs (such as differences
in latency) between different tasks. To our knowledge, there
is no study on the transfer of a classifier trained on one type
of ErrP and tested on another type of ErrP in order to reduce
the calibration time.

In the presented approach, an error monitoring task is
performed in two different ways. Errors are monitored during
the interaction with an external device (called interaction
errors) or while observing the operation of an artificial agent
(called observation errors). The corresponding ErrPs elicited
in the two different application contexts (interaction Er-
rPs/observation ErrPs) are detected by using signal processing
and machine-learning techniques. In our application, we obtain
more training instances in the observation task compared to
the interaction task during the same recording time. For this
reason, the classifier developed for detecting the observation
ErrPs is used to detect the interaction ErrPs. The concept
of the proposed approach was tested with few subjects in a
previous study [45]. In this paper, we test our approach on
more subjects. In addition, the proposed approach is compared
to another approach used to reduce calibration time, in which a
classifier is transferred between different subjects but the same
type of ErrPs is used to train and test the classifier. We evaluate
the applicability of two transfer approaches by comparing
them to the baseline (i.e., no transfer case).

This paper presents experimental results from eight subjects
during the monitoring of two different types of errors (interac-
tion and observation errors). The main findings are structured
in five parts: 1) single-trial detection of ErrPs of each type of
ErrP (no transfer case), 2) investigation of a time window of
interest to extract features for the proposed transfer approach,
3) single-trial detection of ErrPs in case of classifier transfer
between different types of ErrPs, 4) single-trial detection of
ErrPs in case of classifier transfer between different subjects
within the same type of ErrPs, 5) comparison between the
three cases: no transfer case, transfer case at ErrP level, and
transfer case at subject level.

Fig. 1. Experimental paradigm used for different application contexts: 1)
interaction task: subjects were instructed to bring the cursor (blue) to one
of the 20 targets (red) placed among the obstacles (gray objects) in numeric
order; 2) observation task: an artificial agent controls the movements of the
cursor to check all targets. Task rules were the same as for the interaction
task. Subjects observed the behaviors of the artificial agent. The track of cursor
movements is depicted by gray arrows towards the chosen direction and the
track of wrong movements of cursor is depicted by red arrows (direction of
errors). The depicted paradigm is an example of the interaction task.

II. APPROACH

A. Experimental Scenario

We developed a scenario based on a similar principle of
the scenario developed in [33], in which interaction ErrPs
were detected during the monitoring of interaction errors that
were simulated with a certain probability. Compared to their
approach, our scenario was designed to allow us to detect
different types of ErrPs (interaction ErrPs/observation ErrPs)
depending on which task (interaction task/observation task)
was performed (see Fig. 1).

1) Interaction task to detect interaction ErrPs: The task
was to reach all 20 targets (red) by moving the cursor (blue)
(see Fig. 1). All stimuli (cursor and targets) were displayed on
a monitor placed in front of the subject. To move the cursor
the subjects used four arrow keys of a computer keyboard
(left, right, up or down). Here, the subjects performed self
paced key pressings to move the cursor to obtain a realistic
character of the scenario (i.e. natural interactions between
subjects and device). Thus, the interval between events was
not predetermined. Each cursor movement corresponded to
one type of events (correct/erroneous). Thus, the number of
cursor movements was equal to the number of events. The
track of cursor movements is depicted by gray arrows towards
the chosen direction.

The subjects had to perform the task according to specific
rules. First, the targets have to be reached in numeric order.
Each target has a semantics (labeled number) based on how
the order of targets is defined. Second, the obstacles placed
on the way to the targets and spikes of the targets have to be
avoided when finding a way to reach the targets. In case of
checking a target point in the correct order the color of the
targets is changed from red to green. Due to the spikes all
targets can only be reached from one side of a target. In case
of touching a spike the cursor go back to the start position as
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TABLE I
OVERVIEW OF DATA SET AND EVALUATION PROCEDURE. HERE, WE DEFINED CALIBRATION TIME AS THE TIME WHICH WAS NEEDED TO RECORD

TRAINING AND TEST DATA DURING PERFORMING THE TASK. EACH TASK TOOK ABOUT TWO MINUTES. IN OUR CASE, CALIBRATION TIME WAS THE SAME
AS THE TIME WHICH WAS NEEDED TO FINISH THE TASK.

ErrP type ErrP type data set amount of instances calibration
evaluation

used to train used to test used to train and test (erroneous/correct) time

interaction interaction four sets are merged 192/1920 8 min
10 fold-cross validation
each subject separately

observation observation two sets are merged 198/1980 4 min
10 fold-cross validation
each subject separately

observation interaction
one set for train: 99/990

2 min
train: observation / test: interaction

each type of ErrP test: 48/480 each subject separately

interaction interaction
one set from

336/3360 0 min
leave-one-subject-out

each subject cross validation

a penalty. The task was finished after reaching all 20 targets
in the correct order.

In this task, we expected two kinds of erroneous behaviors.
First, erroneous behavior made by the subjects themselves
(i.e., response errors [46]) could occur due to the realistic
character of this task (e.g., semantics of targets, obstacles,
and spikes of targets). Second, erroneous actions of the system
(i.e., wrong movements of the cursor) could occur since we
simulated wrong movements of the cursor with a probability
of 9% to generate interaction errors. Such simulated wrong
movements did not correspond to the chosen key that was
pressed by the subjects. The possible directions of wrong
movements were uniformly distributed. Wrong movements left
traces depicted as red arrows (direction of errors).

Hence, three different labels for the classification were
generated: a) correct trial (Corr): cursor movements that
corresponded to the pressed key (i.e., correct movements), b)
erroneous trial type I (InterErr): cursor movements that did
not correspond to the key pressing of subjects (i.e., simulated
interface errors), and c) erroneous trial type II (RespErr):
errors made by the subject (e.g., touching spikes of a target
or violating the target order). In this study, we focused only
on two labels: Corr and InterErr.

