
Simple Protocol for Heterogeneous Embedded Communication

Networks

Martin Zenzes1, Peter Kampmann2, Moritz Schilling3, and Tobias Stark4

1martin.zenzes@dfki.de
2peter.kampmann@dfki.de
3moritz.schilling@dfki.de

4tobias.stark@dfki.de

January 18, 2016

Abstract

In the field of robotic systems, the Internet of Things,
or modern industrial applications, many systems con-
sist not only of one central computer, but of a heteroge-
neous set of embedded electronics employing different
types of microcontroller and Field Programmable Gate
Array (FPGA). These electronics are located near sen-
sors and actuators somewhere in the mechanical struc-
ture, and are connected with different communication
technologies in order to exchange measurements and
commands. We present Node-level Data Link Commu-
nication (NDLCom), a flexible and minimal protocol
for communicating in such heterogeneous systems con-
sisting of low end devices. The details of the protocol
design together with application examples and timing
measurements of two robotic systems are discussed in
this paper.

1 Introduction

With the advancement of technologies like networked
industrial plants, the Internet of Things, and highly
integrated robotic systems, heterogeneous networks of
embedded devices have to be designed to cope with in-
creasingly complex tasks. Examples for these are the
processing of multi-modal sensors distributed across
the system or local high-frequency control loops.

Quick turnaround in development cycles in-
crease the need for reusable electronics with stable
communication-interfaces. The addressed issues do
also arise in robotic systems which experience increased
complexity due to their dexterity, strive for long-term
autonomy and comprehensive range of sensors. Com-
munication channels with reasonable bandwidth and
elaborate transport layers are a key requirement to
cope with the increasing need for exchanging data.

1. Physical Bit
Transmission and reception of raw bit stream
over physical medium

DSL, USB

2. Data Link Frame
Reliable transmission of data frames between
two nodes connected by physical layer

PPP, IEEE 802.2,
L2TP

3. Network
Packet,
Datagram

Structuring and managing multi node net-
work, including addressing and routing

AppleTalk, IPv4,
IPv6

4. Transport Segments
Transmission of data segments between
points on a network, including segmentation
and acknowledgement

TCP, UDP

Layer Data Unit Function Examples

HDLC

NDLCom

Figure 1: Visualization of the first four layers accord-
ing to the OSI model [4], placing HDLC framing at the
Data Link layer and the NDLCom protocol at the Net-
work layer. As there is no segmentation of large mes-
sages in NDLCom, a Packet is synonymous to a Frame.
The upper layer payload representation used by appli-
cations as well as the underlying low level transport
are not covered in this paper.

Until now, the choice among the non-proprietary
communication networks for this task was between
custom-built Universal Asynchronous Receiver Trans-
mitter (UART) based communication based on string
parsing and full standards defining many aspects of
the communication, strongly differing in their band-
width, hardware requirements, and protocol complex-
ity. Solutions like SpaceWire [1], CAN (Controller
Area Network) [2] or the MOST Bus [3] are backed
by the need of professional industrial applications and
are standardized to allow tight control over the quality
and properties of the resulting network. High trans-
mission rates, low error rates and hard realtime are
opposed by a missing flexibility and high unit cost due
to the extensive standardization. The specific cabling
and additional ICs needed for signal transportation and
modulation raise the requirements for PCB design and
exclude very low end devices from communication.

1

Packet Flag
0x7e

Header
(4 bytes)

Payload
data[0] data[n− 1]

Checksum
AUG− CCITT AUG− CCITT

Packet Flag
0x7e

Receiver Id
0x00− 0xff

Sender Id
0x00− 0xff

Packet Counter
0− 255

Payload Length n

0− 255

0 1 5 5 + n 7 + n 8 + n

1 2 3 4 5

field name

field name

byte index

byte index

Figure 2: Visualization of the field layout in one NDLCom message. The protocol overhead for n bytes of
payload is 4 + 2 + 2 = 8 bytes, including the optional closing flag byte drawn in gray. The maximum size of the
payload is limited to 255 B given by the range of the length field.

Another possibility exists in adopting existing com-
munication protocols to the needs of embedded appli-
cations in order to reduce the resource requirements,
like nanoIP [5] and LightweightIP [6]. While they al-
low to use existing tools and experience, very small
embedded devices with less than 1 kB of RAM are still
out of reach.

