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Abstract. Our approach of process-driven document analysis (DA) aims at sup-
porting enterprises in managing the complexity of multiple input channels. Within
this approach, we proposed earlier to map each incoming document to its corre-
sponding task context - denominated as Attentive Task (AT) - by applying search
with Dempster-Shafer theory. In this paper, we extend the search algorithm with
methods from machine learning for addressing the challenges in real enterprise
domains: (1) information gain trees for optimizing initial evidence selection and
(2) five strategies for detecting search failures. We evaluate all proposed methods
on a corpus from a financial institution and give an overview on how the approach
enables automation services in multichannel management.

Keywords: Evidence based search, information gain tree, search failure detec-
tion, Dempster-Shafer theory, multichannel document analysis

1 Introduction

Today, enterprises are truly challenged by the management of new communication
channels, such as email, having to deal with information overload. According to Bellotti
et al., the quantity and the complexity of incoming requests can explain this overload
[1]. Enterprises strive toward managing the multichannel complexity, but fail when rely-
ing on existing IT solutions. The systems often suffer from the fragmentation between
communication channels and also from the lack of connection to internal processes
leading to information gaps. Mostly, their functionality is limited to legal requirements
only. Instead, users need a system that helps them understanding the request, finding
the related process instance, and extracting relevant information.

We proposed the approach of process-driven document analysis (DA) [2]. A docu-
ment arriving through an input channel is mapped to the corresponding task. The infor-
mation expectations of the task are then used for conducting an analysis of the docu-
ment and for extracting all relevant information. We applied two concepts: (1) Attentive
Tasks (ATs) formally describing information expectations toward incoming documents
and (2) the Specialist Board (SB), first introduced by [3], describing all available DA
methods. First, we generate a DA plan. Second, we extract information about the docu-
ment according to the DA plan. Finally, we search the corresponding AT based on this
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information. If necessary, the DA plan is adopted according to the AT. All steps are
repeated until the matching AT is found and no more information can be extracted.

In this paper, we focus on improving the novel AT search algorithm that enables
mapping on a task instance level. In [4], we use DA results as evidences for priori-
tizing the available AT set by calculating a degree of belief (DoB) for each AT and
evidence before combining them with Dempster-Shafer theory [5]. First evaluations
demonstrated promising search results and good robustness, but also that the selection
of initial evidences is crucial to search performance. Applying our approach to enter-
prises raises two challenges: (1) The introduced two step evidence structure remains
insufficient for domains with more evidence types. Learning a sophisticated structure is
necessary. (2) The approach fails when no AT fits the document which is either the case
when a new process is triggered by an incoming document, or when the mechanism of
generating ATs failed due to processing errors. A failure detection method is needed.

Our goal is to address these enterprise requirements by enhancing AT search with
methods from machine learning: (I) Learning evidence type trees by maximizing the
average information gain, (II) using strategies for detecting search failure: (i) identify-
ing evidences that appear only in documents leading to a new AT, (ii) comparing the
maximum DoB to an expected DoB, (iii) and introducing general AT templates, (iv) as
well as hybrid combinations from the previous strategies. We evaluate all approaches
on a corpus from a financial institution.

Next, we review related work. We give a brief overview on our approach of process-
driven DA focusing on the concept of ATs and the search algorithm. We then introduce
our two approaches and present the results of their evaluations. Finally, we present an
outlook on automation services, draw conclusions, and discuss future work.

2 Related Work

There exist many approaches for mapping documents to processes or tasks - especially
in the email environment, but they all have numerous drawbacks regarding our problem.
They consider usually a few processes and ignore important process context information
instead of numerous task instances. They are often costly to transfer to new domains,
and they do not respect the importance of search criteria or search failure.