The task was repeated seven times and thus seven data sets
were recorded for each subject. Each set contained about 48
erroneous trials and 480 correct trials. To avoid the same task
pattern, the order of targets was randomized for each set. All
subjects needed about 2 minutes to finish one set.

2) Observation task to detect observation ErrPs: Unlike
in the interaction task, not the subject but an artificial agent
performed the task. The task rules, the way of stimulus
presentation, and the probability of simulated errors were the
same as for the interaction task. Subjects were instructed to
observe the behavior of the agent.

When observing the actions of the agent, it is not clear
whether the actual cursor movement is erroneous or not, since
there are more than one shortest way to the targets. For this
reason, we constructed clear cases for erroneous events by hard
coding the path to the targets and its deviations (errors). In
this way, the subjects clearly recognize the wrong movements
of the cursor without developing an own strategy to find
the correct path. However, our hard coding of the path to

targets led to suboptimal ways to the targets. We obtained 99
erroneous events for each set. The empirical ratio of erroneous
and correct trials was 1:10 as for the interaction task. The
speed of key pressings was also hard coded. Since subjects
paused quite often to find the correct path, their average
movement speed was slower compared to the agents speed.
Thus, we obtained more erroneous trials compared to the
interaction task within the same time of data collection.

Here, we expected one type of error, i.e., the erroneous
behavior committed by the agent. Such errors could be rec-
ognized by the movements which deviated from the correct
path to reach the targets. The track of wrong movements of
the cursor is depicted by red arrows (directions of errors).
Accordingly, the subjects could recognize wrong movements
of the cursor without developing and executing a strategy to
find the correct path.

Hence, two different labels for classification were generated:
a) correct trial (Corr): movements did not deviate from the
path to reach targets (i.e., correct movements) and b) erroneous
trial (ObsErr): movements deviated from the path to reach
targets (i.e., wrong movements).

Again seven data sets (each took 2 minutes) were collected
as for the interaction task. Each set contained about 99
erroneous trials and 990 correct trials. To avoid the same task
pattern, the target order was randomized for each set.

B. Transfer Approaches

In the following we explain the proposed and a comparative
transfer approaches which both allow to reduce calibration
time.

1) Classifier transfer between different types of ErrPs:
Using the developed scenario we could collect twice as much
training instances in the observation task compared to the
interaction task during the same recording time per set. Hence,
from the perspective of the application it is practical to use the
data collected from the observation task to train the classifier
for detecting the interaction ErrPs in the application case. Such
reuse of a classifier allows us to reduce the calibration time.
Also in general an investigation of such classifier transfer is
of interest since the application contexts can be changed due
to different application environments in a daily application
of an interface. Here, we used data collected during the
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observation task (i.e., data containing observation ErrPs) to
train the classifier. The trained classifier was then used to test
data collected during the interaction task (i.e., data containing
interaction ErrPs).

2) Classifier transfer between different subjects within the
same type of ErrPs: The calibration time can also be reduced
by reusing of the classifier trained on data that was already
obtained from another subject for the same type of ErrP.
In this case, no explicit recording of training data from the
current subject is needed. However, the scenario used to train
a classifier is also used to test a classifier. Hence this approach
is beneficial, only in cases that the scenario enables to record a
sufficient amount of data within a reasonable time. Otherwise,
a reasonable number of subjects is needed to train a classifier
on historic session.

III. METHODS

A. Subjects

Eight subjects (two females, six males, age: 26.5 ± 3.25,
right-handed, normal or corrected-to normal vision) partici-
pated in this study. Each subject provided written consent to
participate in the study approved by the ethics committee of
the University of Bremen. The study was conducted according
to the Declaration of Helsinki.

B. Data Acquisition

EEGs were acquired for each participant during two experi-
ments: a) interaction task and 2) observation task. Experiments
were performed with a counter-balanced measures design.
Subjects were divided into two groups: one group began with
the observation task followed by the interaction task and
vice versa. Since each task had seven sets, both tasks were
performed alternately within a subject. EEGs were recorded
using the actiCap system (Brain Products GmbH, Munich,
Germany), in which 64 active electrodes were arranged in
accordance to an extended 10-20 system with reference at FCz.
Impedance was kept below 5 kΩ. EEG signals were sampled at
5 kHz, amplified by two 32 channel Brain Amp DC Amplifiers
(Brain Products GmbH, Munich, Germany), and filtered with
a low cut-off of 0.1 Hz and high cut-off of 1 kHz.

C. Analysis of Event Related Potential (ERP)

We computed averaged ERPs for each event (cor-
rect/erroneous) per subject. Here we used the same data sets
which were used for singe-trial classification. For ERP peak
analysis we used only eleven fronto-central channels: FC1,
FC2, FC3, FC4, C1, C2, C3, C4, Fz, FCz, Cz. We measured
maximum ERP peaks in the following time windows: a) early
time window: first negativity in the time window of 0.2 s–
0.3 s and positivity in the time window of 0.3 s–0.4 s and b)
late time window: negativity in the time window of 0.4 s–0.8 s.

In a descriptive manner (see Figure 3), we observed a
similar ERP shape in the early time window [0.2 s–0.4 s]
for both ErrP types (i.e., similar shapes in first negativity
around 0.27 s followed by positivity around 0.38 s), whereas
differences in ERP shapes between both ErrP types were

observed in the late time window [0.4 s–0.8 s]. Thus, we
divided the late window into two late sub-windows: 0.4 s–
0.6 s and 0.6 s–0.8 s. In summary, four time windows were
used to measure ERP peaks: a) negativity in the time window
of 0.2 s–0.3 s, b) positivity in the time window of 0.3 s–0.4 s, c)
negativity in the time window of 0.4 s–0.6 s, and d) negativity
in the time window of 0.6 s–0.8 s.