To bridge this gap, a low-level communication pro-
tocol has been developed, that features low hardware
requirements and is therefore able to connect a broad
spectrum of devices, ranging from microcontrollers and
FPGAs to POSIX computers. NDLCom defines a
simple packet format to use the OSI Layers 2/3 (see
Figure 1) for data exchange using point-to-point se-
rial communication channels, and needs much fewer
resources compared to traditional network technolo-
gies like IP. To allow frictionless and comfortable work
with the binary streams of the protocol, a collection of
command-line as well as graphical tooling was devel-
oped. These include real-time communication statis-
tics, various mechanisms for transports, binary data
logging, online data visualization, and automatic CSV
export.

Details on the protocol implementation and design
rationale are given in this paper together with experi-
mental validation of the performance of the newly de-
veloped protocol. The computational resources needed
by the current designs on different embedded platforms
and languages are discussed to show the compactness
and simplicity of the approach. Possible strategies for
nodes forwarding messages between their ports are de-
scribed and evaluated. The feasibility of the developed
approach is demonstrated by successful applications in-
side robotic systems as they are developed at German
Research Center for Artificial Intelligence (DFKI) in
Bremen.

2 Design of NDLCom

The problem of communication in heterogeneous sys-
tems is commonly solved using different technologies,
creating the need for flexible and adaptable infrastruc-
ture. Distributed devices (nodes) may need to com-
municate with any other participant to exchange in-
formation, including the central authority to allow the
gathering of the global state of the system. During pro-

totyping an additional requirement includes fast evolv-
ing designs and the need to reuse single components
between generations of hardware.

To be able to use a diverse set of electronics with
different properties and limited resources, the differ-
ent layers of communication have to be flexible and
interchangeable. Printed Circuit Board (PCB) area in
embedded devices is sometimes limited, thus needing
dedicated IC’s for the electrical layer of the communi-
cation is not always practicable. A byte oriented trans-
port mechanism, like the classical UART, is seen as the
smallest common denominator to provide connectivity.
This enables using heterogeneous electrical point-to-
point connections without the need to alter older PCB
designs. Each device is directly connected to at least
one of its neighbours under the presumption that each
connection is unique, i.e. that the resulting network
can be represented by an undirected acyclic graph.

Most of the communication inside current robots is
based on continuously updated streamed data, with
update rates of up to hundreds of Hz. If a packet is lost
due to transmission errors, it should be detectable but
reliable transmission is not needed as the next packet of
the stream will arrive shortly. Services which need the
additional transport security can be implemented as
additional layer according to the OSI model as shown
in Figure 1, for example In-System-Programming. By
carefully keeping the separation of different OSI layers
the reusability and flexibility is maintained.

2.1 Message Layout

As shown in Figure 2, each NDLCom message consists
of a start flag, a header, a payload, a checksum, and
an optional end flag. The length of a header lheader in-
cludes entries for sender and receiver address, a packet
counter, and the payload length.

Because the number of devices communicating in an
internal network of a robot is known in advance (see
Figure 4), 8 bit sender and receiver addresses are suf-
ficient, limiting the overhead. One special receiver ad-
dress is reserved to implement broadcast messages for
easy and efficient access to every node in the whole
system.

To be able to detect packages lost during transmis-
sion, an 8 bit packet counter is included in the header.

2

Unencoded data:

0xa0 0x13 0x7e 0x3f 0x7d

Encoded data:

0x7e 0xa0 0x13 0x7d 0x5e 0x3f 0x7d 0x5d 0x7e

Figure 3: Encoding a set of bytes with HDLC-like fram-
ing and escaping to provide flow control for transmis-
sion on a byte oriented transport medium. The encod-
ing is performed by replacing any reserved bytes in the
block of data () and surrounding the result with a
start/stop flag ().

The current counter value has to be incremented and
remembered by a sender for each receiver, adding a
maximum of 256 B to the memory requirements of the
implementation.

With the length of the payload to follow as last byte
the header comprises 4 B which can be easily handled,
especially by 32 bit devices. When creating, forward-
ing, or routing messages inside the network dedicated
memory to temporarily store a maximum sized message
is needed in each component. Thus a small maximum
payload size of 255 B allows using very small devices
with limited capabilities.