Some approaches rely on heuristics for mapping documents to tasks, e.g., thrasks
that are a combination of conversation threads and tasks [1] or other context information
for aggregation [6]. They assume a direct connection between heuristic and task. Other
approaches use established classification methods, like Naı̈ve Bayes or Support Vector
Machines. For example, Cohen et al. classify emails into sender intentions based on
verb-noun pairs called speech acts [7] as well as Scerri et al. who apply rule based task
classification with speech acts [8]. Dredze et al. combine classification methods that rely
on involved people or topics [9]. Faulring et al. propose a regular logistic regression al-
gorithm for task type classification [10], whereas Granitzer et al. pursue to aggregate
tasks from user interaction behavior [11]. Unfortunately, all these approaches do not
involve a dynamic task set and are, therefore, not applicable to Attentive Tasks (ATs).
Krämer recognizes the importance of tasks instances but uses manual task assignment
[12]. Only Kushmerick and Lau use unsupervised learning for deriving process struc-
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Fig. 1: (a) Process-driven document analysis system. (b) Main steps of the process-driven docu-
ment analysis algorithm.

tures from emails. Their approach is applicable to personal email management with
unstructured and implicit processes [13]. However, their approach has a limited appli-
cability for well-defined processes as they appear in enterprises. Overall, none of the
existing approaches consider search criteria, as for example, results from DA, or pro-
vide handling of search failure.

3 Overall Approach

This section presents the process-driven document analysis (DA) approach focusing on
Attentive Task (AT) search [2, 4]. We detail concept, AT terminology and generation.
We conclude with the main challenges from enterprise application.

3.1 Process-driven Document Analysis

The basic elements of the process-driven DA system are depicted in Figure 1 (a). The
system deals with documents coming from the main input channels in enterprises:
email, mail, fax, call center, and eDocs. The system’s core consists of the DA plan-
ner, the DA executor, and an AT search module. The system iteratively analyzes the
document according to a plan and searches for the corresponding AT in the available
AT set. The modules use knowledge about evidence types, available DA methods de-
scribed in the Specialist Board (SB), and enterprise knowledge. This work focuses on
AT search and the use of initial evidences.

The main steps of the algorithm are outlined in Figure 1 (b). When a document ar-
rives, the system decides which evidences have to be extracted initially. Based on these
evidence types, it generates the initial state, the current goal state, and a DA plan. This
plan is then executed and DA results are created in form of annotations. An annotation
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Table 1: Example of an Attentive Task.
Descriptor Value Type Constraints

SenderEmail anna@blue.org EmailAddress in(customer.email)

SenderName Anna Blue Person in(customer.name)

RequestClass ChangeOfOwner Class in(requestClasses)

NewOwnerName Klaus Mustermann Person -

NewOwnerDoB ? Date DD.MM.YYYY

AdmissionOffice ? Organization in(organizations)

?: New value expected

contains at least a type, value, and reference to the text sequence. Annotations are used
as evidences for performing priority search on the set of available ATs. If there is a
fitting AT and more information needs to be extracted, the system adopts the goal state,
the initial state, and the DA plan before proceeding. If the AT is detected as missing,
the corresponding AT template is identified for generating a new AT and adopting the
goal. The algorithm stops when no more information is necessary or available.

3.2 Attentive Tasks

We detail the AT formalism, their generation, search, and the challenges in enterprises.

Terminology An Attentive Task (AT) describes a process instance’s information ex-
pectations toward an incoming document at one step. The information expectations are
represented by a list of slots, where each slot contains a descriptor, a value, and an
information type, as well as constraints – in case the value is not available. Table 1
depicts an example of an AT for a change of contract owner request. It contains infor-
mation known from previous steps of the process, e.g., customer name. Additionally,
there is new information expected, e.g., about the owner’s date of birth. An AT template
contains no process instance information and is used for generating ATs.

Generating Attentive Tasks Since ATs formalize the information expectations of in-
ternal processes, they need to be generated by them. For example, a service employee
processes a customer request, sends out a request, asking for missing information, and
waits for reply. At this point, an AT is generated, i.e., the correct AT template is filled
with known and expected information of the process instance. Depending on the enter-
prise’s IT infrastructure, there are several options for triggering AT generation:

1. Manual generation. The user manually selects the template, fills in all information,
and stores the AT on the server. This option requires high manual effort and might
result in a high error rate.

2. Full automatic generation. The ideal generation of an AT is driven by an underlying
system. This can be a workflow, an ERP1, or any other system. Depending on the

1 ERP = Enterprise Resource Planning
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size and type of the system (e.g., standard software or self-tailored solutions) this
option requires expensive customization. It is recommended to use existing APIs2

of these systems for keeping adaptation effort low.
3. Supported generation. An AT generation software supports the user in generating

new ATs. It operates on the user’s computer and communicates with a central sys-
tem. Whenever the user needs to generate a new AT, he uses the system with a few
selections. Due to system independence, this option is less cost intense but also less
convenient than the full automatic generation.