Peak amplitudes in the predefined time windows were
analyzed using repeated measures ANOVA with two within-
subjects factors: ErrP type and time window. We compared
peak amplitudes between both ErrP types in the early time
window: a) first negativity in interaction ErrPs vs. first neg-
ativity in observation ErrPs and b) positivity in interaction
ErrPs vs. positivity in observation ErrPs. Furthermore, both
late sub-windows were compared within each ErrP type, i.e.,
a maximum peak in the time window of 0.4 s–0.6 s was
compared with a maximum peak in the time window of 0.6 s–
0.8 s for each ErrP type. Where necessary, the Greenhouse-
Geisser correction was applied and the corrected p-value is
reported.

D. Data Set

Seven data sets were collected for each task (interac-
tion ErrP/observation ErrP). As mentioned earlier a different
amount of training data was collected for each task during
the same recording time (i.e., a different number of training
instances was recorded per set). Thus the recorded data sets
were merged differently depending on the ErrP task to enable
a fair comparison of detection performance of each type of
ErrP. In this way, an approximately equal number of erroneous
trials was used for the evaluation for each ErrP task. Note that
the ratio of correct and erroneous trials (1:10) was the same
for both tasks and we used the first four data sets for the
interaction task and the first two data sets for the observation
task. An overview of data preparation for the four different
investigations can be seen in Table I.

1) Single-trial detection of interaction ErrP: Four data sets
were merged into one data set. Approximately 192 erroneous
trials and 1920 correct trials (calibration time of 8 min) were
used to train and test a classifier for each subject (inter-set
design).

2) Single-trial detection of observation ErrP: Two data sets
were merged into one data set. Approximately 198 erroneous
trials and 1980 correct trials (calibration time of 4 min) were
used to train and test a classifier for each subject (inter-set
design).

3) Classifier transfer between different types of ErrPs: To
detect interaction ErrPs using the classifier trained on data
containing observation ErrPs, one data set collected from the
observation task (99 erroneous trials) was used to train the
classifier and one data set collected from the interaction task
(48 erroneous trials) was used for evaluation.

4) Classifier transfer between different subjects within the
same ErrP type: To detect interaction ErrPs using the classifier
trained on the data collected from another subject within the
same ErrP task, we used the inter-subject design. Here, we
used one data set which was collected from one subject during
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Segmentation
window [0s - 1s] 

after stimulus

Detrending
mean = 0

Decimation
5000Hz to 50Hz

Bandpass-Filter
0.5-10 Hz

Spatial Filtering

Feature Extraction

xDAWN

time domain features
[0.16s-0.6s, 0.16s-0.8s]

Feature Normalization
[mean = 0, SD = 1]

Classification
SVM

parameter optimization 
of the SVM with stratified 
5 fold cross validation

internal loop

              No transfer case
external loop
   stratified 10 x 10 cross validation

external loop
10 iterations

                  Transfer cases
A) ErrP level: 
     data containing observation ErrP
     was used to train the xDAWN,
     feature normalization, and SVM 

B) Inter-subject level: 
     data containing interaction ErrP
     was used to train the xDAWN,
     feature normalization, and SVM 

Fig. 2. Data flow [47]: The continuous EEGs were segmented, normalized, decimated, band pass filtered, and the signal to noise ratio was enhanced by
applying a spatial filter called xDAWN [48]. The features that were extracted from the spatial filter were normalized over all trials and finally used to train
the classifier called SVM [49]. For single trial detection of each type of ErrPs, we trained the spatial filter (xDAWN), feature normalization over all trials and
classification (SVM) with stratified 10×10 fold cross validation (external loop, solid-line box). For the parameter optimization of the SVM, we additionally
used an internal loop (stratified 5 fold cross validation, dotted-line box). For classifier transfer, the same data flow was used from segmentation to feature
normalization (external loop, dashed-line box). Here, the cost parameter of the SVM was also optimized with an internal stratified 5 fold cross validation
(internal loop, dotted-line box). This was repeated 10 times (dashed-line box). Details, see text.

the interaction task (48 erroneous trials) for evaluation and
one data set which was collected from the other subjects (i.e.,
one of seven sets) during the interaction task (7 × 48 = 336
erroneous trials) to train the classifier.

E. Preprocessing and Classification

Figure 2 illustrates the data flow for preprocessing and
classification. The continuous EEG signal was segmented into
epochs from 0 s to 1 s after each event type (correct/erroneous
trial). Since we tried to develop a realistic scenario (details,
see Section II-A), some segmented correct trials overlapped
with the following erroneous events. The correct trials were
excluded when an erroneous trial occurred 1 s before or after
the correct event during the segmentation of the continuous
EEGs. Thus, only the correct trials without any error-related
activity were labeled as correct.

All epochs were normalized to zero mean for each channel,
decimated to 50 Hz, and band pass filtered (0.5 to 10 Hz).
The xDAWN [48] was used as a spatial filter to enhance the
signal-to-noise ratio. By applying the xDAWN the number of
64 physical channels was reduced to 8 pseudo channels.

For a successful classifier transfer between different types of
ErrPs we investigated two different windows of training data
which can be used to extract features for a classifier. First, we
investigated a window of interest which leads to the highest
detection performance of each type of ErrP. To this end, we
compared two time windows with different window lengths.

As shown for Fig. 3 both types of ErrPs showed a similar
shape of averaged ERP curve in the early time window
[0.16 s–0.4 s]: a first negative peak around 0.27 s after the
erroneous events was followed by a positive peak around
0.38 s. However, differences in ERP shapes between both

ErrP types were observed in the late time window [0.4 s–
0.8 s]. A broader negativity including two negative peaks
[0.4 s–0.6 s and 0.6 s–0.8 s] was observed for the averaged
observation ErrP compared to the interaction ErrP. In contrast,
a narrow negativity peak in the later time window [0.4 s–0.6 s]
was observed for the averaged interaction ErrP (details see
Section III-C and IV-A).

Based on the difference in the shape between the interaction
ErrPs and observation ErrPs in the time window of 0.6 s–0.8 s,
two time windows were investigated: a short [0.16 s–0.6 s] and
a long [0.16 s–0.8 s] window. We compared the classification
performance of both time windows for each type of ErrP.
Such comparison allows us to determine whether a longer time
window is necessary for a successful detection of interaction
ErrPs and observation ErrPs.