As the underlying communication channel does not
have to be reliable against transmission errors, a 16 bit
Frame Check Sequence (FCS) is appended at the end
of each packet. The FCS16-CCITT [7] using a 0x1021

polynomial is utilized to guard against data corruption.
The length of a fully assembled message with a known
payload size lpayload is given by:

lassembled = lheader + lpayload + lFCS (1)

For example, an unencoded payload of 20 B results in
an assembled packet with a length lassembled of 26 B.

2.2 Framing and Escaping

The NDLCom protocol uses High-level Data Link Con-
trol (HDLC)-like framing to segment the byte stream
provided by the underlying transport medium into in-
dividual datagrams [7][8]. The start of a datagram is
exclusively denoted by the special byte 0x7e, which is
not allowed inside the datagram and has to be removed
via escaping. This allows for simple stateless segment-
ing of an incoming byte stream into datagrams: Al-
ways assume a new packet after an observed 0x7e. To
be able to transmit this reserved flag byte as part of
a message it is replaced with the sequence 0x7d 0x5e

while the escape byte 0x7d itself is replaced by 0x7d

0x5d. Both steps are visualized in Figure 3 and have
to be reversed on the receiving side in oder to decode
the datagram into the original message.

As two different bytes out of 256 possible values need
to be escaped by inserting an additional byte, the av-
erage length of an escaped message depends on the dis-
tribution of bytes in the assembled message. Including
the start/stop flag and given an uniformly distribution

of bytes the length can be expressed as:

lencoded = 2 + (1 + 2/256) · lassembled (2)

The closing flag byte is not strictly needed by the pro-
tocol itself, but eases processing during forwarding of
messages. In the worst case, the length of an escaped
message can double.

The overhead of assembling a message by adding the
header to a payload of 20 B is 30 %. Encoding this as-
sembled message by adding the start/stop flags and
escaping any special bytes, an additional overhead of
8 % is introduced, assuming uniformly distribution of
bytes. Thus the total overhead from payload to es-
caped message is in this example at least 41 %.

2.3 Forwarding

Due to using individual point-to-point connections to
create a network each node has not only to handle mes-
sages designated for it, but also to retransmit messages
which are addressed to other nodes. For this purpose
two different forwarding mechanism are implemented,
Cut Through and Store & Forward, configurable per
device at build time.

When a device is performing Cut Through forward-
ing, the received data can be transmitted on the outgo-
ing interface as soon as the receiver address is known.
As shown in Figure 2 this is represented by the second
byte of a packet, thus the forwarding latency tforward

introduced on each hop is at least 3 · tbyte. The mean
memory consumption is reduced on all devices along
the chain, as less transient bytes have to be stored
while a packet is decoded. The downside is that broken
packages are not filtered out during forwarding and can
increase bus congestion until they are consumed by the
receiver or dropped at the end of a chain. Additional
byte-level timeout logic is needed to prevent blocking
the outgoing interface while a receiver is waiting for
the remainder of a broken message. If a passing mes-
sage is to be used to update the routing table with the
observed originating address, the full FCS has to be
calculated and checked to prevent invalid entries.

The second type of message handling is Store & For-
ward, where each message is completely received by ev-
ery node along the path. Only after verification of the
FCS the message is processed further. In this case, the
forwarding latency for each hop is twice the full trans-
mission time for a packet, 2 · ttrans. Store & Forward
increases the computational requirement and message
latency because a packet has to be decoded, stored and
encoded again on every hop along the path. This al-
lows each node to detect and filter invalid messages on
a passing stream and prevents unnecessary blocking of
faster interfaces by messages coming from slower ones.

Both forwarding mechanisms are implemented, while
Cut Through limits latency and Store & Forward is
preferable when crossing bandwidth domains, see also
Section 3.3.

3

2.4 Routing

When a node has more than one interface, it has to
decide on which interface a message has to be sent.
Therefore each of these nodes has to maintain a routing
table containing the mapping of each device address to
the last interface at which a message with this address
as a sender has been observed. Combined with the
special broadcast address, this yields the steps shown in
Algorithm 1. As the network is not allowed to contain
cyclic connections, selection of the outgoing route is
always unique, contrary to more complex protocols like
TCP/IP.

routingTable[all] ← UNKNOWN
for all message from origin do

if recvId is ownId or recvId is BROADCAST then
process internally

else
routingTable[sendId] ← origin

end if
dest ← routingTable[recvId]
if recvId is not ownId then

if dest is UNKNOWN or recvId is BROADCAST
then

forward to all except origin
else

forward to dest
end if

end if
end for

Algorithm 1: Processing of messages after successfully
decoding on a receiving interface (origin). A device
has to handle messages directed at its own or at the
broadcast address internally. All messages with a re-
ceiver addresses not its own (or broadcast) have to be
retransmitted, either on an interface specified by the
routing table or on all other interfaces to make sure
the destination is reached.