Depending on each process and its underlying systems, the generation method can be
a mixture of them. A complete set of ATs requires full process knowledge and perfect
generation of ATs either by employees or by the systems. Each of these factors can fail
resulting in an incomplete set of ATs.

Attentive Task Search In our previous work, we proposed a search algorithm that
performs prioritization of a set of ATs using DA results as evidences.

It calculated for each evidence and AT a degree of belief (DoB) by assigning a mass
value and normalizing over the search whole set. All normalized mass functions were
combined with the Dempster-Shafer rule [5] (see details in [2]). Evaluations showed
that the AT search is robust in terms of parameterization. We also examined that se-
lected evidence types influence search performance and that an evidence structure is
needed for optimizing search performance. A two level structure was sufficient for our
simple evaluation corpus. We believe that for larger evidence type sets, as appearing in
enterprises, we need a more sophisticated structure.

Enterprise requirements The application of AT search faces two main challenges in
the enterprise environment:

1. Initial evidence structure. We need a structure for the initial evidence-based search
for prioritizing the AT set with a minimum number of search steps, i.e., number of
evidences used for search.

2. Identification of documents without Attentive Tasks. We need a failure detection
strategy for identifying documents without a corresponding AT - either documents
that trigger a new process or cases where AT generation failed. So we can avoid
processing errors.

4 Information Gain Trees

In this section, we present a structure for deciding initial evidence extraction for search.
This structure is build with supervised learning and applied automatically to Attentive
Task (AT) search. We propose to generate evidence trees labeled with the average infor-
mation gain at this level. In the following, we introduce the tree structure, the supervised
learning algorithm and the integration into the AT search.

2 API = Application Interface
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Fig. 2: Information gain tree.

4.1 Learning

Figure 2 displays an exemplary information gain tree. Apart from the root node, it
contains nodes, each labeled with an evidence type and the average information gain
value of this evidence type at the current level. Leaves are reached when no evidence
type generates an information gain above a defined threshold. The tree span is limited
by the number of evidence branches at each level.

We rely on the concept of information gain IG introduced by Kullback and Leibler,
because it measures the difference between the current entropy H and the expected
entropy He after applying one more attribute (= evidence) e to the current search set
[14]. The information gain for an evidence e on a set of ATs A is defined as follows:

IG(A,e) = H(A)−He(A|e) (1)

= ∑
v∈val(e)

|{a|ae = v}|
|A|

He({a|ae = v})

where a ∈ A and ae is the slot in a with evidence type of e. Since the information
gain depends on the current AT set, we learn average information gains for random AT
sets repeatedly for each tree level.
The tree learning algorithm is outlined in Algorithm 1. It consists of two functions,
generateTree and avgIn f oGains. The first one is a recursive function that learns a tree
tree for a given test set set consisting of documents and their related ATs, based on av-
erage information gain values. First, we calculate for all evidence types ets the average
information gains and return a list of nodes nodeList. From this list, we select the top
items limited by a branching factor branch and a fixed minimum threshold thresh for
the information gain value. If the topList does not contain any more evidence types, we
have reached a leaf and return. Otherwise, we add each node from topList to the tree
and perform generateTree on the next level from the current node n2.

The function avgIn f oGains calculates repeatedly information gains for the remain-
ing evidence types ets on a random AT set. First, we get a list of all used evidence
types usedEts from the tree and reduce the list to the available evidence types le f tEts.
We repeat information gain calculation iterations times. For each iteration, we select a
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Algorithm 1 Generate information gain tree
function GENERATETREE(set,ets,tree,n)

nodeList← avgIn f oGains(set,ets, tree,n)
topList← getTopItems(nodeList, thresh,branch)
if isEmpty(topList) then return tree
end if
for all n2 in topList do

tree← addNode(tree,n,n2)
tree← generateTree(docs,ats,ets, tree,n2)

end for
return tree
end function
function AVGINFOGAINS(set,ets, tree,n)