Thus, the following two time windows were used for feature
generation: a) [0.16 s–0.6 s] and b) [0.16 s–0.8 s]. Features
were extracted from 8 channels after spatial filtering, between
0.16 s and N s where N ∈ {0.6, 0.8}, for a total of 176 features
(8 channels × 22 data points = 176) for the shorter time
window [0.16 s–0.6 s] and 256 features (8 channels × 32 data
points = 256) for the longer time window [0.16 s–0.8 s].

The extracted features were normalized over all trials and
used to train a classifier. We used a linear support vector
machine (SVM) [49] to classify correct and erroneous trials.

For single trial detection of both types of ErrPs, we trained
and validated the xDAWN, feature normalization over all
trials, and the SVM by using stratified 10×10 fold cross
validation. In each of the 10 iterations of cross validation
(CV), the data was randomly split into 10 folds (splits) and
10 train-test pairs were constructed where each fold was used
exactly once as test data. The remaining 9 folds were used
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(a) Interaction ErrP
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(b) Observation ErrP
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Fig. 3. Averaged event-related potentials (ERPs) for the difference error-minus-correct trials at channel FCz for each subject. Here, we used a common
average reference (CAR) and re-calculated the data on the channel FCz. Only artifact-free EEG trials were used. a) Interaction ErrP: for most subjects, a
first negative peak was observed around 270ms after the erroneous events, followed by a positive peak around 380ms and a narrow negative peak between
400ms and 600ms. b) Observation ErrP: similar to the interaction ErrP, for most subjects, a first negative peak occurred around 270ms after the erroneous
events, followed by a positive peak around 380ms. However, the first negativity and positivity were reduced (except for subject 6) for the observation ErrP
compared to the interaction ErrP. Especially the second negativity in the window between 600ms–800ms was increased for the observation ErrP compared
to the interaction ErrP. Finally, we observed a broad negative peak between 400ms and 800ms only for the observation ErrP.

for training. Here, the ratio of the two classes was considered
during the construction of the train-test pairs so that each fold
contained approximately the same proportions of both types
of class labels (stratified 10×10 fold CV).

For the parameter optimization of the SVM, we additionally
used an internal loop. For each training, the cost parameter
of the SVM (i.e., regularization constant [50]) was optimized
with an internal stratified 5 fold cross validation using a grid
search among the predetermined values [100, 10−1, ... , 10−6].
Here, 9 splits, which were used for training, were divided into
5 train-test pairs for the parameter optimization of the SVM.
The best parameter evaluated by this 5 fold cross validation
(internal loop, see Figure 2 dotted-line box) was used for the
external loop (see Figure 2 solid-line box).

Due to the unbalanced ratio of erroneous and correct trials
(1:10), different penalty constants were used for the two
different classes [51]. We determined a class weight of 5 for
the under-represented class as penalty so that making errors
on under-represented instances was costlier than making errors
on over-represented instances.

In both cases of classifier transfer, the same data flow
was used from segmentation to feature normalization (see
Figure 2 dashed-line box). The xDAWN, feature normalization
over all trials, and the SVM were trained in the external loop
(see Figure 2 dashed-line box). Again, the cost parameter of
the SVM (i.e., regularization constant [50]) was optimized
with an internal stratified 5 fold cross validation (see Fig-
ure 2 dotted-line box). This was repeated ten times in the
external loop (see Figure 2 dashed-line box), which resulted
in different splits for each repetition.

F. Evaluation

As a metric for classification performance we used the
arithmetic mean of true positive rate (TPR) and true negative
rate (TNR), the so-called balanced accuracy (bACC), where
the erroneous trials were the positive instances. This metric is

less sensitive to imbalanced data (i.e., unbalanced ratio of the
two classes) compared to other metrics, e.g., accuracy (details,
see [52]). Thus, the unbalanced ratio of the two classes was
considered both during training of the classifier (class weight
of 5 was used for the under-represented instances) and in the
evaluation metric. The erroneous trials belonged to the positive
class.

1) Single-trial detection of interaction ErrPs and obser-
vation ErrPs: Classification performances for the detection
of interaction ErrPs and observation ErrPs were evaluated
separately. For evaluation 10 × 10-fold cross validation was
performed on the merged data set (192 erroneous trials and
1920 correct trials for the interaction task; 198 erroneous trials
and 1980 correct trials for the observation task).

2) Classifier transfer between different types of ErrPs: We
evaluated the classifier transferability between two different
types of ErrPs. In our case, classifier transfer from the obser-
vation task to the interaction task was of interest, since we
could collect more data in the observation task compared to
the interaction task for the same duration of data collection per
set. Thus, the classifier was trained on one data set containing
observation ErrPs, (99 erroneous trials, calibration time of 2
min). After that, the trained classifier was used to evaluate one
data set containing interaction ErrPs (48 erroneous trials).

3) Classifier transfer between different subjects within the
same type of ErrPs: We evaluated the classifier transferability
between different subjects. Unlike in the case of classifier
transfer between different types of ErrPs, the same type of
ErrP was used to train and to test the classifier. However, the
classifier was trained on the data from different subjects to
detect the interaction ErrP.

For evaluation the leave-one-subject-out cross validation
was used, in which the data from one subject (i.e., the current
subject) was selected for testing and the data from the other
subjects was used to train the classifier.
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G. Statistical Analysis

1) Single-trial detection of interaction ErrPs and observa-
tion ErrPs: To find out, whether a short time window could
be sufficient to detect two different types of ErrPs and whether
there could be a difference in classification performance
depending on the length of time window, we compared the
classification performances between the predefined two time
windows within the same type of ErrPs. Also the classification
performance of interaction ErrPs and observation ErrPs were
compared for each time window.

To this end, classification performances (100 classification
performances: stratified 10×10 fold cross validation (CV): 10
iterations, 10 splits CV, see Figure 2 solid-line box) were
analyzed using repeated measures ANOVA with time window
[0.16 s–0.6 s, 0.16 s–0.8 s], ErrP type (observation, interac-
tion), and subject (subject 1–subject 8) as within-subjects
factors. Where necessary, the Greenhouse-Geisser correction
was applied and the corrected p-value is reported. For multiple
comparisons, the Bonferroni correction was applied.