Note that after initial system boot, the routing ta-
bles of all nodes are uninitialized. This can lead to
excessive message flooding because of unknown des-
tinations, but converges to normal operation once all
relevant connections have been used to fill the routing
table.

2.5 Resource Usage

The code for performing sending, routing and receiving
of messages is written in C without dynamic memory
allocation to allow reuse on all platforms supported
by a compiler. For an ARM STM32F1 target the
code size of the implementation is 3.2 kB, while the
usage of static RAM accounts to 1 kB, excluding byte
level buffering performed by the interrupt routines.
The memory usage can be significantly reduced if the
maximum value of device addresses and the maximum
amount of payload is limited at compile time, allow-
ing to fit into devices with less than a kB of RAM.
A VHDL implementation synthesized for a Spartan6
XC6SLX45 featuring 2 ports is using 1300 Slice Reg-

System Data Nodes per

quantity rate chain system

C
h
a
rl
ie

Actuator ↑↓ 5.2KiB/s 100Hz 4-6 20
ForceTorque ↓ 1.5KiB/s 20Hz 1 5
SensorArray ↓ 2.3KiB/s 10Hz 1 2

G
ri
p
p
e
r

BaseBoard ↑↓ 0.1KiB/s 1Hz – 1
SensorFusion ↓ 0.1KiB/s 1Hz 1 3
CamControl ↓ 7.0KiB/s 30Hz 2 6
ForceTorque ↓ 0.5KiB/s 13Hz 1 3
PiezoSensor ↓ 2.0KiB/s 40Hz 2 6

S
h
e
rp

a
T
T

Actuator ↑↓ 6KiB/s 200Hz 5-6 26
ForceTorque ↓ 4.5KiB/s 100Hz 1 5
FuseControl ↑↓ 0.1KiB/s 1Hz 5 5
Module ↓ 1KiB/s 10Hz 2 2

Table 1: Data- and updaterate for streams of devices
in the three different systems described, see also Fig-
ure 4. Streams denoted by a ↑↓ are birectional, where
setpoints are sent to the device and measurements are
transmitted back. A high update rate as used for Ac-
tuators helps to to mitigate problems due to spurious
packet losses.

isters, 1900 LUTs, and 10 BRAMs, including logic to
realize UART-like interfaces.

3 Application

NDLCom is used since 2011 in a number of robotic
systems in DFKI, three of which are depicted in Fig-
ure 4. Different byte level transports are used by
the various systems, ranging from simple TTL UART,
to RS422, a custom high-speed Low Voltage Differen-
tial Signal (LVDS), or even tunneling packets through
UDP. Plattforms which are used for nodes understand-
ing NDLCom range from Atmega88 to STM32F4, and
from Spartan3/6 to Zynq.

3.1 Charlie

The four-legged hominid robotic system Charlie was
designed with regard to a low system weight, robust-
ness, and agility [9]. The sizes of limbs in the Charlie
system is proportional to the lengths of body segments
found in a chimpanzee. Altogether 36 active and six
passive Degrees of Freedom (DoF) allow the robot to
perform a variety of different movements. In order to
improve the locomotion and mobility characteristics,
biologically inspired structural components like an ac-
tive artificial spine and sensing feet (to improve the per-
ception of the environment) are applied to the robotic
system. These structures enable the robot to demon-
strate exceptional movement patterns, e.g. to change
is posture from a quadrupedal to a bipedal pose. A lo-
cal control loop realized in the two rear legs uses force
vectors measured by local microcontrollers to influence

4

(a) Walking robot Charlie [9] is us-
ing one device chain to control each
of its four legs, the two front legs
pointing upwards while the two rear
legs point downwards. One addi-
tional short chain is used to control
the spine. The central Embedded
System connects all devices and talks
via Wifi to the remote Control PC.

(b) In the Gripper [10], each finger
is independently controlled and con-
nected to a central FPGA, which also
connected an independently prepro-
cessing FPGA. Every finger contains
different processing FPGA and mi-
crocontroller. An Embedded Com-
puter provides Wifi connectivity for
the FPGA to the remote Control PC.