usedEts← getPath(tree,n)
le f tEts← reduceList(ets,usedEts)
for i← 0 : i≤ iterations; i++ do

ats← createRandomAT Set(set)
doc← selectRandomDoc(ats,set)
doc.evids← analyseDoc(usedEts)
prioAts← atSearch(ats,doc.evids)
subAts← createSubgroup(prioAts)
for all e in le f Ets do

g← calcIn f oGain(subAts,doc,e)
in f oGains(e).add(g)

end for
end for
avgIGs← calcAvgIn f oGains(in f oGains)
nodes← createNodes(le f tEts,avgIGs)

return sort(nodes)
end function

Algorithm 2 Extract evidences from document doc according to evidence decision tree
tree.

function APPLYEVIDENCETREE(doc,ats, tree)
while tree.hasNext() do

node← tree.getNextWithMaxIn f oGain()
e← analyse(doc,node.eType)
if e! = null then

evidList.add(e)
else

tree.stepBack()
tree.prunePaths(node.eType)

end if
end while
prioList← AT search(ats,evidList)

return prioList
end function
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random AT search set ats and a corresponding document doc. Then, we extract all evi-
dences doc.evids according to the used evidence types. AT search is performed. Based
on the priority list of ATs, we select the remaining AT subgroup subAts. For this sub-
group, we calculate the information gain g for each evidence type. Finally, we calculate
the average information gain for each evidence type and return a sorted node list.

4.2 Application to Search

Algorithm 2 outlines, how we apply the learned information gain tree to AT search.
The function applyEvidenceTree generates one path of evidences evidList within the
tree tree that can be extracted from the document doc.The DA results are applied as
evidences to AT search. For generating the evidence list evidList, the next node node in
the tree is selected by the maximum information gain assigned to the descendants of the
current node. If this evidence type can be extracted from the document, the evidence e
is added to the list of evidences. If not, we move one level up in the tree and prune all
paths in the tree that include this evidence type. The resulting evidence list is used for
AT search and the function finally returns a sorted AT list.

5 Failure Detection Strategies

Sometimes, when a document arrives , there does not exist a matching Attentive Task
(AT). This is either the case if the document invokes a new process instance in the
enterprise or if the generation of the AT failed (see Section 3.2). During AT search, we
need to decide fast if there is an AT or not for avoiding processing errors. These search
failures can be handled by creating a new AT from the corresponding AT template. In
the following, we present three strategies and combinations of them for identifying such
documents during or in advance to AT search.

5.1 Specific Evidence Types

Documents triggering a new process instance often contain evidence types that are not
contained in other documents and vice-versa. These are most likely basic information
that is not mentioned again during a conversation. We propose learning of evidence
types specific for new requests and extracting them before AT search. Equation 2 for-
malizes the rule for determining AT failure for a document d depending on evidence
types Enew specific for new documents:

f ailspec(d,Enew) =

{
1.0 if ∃e ∈ d.E|e.t ∈ Enew

0.0 else
(2)

where failure is true (1.0) if there exists at least one evidence e extractable from the
document d.E, whose evidence type e.t is contained in Enew. This approach is not costly
in terms of search steps, because it does only require extraction steps. It cannot detect
AT generation failures.
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5.2 Expected Degree of Belief

The degree of belief (DoB) measures to which extent each AT matches the evidences
from a document in comparison to all other ATs. Therefore, we propose to use the DoB
value for detecting documents, where we believe that no AT matches. We compare an
expected DoB dobe for a set of evidence types E to the actual DoB of the first AT in
the prioritized list dobtop. If the difference is beyond a threshold t, a failure is detected.
Equation 3 formalizes failure detection for a document d, the AT set A, and an expected
DoB function dobe, as well as a threshold function t:

f ailDoB(d,A,dobe, t) =

{
1.0 if dobe(d.E, |A|)−dobtop(d.E,A)> t
0.0 else

(3)

where failure is detected if the difference between the expected DoB dobe and the actual
top DoB after search dobtop is greater than the defined threshold. This strategy postu-
lates that the DoB of documents with existing AT differs significantly from documents
without AT. We conduct evaluations to confirm this assumption. Since the detection
strategy includes information about the current AT set, it addresses both failure cases.