2) Classifier transfer cases: To find out a possible effect
of both types of classifier transfer on the classification perfor-
mance, we compared classification performances obtained by
two different kinds of classifier transfer with the no transfer
case: 1) classifier transfer between different types of ErrPs
within the same subject (i.e., transfer at the ErrP level), 2)
classifier transfer between different subjects within the same
type of ErrP (i.e., transfer at the inter-subject level), and 3)
single-trial detection of interaction ErrPs without classifier
transfer but with a long calibration time (i.e., no transfer case).

To this end, the classification performances (10 classifica-
tion performances: 10 iterations, see Figure 2 dashed-line box)
were analyzed by repeated measures ANOVA with transfer
type (no transfer, transfer at ErrP level, transfer at inter-subject
level) and subject (subject 1–subject 8) as within-subjects
factors.

Here, we divided the 100 values obtained by the no transfer
setup in 10 groups and averaged all values in each group.
In this way, we obtained ten classification performances (i.e.,
sample size of 10) in no transfer case and they were com-
pared to the ten classification performances in each transfer
cases. Where necessary, the Greenhouse-Geisser correction
was applied and the corrected p-value is reported. For multiple
comparisons, the Bonferroni correction was applied.

IV. RESULTS

A. ERP Results

We found no significant peak differences between both ErrP
types in first negativity in the time window of 0.2 s–0.3 s
[F (1, 7) = 4.48, p = 0.072], whereas a significant reduced
peak amplitude in positivity in the time window of 0.3 s–0.4 s
was observed for observation ErrPs compared to interaction
ErrPs [F (1, 7) = 29.21, p < 0.001].

Furthermore, we found peak difference between both late
sub-time windows for interaction ErrPs, but not for observation
ErrPs. That means, interaction ErrPs had a negative peak in
the time window of 0.4 s–0.6 s, but not in the time window
of 0.6 s–0.8 s. In contrast, we found two negative peaks for

both late sub-time windows [interaction between ErrP type
and time window: F (1, 7) = 15.16, p < 0.006, 0.4 s–0.6 s, vs.
0.4 s–0.6 s: p < 0.005 for interaction ErrPs and p = 0.44 for
observation ErrPs]. In summary, both ErrP types contained a
negative peak in the time window of 0.4 s–0.6 s. Therefore,
we used the time window of 0.16 s–0.6 s for classifier transfer
between both ErrP types.

B. Classification performance of interaction ErrPs and obser-
vation ErrPs

Table II and Fig. 4 show the classification performance on
correct and erroneous single trials for each ErrP task. We
obtained a classification performance with an averaged bACC
of 0.82 and 0.81 for interaction ErrPs and 0.79 and 0.81 for
observation ErrPs for each time window.

For the observation task, a higher classification performance
for the longer time windows [0.16 s–0.8 s] was achieved
compared to the shorter time window [0.16 s–0.6 s] across
subjects [short window: bACC of 0.79, long window: bACC
of 0.81, interaction between ErrP type and time window:
F (1, 99) = 16.88, p < 0.001, short window vs. long window:
p < 0.001]. The higher classification performance on the
longer time window was observed for five subjects [interaction
of time window with ErrP type and subject: F (3, 693) = 2.01,
p = 0.052, short window vs. long window: the statistical
values, see Fig. 4].

However, the difference in classification performance be-
tween short and long windows was not observed for the
interaction task. All subjects showed no difference between
both time windows (short window vs. long window: p = n.s.
statistical values, see Fig. 4). Based on this result, only the
short time window was selected to detect interaction ErrPs
using a classifier trained on data containing observation ErrPs.
By selecting the short time window [0.16 s–0.6 s] we could
also reduce the dimensionality of the feature space which
could be relevant for an application.

C. Classification performance in case of classifier transfer
between different ErrP types (transfer at the ErrP level)

Table III–A(I) shows the classification performance of inter-
action ErrPs using the classifier trained on the data collected
during the observation task.

We obtained an averaged bACC of 0.79 across all subjects.
The success of classifier transfer from observation ErrPs to
interaction ErrPs was subject-specific. For four subjects the
classification performance in case of using a classifier trained
on observation ErrPs was reduced compared to the case of
using a classifier trained on interaction ErrPs [interaction
of transfer with subject: F (14, 126) = 82.21, p < 0.001, no
classifier transfer vs. classifier transfer at the ErrP level: the
statistical values, see Fig. 5 (upper)].

On the other hand, for the other four subjects we did not
find a reduction in classification performance when applying
classifier transfer using a calibration time of 2 minutes. The
classification performance after transfer was as good as (sub-
ject 7) or even higher compared to no classifier transfer with
a calibration time of 8 min (subject 1, subject 4, subject 8).
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TABLE II
CLASSIFICATION PERFORMANCE (MEAN±STANDARD DEVIATION) OF EACH SUBJECT ON CORRECT AND ERRONEOUS SINGLE TRIALS AND THE AVERAGE
OF THEM FOR TWO DIFFERENT TYPES OF ERRP: INTERACTION ERRP AND OBSERVATION ERRP (INTER-SET DESIGN). NOTE: TWO TIME WINDOWS WERE

USED FOR FEATURE EXTRACTION: SHORT TIME WINDOW (0.16 S–0.8 S) AND LONG TIME WINDOW (0.16 S–0.8 S)

Single-trial detection of interaction ErrPs
Training instances (erroneous/correct): approx. 192/1920, calibration time of 8 min (4 sets were merged)