(c) The SherpaTT [11] system em-
ploys four symmetric legs plus one
arm, pointing upwards on the right
of the schematic above. All are con-
nected to a central Embedded Com-
puter, which additionally connects
two microcontroller for interface man-
agment. A second internal computer,
branching to the right, controls one
supplemental chain of microcontroller
extending upwards and is providing
Wifi access.

Figure 4: Node structures in several robotic systems using NDLCom. The heterogeneous architectures used are
depicted as FPGA (), embedded Linux (), microcontroller () and control PC (). Pysical connections based
on UART/LVDS are drawn as solid lines while remote Wifi connections to controlling computers are drawn
dotted.

the set point of the FPGA based actuator modules.

For the byte level communication transport an
UART-like transmission with 921 600 Baud is used be-
tween all nodes.

3.2 Gripper

The Gripper system [10] of the SeeGrip project was de-
signed for the application in deep-sea environments in
depths of up to 6000 m. It comprises a variety of tactile
sensing modules of different modality in order to mimic
the touch sensing capabilities of humans in robotic sys-
tems. In total 570 exteroceptive sensing modules and
25 proprioceptive sensing modules are integrated into
the sensing system. The distributed hardware architec-
ture within the Gripper, shown in Figure 4b, is used to
locally pre-process sensory data to minimize the com-
munication effort between the processing elements and
to allow forming local control loops.

For the embedded communication the same UART-
like transport running at 921 600 Baud as in the Charlie
system is used. This system was not available for the
measurements performed in Section 4.2.

3.3 SherpaTT

SherpaTT is a hybrid driving and walking rover sys-
tem [11] and part of a multi-robot system that aims
at establishing a logistics chain for sample acquisition
in the lunar polar regions [12]. The rover is using an
active suspension system consisting of four legs each
with a drivable and steerable wheel at its end. The

legs of the suspension have three active DoF each for
positioning the wheel within the respective work space.
Together with the wheel steering and the wheel drive,
each leg has 5 DoF, resulting in 20 DoF in the overall
suspension system. For active adaption to the ground,
a force-torque sensor at each wheel mounting point and
an Inertial Measurement Unit (IMU) mounted in the
central body are used as feedback. Vision, laser scan-
ners or alike are not used for ground adaption but part
of higher-level functionality. Apart from the suspen-
sion system, a 6 DoF manipulator is mounted on top
of the rover for handling payloads with a standard in-
terface, such as sampling modules or battery packs that
can be exchanged with other systems in the multi-robot
team.

The SherpaTT system uses a combination of a high
speed Manchester Encoded LVDS transmission with
320 MBaud and the UART-like communication with
921 600 Baud as it is used in the Charlie and Gripper
systems. While all actuators in the four legs use the
fast transport, the actuators located in the arm follow-
ing the ArmBase device and all of the microcontroller
based measurement devices are connected via the slow
transport, see also Figure 4c. Because of the crossing
of bandwidth domains, a Store & Forward based rout-
ing algorithm is used to transfer messages between the
two bandwidth domains.

5

4 Evaluation

When NDLCom is to be used to create distributed low
level control loops or handle transient emergency mes-
sages, it is important to know some of the time and
reliability properties of the combined communication
infrastructure. These determine the maximum control
frequency of a distributed control loop or properties
for data processing chains consisting of two or more
NDLCom devices sharing information. Measuring and
monitoring the realtime properties of individual nodes
and comparing them to expected values also helps to
find bugs and missing features in the implementation.

The latency & jitter between between a sender and
receiver introduced by the message transport is exam-
ined in more detail. Latency is understood to be the
mean time it takes until a message is successfully de-
livered from a sender across the network to a receiver.
It is dominated by the processing inside intermediate
nodes forwarding messages to their destination. Jitter
is defined as the deviation in latency of a message with
respect to the ideal latency over a number of randomly
selected samples [13].

4.1 Methodology

Two of the systems introduced in Figure 4 where avail-
able to perform measurements: SherpaTT and Charlie.
These where examined with the whole system mov-
ing in normal operating conditions, all devices sending
their normal data streams and motors performing their
tasks.