5.3 Attentive Task Templates

For failure handling we generate new ATs from AT templates. We, therefore, propose
to add all AT templates to the AT search set. Equation 4 formalizes template failure
detection for a document d, the current ATs A, and all templates T :

f ailtem(d,A,T ) =

{
1.0 if atop(d,(A∪T )) ∈ T
0.0 else

(4)

where failure is detected if the top AT atop after search on the combined AT set A and
T is a template. This strategy addresses both failure cases and is simple to implement,
since it does not require learning.

5.4 Hybrid strategies

We consider combining the different strategies for achieving better and faster detection
results. The Expected Degree of Belief and AT Templates strategies exclude each other,
because inserting templates in the search set prevents using the DoB of a non-matching
AT on top of the list. Thus, we combine the Specific Evidence Types strategy with the
others. First, we detect if a document contains an evidence type specific for new doc-
uments. If the document passes, we apply the second or third strategy. In this way, we
expect to reduce search steps for new documents and to improve overall detection.

6 Evaluation of Information Gain Trees

We conduct evaluations with the information gain tree structure. First, we learn the tree
and apply it then to Attentive Task (AT) search.
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Table 2: Information gain tree properties for alternating
branches and thresholds.

Number of nodes Average depth
Threshold

Branches 0.4 0.3 0.2 0.15 0.1 0.4 0.3 0.2 0.15 0.1
1 0 2 5 3 3 0.0 2.0 5.0 3 3
2 0 6 69 104 87 0.0 2.0 5.8 7 7,1
3 0 12 365 1,898 5K 0.0 2.0 5.9 7.8 8.9
4 0 15 792 9K 83K 0.0 2.0 5.8 7.9 10.1
5 0 18 1,392 23K >1,000K 0.0 2.0 5.7 7.9 11.7

Table 3: Information gain tree search results.
AvgRank Search steps (extraction)
Threshold

Branches 0.3 0.2 0.15 0.1 0.3 0.2 0.15 0.1
1 0.74 0.75 0.74 0.74 1.1 (2.0) 1.3 (2.2) 1.4 (2.2) 1.3 (2.2)
2 0.75 0.74 0.75 0.75 1.1 (2.9) 1.3 (3.1) 1.3 (3.1) 1.3 (3.1)
3 0.75 0.74 0.75 0.74 1.1 (3.7) 1.3 (4.0) 1.3 (4.0) 1.3 (4.0)
4 0.75 0.74 0.74 0.74 1.2 (4.6) 1.4 (5.0) 1.4 (5.0) 1.4 (5.0)

Table 4: Performance of previous meth-
ods.

Method Evidences AvgRank Search steps
(extraction)

All E=6 1.04 6.0 (6.0)
E=7 0.77 7.0 (7.0)

Top7 E=3 1.17 3.0 (3.0)
E=4 0.54 4.0 (4.0)

Top7 2-levelE=2 0.81 2.0 (2.0)
E=3 0.59 3.0 (3.0)

6.1 Evaluation setup

We perform the evaluations on a corpus generated from two business processes of a
financial institution. The corpus includes 49 emails from probands that conducted re-
quests toward a bank. Each document in the corpus has been annotated with document
analysis (DA) results and we have generated an AT for each document. Our approach
is general to all input channels, but we focus on email here for reducing complexity not
relevant to search performance. It is possible to extend the approach to the other chan-
nels. The evaluations of the information gain tree have been conducted in two steps:

1. Tree learning. The proposed tree learning algorithm depends on the information
gain threshold and the number of branches per node. We varied both parameters for
analyzing resulting trees in terms of number of nodes and average tree depth.

2. Tree search. The goal of using information gain trees is to provide a structure that
reaches good search results in a minimal number of search steps. We compare
the tree setups generated during learning and compare them to simpler structures
as random selection from all evidences (All), a set of best performing structures
(Top7), and the two level structure (Top7 2-Level).

6.2 Tree Learning

The overall goals of implementing information gain trees are the minimization of search
and extraction steps, while keeping good search results, creating a structure that is ro-
bust to non-extractable evidences, and minimizing learning time.