0.16-0.6 s Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average
bACC 0.79±0.06 0.81±0.06 0.82±0.04 0.80±0.06 0.89±0.04 0.83±0.05 0.78±0.04 0.81±0.06 0.82±0.03
TPR 0.70±0.12 0.70±0.11 0.72±0.10 0.72±0.11 0.82±0.07 0.72±0.11 0.69±0.09 0.73±0.12 0.73±0.04
TNR 0.88±0.04 0.92±0.02 0.93±0.03 0.89±0.03 0.96±0.01 0.93±0.03 0.87±0.04 0.89±0.05 0.91±0.03
0.16-0.8 s Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average
bACC 0.78±0.06 0.81±0.05 0.82±0.04 0.80±0.06 0.88±0.05 0.82±0.05 0.78±0.05 0.80±0.05 0.81±0.03
TPR 0.69±0.12 0.69±0.11 0.71±0.10 0.71±0.11 0.83±0.10 0.73±0.12 0.67±0.10 0.72±0.11 0.72±0.05
TNR 0.87±0.04 0.93±0.02 0.92±0.03 0.89±0.03 0.90±0.04 0.91±0.04 0.89±0.04 0.87±0.04 0.90±0.02

Single-trial detection of observation ErrPs
Training instances (erroneous/correct): approx. 198/1980, calibration time of 4 min (2 sets were merged)

0.16-0.6 s Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average
bACC 0.79±0.05 0.83±0.05 0.78±0.05 0.77±0.06 0.85±0.04 0.75±0.05 0.79±0.05 0.76±0.06 0.79±0.03
TPR 0.76±0.10 0.75±0.12 0.72±0.10 0.66±0.11 0.82±0.07 0.65±0.11 0.71±0.09 0.66±0.12 0.72±0.05
TNR 0.83±0.04 0.92±0.03 0.84±0.03 0.88±0.03 0.87±0.04 0.85±0.03 0.86±0.03 0.86±0.03 0.87±0.02
0.16–0.8 s Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average
bACC 0.81±0.05 0.85±0.05 0.78±0.05 0.80±0.05 0.87±0.04 0.76±0.05 0.79±0.05 0.78±0.06 0.81±0.04
TPR 0.77±0.10 0.75±0.10 0.71±0.10 0.69±0.11 0.83±0.10 0.67±0.10 0.72±0.10 0.70±0.11 0.73±0.05
TNR 0.85±0.04 0.94±0.02 0.84±0.03 0.91±0.03 0.90±0.04 0.85±0.02 0.86±0.03 0.86±0.03 0.88±0.04
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Fig. 4. Comparison of classification performance between the two time windows (0.16 s-0.6 s, 0.16 s-0.8 s) for each type of ErrP and each subject: no
interaction effect of time window with ErrP type and subject: F (3, 693) = 2.01, p = 0.052. For multiple comparisons, Bonferroni correction was applied.
Note: mean bACC (bACC = (TPR+TNR)/2) with standard error were presented for each time window and each subject.
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Fig. 5. Comparison between two different types of classifier transfer and the no transfer case: no classifier transfer vs. classifier transfer at the ErrP level
(upper), classifier transfer at the ErrP level vs. classifier transfer at the inter-subject level (middle), no classifier transfer vs. classifier transfer at ErrP level
vs. classifier transfer at inter-subject level (below). Note that the p value that is reported in each plot was corrected based on the comparison under three
conditions (no classifier transfer, classifier transfer at the ErrP level, and classifier transfer at the inter-subject level). For multiple comparison, Bonferroni
correction was applied. * denotes a significant difference
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TABLE III
CLASSIFICATION PERFORMANCE (MEAN±STANDARD DEVIATION) OF INTERACTION ERRPS USING TWO KINDS OF CLASSIFIER TRANSFER (A-II AND

A–II) AND OBSERVATION ERRPS USING CLASSIFIER TRANSFER AT THE ERRP LEVEL (B). NOTE: FEATURES USED BY THE CLASSIFIER WERE
EXTRACTED FROM THE TIME WINDOW OF 0.16 S–0.6 S.

A) Single trial detection of interaction ErrPs using different types of classifier transfer: I and II
I. Classifier Transfer between different types of ErrPs

Observation ErrP (Training) → Interaction ErrP (Test): transfer at the ErrP level
Training instances (erroneous/correct): approx. 99/990, calibration time of 2min

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average
bACC 0.83±0.01 0.70±0.04 0.76±0.01 0.81±0.01 0.82±0.01 0.76±0.02 0.77±0.01 0.88±0.01 0.79±0.06
TPR 0.74±0.01 0.55±0.13 0.58±0.03 0.80±0.02 0.75±0.05 0.77±0.04 0.66±0.05 0.81±0.01 0.71±0.05
TNR 0.91±0.01 0.84±0.06 0.94±0.01 0.82±0.02 0.88±0.03 0.74±0.02 0.89±0.02 0.94±0.01 0.87±0.07

II. Classifier Transfer between different subjects within the same type of ErrPs
7 subjects (Training) → 1 subject (Test): transfer at the inter-subject level

Training instances (erroneous/correct): approx. 336/3360, calibration time of 0min
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average

bACC 0.82±0.01 0.68±0.04 0.67±0.01 0.79±0.01 0.81±0.01 0.72±0.02 0.69±0.01 0.83±0.01 0.75±0.07
TPR 0.83±0.01 0.47±0.13 0.35±0.03 0.71±0.02 0.74±0.01 0.59±0.04 0.49±0.02 0.79±0.03 0.62±0.17
TNR 0.80±0.02 0.89±0.01 0.99±0.01 0.86±0.02 0.87±0.01 0.85±0.01 0.90±0.02 0.86±0.01 0.87±0.02

B) Single trial detection of observation ErrPs using classifier transfer between different types of ErrPs
Interaction ErrP (Training) → Observation ErrP (Test): transfer at the ErrP level

Training instances (erroneous/correct): approx. 96/960 (2 sets were merged), calibration time of 4 min
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average

bACC 0.72±0.02 0.63±0.04 0.70±0.03 0.73±0.02 0.72±0.02 0.72±0.02 0.73±0.02 0.84±0.01 0.72±0.05
TPR 0.55±0.02 0.42±0.03 0.49±0.03 0.62±0.02 0.56±0.02 0.57±0.02 0.71±0.02 0.75±0.01 0.58±0.11
TNR 0.88±0.02 0.84±0.02 0.91±0.02 0.85±0.02 0.88±0.02 0.86±0.02 0.75±0.02 0.93±0.01 0.86±0.05

D. Classification performance for classifier transfer between
different subjects within the same ErrP type (transfer at the
inter-subject level)

Table III–A(II) shows the classification performance of
interaction ErrPs when the classifier was transferred between
different subjects but the same type of ErrPs was used to train
and test the classifier.

We obtained an averaged bACC of 0.75 across all subjects.
All subjects showed a reduced classification performance
compared to the case of classifier transfer at the ErrP level
except for two subjects (subject 1, subject 2) [interaction
of transfer with subject: F (14, 126) = 82.21, p < 0.001,
classifier transfer at ErrP level vs. classifier transfer at inter-
subject level: the statistical values, details, see Fig. 5 (middle)].

Compared to the single-trial detection of interaction ErrPs
without any classifier transfer the classification performance
was significantly reduced for all subjects except for one subject
(subject 4) [no classifier transfer vs. classifier transfer at
the inter-subject level, statistical values, details, see Fig. 5
(below)].

E. Summary

We achieved a high performance in single-trial detection of
interaction ErrPs and observation ErrPs (an averaged bACC
of 0.82/0.81 and 0.79/0.81).

The classification performance was slightly reduced when
transferring the classifier between different types of ErrPs:
from bACC of 0.82 to bACC of 0.79. This reduction of
performance is subject-specific. For half of the subjects the
transfer between different types of ErrP was successful. The

detection performance in this case was as good as in the case
of no transfer or even higher.

In contrast, the classification performance was significantly
reduced when transferring the classifier between different
subjects within the same type of ErrP: from bACC of 0.82
to bACC of 0.75. Such reduction was not subject specific. All
subjects showed a reduced classificaton performance except
for one subject.

Furthermore, the results from two different lengths of time
windows proved that the shorter window [0.16 s–0.6 s] is suf-
ficient to detect the interaction ErrP, whereas the observation
ErrP can be detected with a higher classification performance
in case of using a longer time window [0.16 s–0.8 s]. Based
on this investigation we could select the shorter window to
extract features for classifier training.

V. DISCUSSION AND CONCLUSION

A. Feasibility of classifier transfer

In this study, we have achieved a high performance in
single-trial detection of interaction ErrPs and observation
ErrPs in a more realistic, application oriented scenario, when
compared, e.g., to the study described in [33]. The evaluation
of the proposed approach showed that the classifier transfer
between different types of ErrPs is feasible. Although a
success of the proposed classifier transfer was subject-specific,
from the perspective of application, such classifier transfer was
very useful to reduce calibration time, i.e., two minutes of EEG
recording was sufficient to calibrate the system for half of the
subjects. Furthermore, the classification performance obtained
by the proposed transfer approach outperformed the approach
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of transfer between different subjects within the same type of
ErrP for most subjects.

B. Directions of classifier transfer between different ErrP
types

In this study, we performed the transfer of observation ErrP
→ interaction ErrP, since this transfer direction matches the
goal of the present study (i.e., reduction of calibration time)
and the concept of the proposed approach (i.e., use of data
with a shorter calibration time to test on data with a longer
calibration time). However, the reversed transfer direction
(i.e., transfer of interaction ErrP → observation ErrP) could
be interesting for other applications. Thus, we additionally
performed the transfer with the reversed transfer direction.
To this end, we used the same data sets as for the transfer
of observation ErrP → interaction ErrP. To obtain the same
amount of training instances, we merged two data sets from
the interaction task. Here, the same time window [0.16 s–
0.6 s] was used for feature extraction. As shown for Table III–
B, the transfer of interaction ErrP → observation ErrP was
successful, but performed worse compared to the transfer of
observation ErrP → interaction ErrP (see Table III–A(I) vs.
Table III–B).

A possible explanation is that properties of the data used
for training and testing a classifier could affect classifica-
tion performance in case of classifier transfer. We observed
more variability between single trials for the observation task
compared to the interaction task. Figure 6 shows an example
of variability between single trials for each ErrP type in a
descriptive manner. Most subjects showed more variability
between single trials for observation ErrPs than interaction
ErrPs (e.g., subject 6). However, a few subjects (e.g., subject
8) showed less differences in variability between single trials
depending on the ErrP type. In a descriptive manner, the data
obtained from the observation task was more heterogenous
than the data from the interaction task.

Based on this hypothesis, one can assume that the model
learned on data with more variability between single trials may
cover the whole range of data with less variability between
single trials. In contrast, the model learned on data with less
variability between single trials may not cover completely the
whole range of data with more variability between single trials.
However, we can not ensure that variability between single
trials could have a direct impact on classification performance.
Hence, we need further systematic investigations with more
clear concepts and hypotheses to test this assumption. In future
work, variability between single trials will be investigated to
evaluate its impact on transferability of classifiers between
scenarios (e.g., different ErrP types, different tasks).

C. Classifier transfer based on similarity in ERP shapes

In this study, we showed that it is possible to use a classifier
trained on one type of ErrP to detect another type of ErrP. In
our case, the context of application (e.g., the scenario, the task
has been changed and this change elicited a different type of
ErrP (e.g., interaction ErrPs) compared to the learned ErrP
type (e.g., observation ErrPs). However, both ErrP types share

a similar pattern (e.g., similar ERP shapes), since they are
elicited by recognizing errors. Accordingly, we could show
that a learned model can be used to detect a brain pattern
which is partly similar to the learned brain pattern.