During learning evaluation, we, alternated the two main parameters - branch factor
and threshold - to terminate branch extension. For each tree, we counted the number of
nodes that directly correlates to learning time, and the average tree depth that influences
number of search steps. We derive the main findings depicted in Table 2 as follows:
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1. Learning time. The lower the threshold and higher the branch factor is, the larger
the tree becomes – growing exponentially. In terms of learning time, the threshold
should be limited to 0.2, whereas branches to 4. A threshold of 0.4 or higher does
not generate any node (except the root node).

2. Search steps. Average tree depth depends on the threshold and increases when de-
creasing the threshold. Experienced in simple search, good search results derive
from 3 or more search steps. A threshold between 0.3 and 0.4 is corresponding.

3. Branches. The more branches, the more robustness to not extractable evidences we
achieve. Therefore, a high branching factor is preferable, but does also influence
learning time tremendously. The results show, that a limitation of the number of
branches, can help to limit overall tree size.

We conclude that the limitation of threshold and branches is necessary for limiting tree
learning time.

6.3 Tree Search

For tree search, we compare search performance and runtime optimization for each tree
configuration. Then, we compare tree search with the three previously used methods
for determining initial evidences: All, Top7, and Top7 2-level. For search performance,
we use the average ranks as main measure. Optimization is measured in search and
extraction steps. We summarize the results in Table 3 as follows:

1. Average rank. All trees perform similar with an average rank between 0.74 and
0.75. A small, simple tree structure is sufficient for achieving good search results
for our corpus. The evidences in the first branch are most likely extractable.

2. Search steps. Average number of search steps is low (from 1.1 to 1.4) and in-
creases slightly with decreasing threshold. This supports that in most cases the first
branches are used for search.

3. Extraction steps. Average number of extraction steps increases from 2.0 up to 5.0
with decreasing threshold and increasing branching factor. When an evidence in the
first branches cannot be used, several extraction steps are necessary.

Comparing the tree search results to the previous methods (see Table 4) reveals that
tree search reaches similar search performance as All between 6 and 7 evidences, as
Top7 between 3 and 4, and as Top7 2-level between 2 and 3. We infer that tree search
optimizes search and extraction steps in comparison to simpler methods.

In conclusion, we found a structure that optimizes search and extraction steps and
delivers good search results with relatively low effort in training time and calibration of
the method. We believe, the information gain trees will enable our system to deal with
more complex setups.

7 Evaluation of Failure Detection

In this section, we evaluate the different failure detection strategies regarding detection
performance. We pre-evaluate the degree of belief (DoB) in dependence on the search
set size and the evidence type to prepare the second strategy (expected DoB).
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7.1 Evaluation setup

We evaluate on the same corpus in two steps:

1. Degree of belief values. We conduct Attentive Task (AT) search on random search
setups for evaluating the dependency of the degree of belief (DoB) value on search
set size and evidence type. Further, we repeat the experiment for understanding,
how DoB develops in case of a search failure, and for generating a threshold. We
repeat each search setup 20,000 times.

2. Failure detection strategies. We evaluate each of the proposed strategies: 1) specific
evidence types, 2) expected DoB, 3) inclusion of AT templates, as well as hybrid
strategies, 1) & 2) and 1) & 3). We compare them with established classification
measures: precision Pr = t p/(t p+ f p), recall Re = t p/(t p+ f p), and accuracy
Acc = (t p+ f p)/(t p+ f p+ tn+ f n). True positives t p are correctly detected fail-
ures, false positives f p non-failures classified as failures, true negatives tn correctly
detected non-failures, and false negatives f n not detected failures. We also conduct
a separate evaluation of the two failure cases. Additionally, we aim at minimiz-
ing the costly search steps. Experiments were repeated 80.000 times for each setup
including varying number of search steps from 1 to 6, which are the number of
evidences used for search.