Thus, it was relevant to find features which reflect this
similarity. One possibility is to investigate ERP shapes of both
ErrP types. In this study, we found a difference in ERP peaks
between both ErrP types in the late time window of 0.4 s and
0.8 s: interaction ErrP contained a negative peak in the time
window of 0.4 s–0.6 s, but not in the time window of 0.6 s–
0.8 s, whereas observation ErrP contained a negative peak in
both late time windows [0.4 s–0.6 s and 0.6 s–0.8 s]. Accord-
ingly, we selected the time window in which both ErrP types
shared a similar ERP shape, i.e., the time window of 0.16 s–
0.6 s. We assume that a good choice of time window might
contribute to a successful transfer between both ErrP types,
especially when data points in the time domain are used for
feature extraction. In future work, a systematic investigation
could be performed to find an optimal time window for such
transfer.

Transfer based on similarity in ERP shapes has been also
found in recent studies that reveal a successful transfer be-
tween different tasks using the same ErrP type [42], [43],
[53]. In our previous study, we also used this transfer concept
and transferred a classifier in the context of P300 detection in
specific applications [27]. Here, we detected P300 elicited by
recognizing target stimulus among frequent standard stimuli
(oddball paradigm). We observed that subjects sometimes
missed targets when they performed multiple tasks. In case
of no response to a target stimulus we repeated this missed
target stimulus. Further, we observed that subjects recognized
target stimuli but sometimes postponed to respond to target
stimuli when they had a critical situation while performing
the other task. In this case, we did not want to repeat a target
stimulus due to a delayed response to a target stimulus. Hence,
in applications, the distinction between missed target stimuli
(i.e., without response) and recognized target stimuli (i.e., with
response) could help to optimize an interface between human
and machine. To distinguish missed target stimuli from rec-
ognized target stimuli, we build a classifier trained on data
containing standard stimuli and recognized target stimuli and
used the trained classifier to evaluate data containing missed
and recognized target stimuli. This classifier transfer was also
based on our observation in which ERP shape of missed target
stimuli were similar to the ERP shape of standard stimuli. In
this special case the P300 was under both conditions (missed
target stimuli and standard stimuli) not or only weekly evoked.
Here, we did not transfer different ERP types, but the used
concept of transfer is the same, i.e., transfer based on similarity
in signal characteristics.

Therefore, we carefully assume that classifier transfer be-
tween different ERP types is feasible when different ERP types
share a similar pattern (e.g., similar ERP shapes).

D. Benefit of the proposed transfer approach and its applica-
tion possibilities

This study shows that the higher classification performance
obtained by the proposed approach is not the only advantage
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Fig. 6. An example of variability between single trials for each ErrP type (solid line: average of all single trials, shaded area: standard error). Violet lines
and their shaded areas correspond to correct trials. Green lines and their shaded areas correspond to erroneous trials.

compared to the transfer approach between different subjects
within the same type of ErrPs. The proposed transfer approach
is a more beneficial way to handle few training instances and
to reduce calibration time, since the transfer approach between
different subjects requires data from a reasonable number of
subjects when events correlated with specific EEG pattern, that
are detected by the BCI, occur very seldom. However, there is
also a possible limitation of our approach, which is based on
similarity in ERP pattern. In a recent study, different kinds of
ErrPs (execution ErrPs/outcome ErrPs) with different patterns
(e.g., different ERP shapes) were found [54]. Reasons for such
differences and whether classifier transfer is feasible in such
cases must be investigated in future work.

Furthermore, in future work, the proposed transfer approach
and the possible advantages obtained by using the proposed
transfer approach will be tested in real applications. For exam-
ple, in specific rehabilitation situations, the proposed approach
(i.e., reduction of calibration time by classifier transfer) and
both underlying concept of transfer (1. transfer by using
data with a shorter calibration time to test on data with a
longer calibration time and 2. transfer based on similarity in
signal characteristics) could be beneficial, since some specific
situations (patients health state, other unfavorable environ-
ments) do not always allow to collect a sufficient amount of
training data. In this case, calibration time which is needed
in applications can be reduced by using the proposed transfer
approach. In most application cases, ErrPs have been used to
correct an external device control, for example P300 speller
(e.g., [38], [40]) or robot arm movements control (e.g., [55],
[56]). When a successful transfer of classifier trained on data
from other scenarios is feasible, it could not be necessary to
collect training data containing ErrPs, for example, to correct
wrong movement prediction/detection in the actual application
scenario.

Furthermore, the proposed approach could be applied in real
robotic applications. Possibilities for improving the learning
of a model by using ErrPs have been already investigated
in [35], [36]. Such an investigation with a humanoid robot

could be interesting, especially by using the proposed transfer
approach e.g., by transferring a classifier trained on data from
a simplified scenario into real applications of the humanoid
robot.

ACKNOWLEDGMENT

This work is supported by the German Ministry of Eco-
nomics and Technology (grant no. FKZ 50 RA 1011, grant
no. FKZ 50 RA 1012 and grant FKZ 50 RA 1301). The
authors would like to thank anonymous reviewers for valuable
comments. We also thank Foad Ghaderi, Anett Seeland and
Marc Tabie for constructive remarks. Finally we thank all
participants of the experiments and Elke Neubauer for her help
in recording EEG data.

REFERENCES

[1] S. K. Kim, E. A. Kirchner, A. Stefes, and F. Kirchner, “Intrinsic
interactive reinforcement learning using error-related potentials for real
world human-robot interaction,” vol. 7: 17562, December 2017.

[2] M. Fatourechi, R. Ward, and G. Birch, “Evaluating the performance of a
self-paced BCI with a new movement and using a more engaging envi-
ronment,” in Proceedings of the 30th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, 2008, pp.
650–653.

[3] O. Bai, V. Rathi, P. Lin, D. Huang, H. Battapady, D.-Y. Fei, L. Schneider,
E. Houdayer, X. Chen, and M. Hallett, “Prediction of human voluntary
movement before it occurs,” Clinical Neurophysiology, vol. 122, no. 2,
pp. 364–372, Feb. 2011.

[4] M. Folgheraiter, E. A. Kirchner, A. Seeland, S. K. Kim, M. Jordan,
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Krell, M. Tabie, and M. Fahle, “On the applicability of brain reading

for predictive human-machine interfaces in robotics,” PLoS ONE, vol. 8,
no. 12, p. e81732, Dec 2013.
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