7.2 Degree of Belief Evaluation

We repeated DoB experiments for different ATs search sets and varied the search set
size, number of evidences as input for search, and the type of evidence group. For
evidence groups, we differentiate between the best performing evidence types from our
previous work (Top7), all evidence types (All), and all possible evidence types without
the Top7 (All w/o Top7). For each search experiment, we generate a random AT set
of random size, select one corresponding document, extract evidences according to the
evidence type group, and execute search. The findings depicted in Figures 3 (a) - (c) are
summarized as follows:
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Table 5: Classification performance of the failure detection strategies.
1) Evidence types 2) Expected DoB 3) Templates 1) & 2) 1) & 3)

#Search steps Pr Re Acc Pr Re Acc Pr Re Acc Pr Re Acc Pr Re Acc
0 1.00 0.23 0.47 - - - - - - 1.00 0.23 0.47 1.00 0.23 0.47
1 - - - 0.77 0.54 0.57 1.00 0.23 0.34 0.82 0.71 0.69 1.00 0.52 0.59
2 - - - 0.93 0.80 0.82 0.99 0.53 0.60 0.94 0.87 0.87 0.99 0.73 0.77
3 - - - 0.93 0.77 0.80 0.99 0.73 0.76 0.94 0.86 0.86 0.99 0.86 0.87
4 - - - 0.93 0.59 0.69 0.98 0.85 0.86 0.94 0.75 0.80 0.98 0.93 0.93
5 - - - 0.92 0.51 0.63 0.98 0.88 0.88 0.94 0.70 0.76 0.98 0.94 0.94
6 - - - 0.92 0.39 0.55 0.98 0.91 0.90 0.95 0.62 0.71 0.98 0.96 0.95

1. Search set size. The larger the search set is, the smaller the DoB value of the cor-
responding AT. Figure 3 (a) displays the DoB development for all evidence types
when one evidence is used. This effect is diminished with increasing number of
evidences (see Figure 3 (b)). To measure the development over search set size we
calculate the compound growth rate (CGR)3 between search set size 2 and 17 for
different evidence numbers.

2. Evidence type performance. The well performing evidence types (Top7) have less
decreasing influence on the DoB value than the others. We derive that DoB is more
stable for calibrated searches.

3. Search Failures. Comparing the DoB for successful searches and the top DoB for
failures shows that only a few selected evidence type combinations result in relevant
differences between the values (see Figure 3 (c)). This is caused by many evidences
also matching to one or more incorrect ATs. In such a case, the ATs get a higher
matching value and after normalization they get a value similar to the correct AT.
For the expected DoB strategy, we use only the selected evidence types and half of
the average difference as threshold.

We conclude that in our setup the DoB value is highly sensitive to search set size and
evidence type. There are only a few evidence type combinations that allow to use the
DoB distance to an expected DoB for identifying if the corresponding AT is not included
in the search set. We will further evaluate the related strategy, but these results indicate
that the expected DoB strategy could become fragile in other domains.

7.3 Failure Detection Strategies

We evaluate the five proposed detection strategies on a randomly generated AT set for
a randomly selected document. We alternate the number of evidences used for search,
because this is the most expensive calculation step (O(n2)). We repeat all experiments
for search failure and for non-failure. For documents triggering a new process compared
to documents related to one process instance, we use the ratio from the corpus (new:
38%, instance: 62%). For the case of AT generation failure, we assume a 50% ratio. We
expect a much lower ratio in enterprise application. Due to the dependency on the AT
generation approach, it is difficult to predict this ratio. We apply the same ratios for all

3 CGR(s0,sn) = (
avgDoB(sn)
avgDoB(s0)

)
1

sn−s0 −1, si is the search set size and avgDoB(si) the average DoB
for search set size si



14 Stamm, Dengel

● ● ● ● ● ●

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

●

●
●

●

●

●

●

●

●

●
●

●

● ● ● ● ● ●●
● ● ● ● ●

(a) Accuracy for new documents

#Search steps

A
cc

ur
ac

y

●

●

●

●

●

1) Specific evidences
2) Expected DoB
3) Templates
1) & 2)
1) & 3)

● ● ● ● ● ●

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

●

● ●

●
●

●
●

●

●
● ● ●

●

● ●

●
●

●
●

●

●
● ● ●

(b) Accuracy for AT generation failure

#Search steps

A
cc

ur
ac

y

●

●

●

●

●

1) Specific evidences
2) Expected DoB
3) Templates
1) & 2)
1) & 3)

Fig. 4: Accuracy of the failure detection strategies separated by the case of absent AT: (a) New
document without related AT, (b) AT of the document is missing.

strategies, so the results remain comparable. The main findings are depicted in Table 5
and a separate overview of the two cases of search failure is displayed in Figure 4 (a)
and (b). We summarize the results for each strategy as follows:

1) Selected evidences. This strategy does not involve any search steps. Precision is
optimal (1.0) whereas recall (0.23) and accuracy (0.47) are very low. The reason
for the discrepancy is that the strategy only detects documents triggering a new
process (see Figure 4 (a) & (b)).

2) Expected DoB. This strategy performs optimal when using two evidences. It reaches
precision of 0.93, recall of 0.80, and accuracy of 0.82. According to the DoB pre-
evaluations, the difference between expected DoB and DoB in case of failure is best
differentiating and leads to good results. Both failure cases develop similar.

3) Templates. When including AT templates, precision decreases slightly (from 1.00
to 0.98) with increasing search steps, whereas recall and accuracy increase tremen-
dously (from 0.23 to 0.91, from 0.34 to 0.90). This correlates to the general AT
search development, where increasing number of evidences improve search results.
The strategy performs better for generation failures than new documents. A similar
performance to strategy 2) at search step two is reached with four.

1) & 2). The combination leads to better failure detection performance overall. There
is again an optimum for two search steps. Precision reaches 0.94, recall 0.87, and
accuracy 0.87. This is caused by the improvements in new document detection (see
Figure 4 (a)).

1) & 3). This hybrid strategy also improves detection performance. Accuracy (from
0.47 to 0.98) and recall (from 0.23 to 0.96) increase with number of search steps.
Precision decreases again from 1.0 to 0.98. The improvements are caused by im-
provements in new email detection (see Figure 4 (a)). A similar performance to
strategy 1) & 2) at search step two is reached with three.

We conclude that it is recommendable using a hybrid strategy. The combination with the
expected DoB strategy results in best detection performance with only two search steps.
Nevertheless, this strategy also has drawbacks. The learning of evidence combinations
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Fig. 5: System architecture including selected automation services.

is intricate, the results seem fragile and depend on the application domain. Additionally,
the required evidences for a good detection performance might not perfectly fit with the
optimal evidences for initial search. Hence, we hesitate recommending this strategy in
general for any domain.

The combination with templates appears more reliable, even if it produces similar
results as 1) & 2) with three search steps. The selection of evidences for search is com-
patible with initial evidence selection and the method does not require pre-learning. We,
therefore, recommend implementing template search in the first place and evaluating the
performance of expected DoB in the particular domain.

8 Automation Services

The presented process-driven DA approach enables many automation services in enter-
prise communication. Figure 5 depicts an exemplary architecture of the overall system
including four major automation services.

1. Auto-Storage. This module stores the extracted information in databases of the in-
ternal enterprise systems. Hence, no manual processing is necessary.

2. Manual verification. This module enhances the user’s view on the current document
with the extracted and the additional AT information. Since the user only needs to
verify the data, the manual document processing time is expected to decrease.

3. Routing. This module can use the information from the AT and the internal routing
rules and load information for routing the document to a service employee with an
appropriate skill-profile. Manual routing is avoided.

4. Auto-Reply. For simple requests or requests with incomplete information, a module
can automatically generate a reply and send it through an output channel, mainly
email, mail, or eDoc. Reply generation time is reduced.

In order to prioritize the implementation of such services, it is necessary to quantify the
potential time and cost savings through these automation services.
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9 Conclusion

In this paper, we propose two approaches enhancing our existing AT search algorithm
and making it more robust to real world requirements: (i) information evidence gain
trees and (ii) missing Attentive Task (AT) detection strategies. First evaluations already
show that the application of trees significantly minimizes search steps and we expect it
to support even more complex search domains. For search failure detection strategies,
we found that combining the specific evidence type decisions with the two strategies
integrating the search set performs best. For simplification, we recommend applying
first the insertion of AT templates and then investigating whether the expected degree
of belief (DoB) comparison is applicable to the corresponding domain or not. Further,
we present four initial automation services based on our approach.

For future work, we plan transferring the results to more complex domains and
increasing the search set size. Further, we aim at evaluating DA planning and the pre-
sented automation services.
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