To assess the capability of the communication layer
an NDLCom message with a Ping payload is used,
where any receiving node will send a reply to the
sender of the message as fast as currently possible. The
time passed between sending the message and receiv-
ing the reply from the network is called the Round Trip
Time (RTT). In order to account for every device of a
particularly system, a list of all active device addresses
is assembled. A Ping message is transmitted to a ran-
domly selected address of this list to trigger a response
packet. If such a response is observed within a large
enough wait time the elapsed time is noted in a log
file, otherwise a package loss is noted. After a small
random time offset, the next request is sent.

The ideal transmission time ttrans of a packet is the
time it takes to send it from one device to the next and
it is limited by the raw bandwidth of communication
layer.

tbyte = bandwidth−1 (3)

The time it takes to transmit one byte on an 8N1-
UART with 921 600 Baud, as implemented in the Char-
lie system, is for example 10.85 µs. The transmission
duration ttrans of a complete escaped message depends
on the actual number of bytes of this message and the
time it takes for each byte to be encoded:

ttrans = tbyte · lencoded (4)

With an payload of 20 B the transmission duration for
the fully encoded packet becomes 306.0µs. In practice

the current load on the communication layer will in-
crease the mean transmission time as a message might
have to be buffered until the outgoing interface of the
sending device is no longer blocked.

Response time, or RTT, is the delay between fin-
ishing the transmission of a packet by the originating
device until it finishes decoding the received response.
The minimal response time for the Ping reply on an
idle communication bus is limited by twice the forward-
ing delay tforward (see Section 2.3) per device along the
path, the transmission delay ttrans of the responding
device and the transmission delay of the sending device.
When all devices possess the same raw bandwidth this
results in:

tresponse = 2 · n · tforward + 2 · ttrans (5)

When for example a Ping message with 20 B of pay-
load has to perform n = 4 hops to reach its destina-
tion via Cut Through, the resulting ideal response time
would be expected to be at least 872.5 µs. When all of
the forwarding devices along the chain are performing
Store & Forward, each message has to be fully decoded
before it can be send again. In this case, the response
time increases to be at least 3060 µs. In a real system,
the response time can additionally vary substantially
if participating devices and channels are not idle as is
show in Figure 5.

4.2 Measured Response Time

The distribution of observed RTT for each device,
grouped by their respective low-level transport chain,
in both the Charlie and SherpaTT systems is shown in
Figure 5. The FPGA used in Charlie and SherpaTT
are performing the fast Cut Through forwarding when
they can. It can be seen that the RTT is not primarily
influenced by the hop count, e.g. distance, in the net-
work to the queried device. Transmission of very big
packets as by the Sens2 boards in the two rear legs of
the Charlie system can cause very large increases in the
jitter as they block traffic on the bus for a long time.
All observed response times are fast enough to perform
update rates in the range of hundreds of Hz, the ob-
served jitter is most of the time uniformly distributed.
Crossing a bandwidth domain, where packages have
to be buffered, adds a clearly notable step of around
1.3 ms to the measured latency due to storing the mes-
sage. This happens in the SherpaTT system, where all
microcontroller and the FPGA beyond the ArmBase
device use a UART connection with only 921 600 Baud,
contrary to the 320 MBaud in the rest of the system.
Additionally, the lower available total bandwidth in-
fluencing the forwarding time can be observed by the
marginally steeper mean RTT slope in the devices of
the SherpaTT arm.

6

0

5

10

15

20

F
L

H
ip

1

F
L

H
ip

2

F
L

H
ip

3

F
L

K
n

ee

F
L

S
en

s

F
R

H
ip

1

F
R

H
ip

2

F
R

H
ip

3

F
R

K
n

ee

F
R

S
en

s

R
L

H
ip

1

R
L

H
ip

2

R
L

H
ip

3

R
L

K
n

ee

R
L

A
n

k
le

R
L
T

o
e

R
L

S
en

s1

R
L

S
en

s2

R
R

H
ip

1

R
R

H
ip

2

R
R

H
ip

3

R
R

K
n

ee

R
R

A
n

k
le

R
R

T
o
e

R
R

S
en

s1

R
R

S
en

s2

S
p

in
e

S
p

in
eS

en
s

R
T

T
(m

s)

(a) Results for the Charlie system. The high maximum response time on the devices of the two Rear legs are caused by
a large payload of 250 B sent from the very last devices in the chain, see Table 1. The FPGA of the Spine device uses a
softcore without any free processing capabilities for answering messages, so a packet can only be handled after finishing
the long running main-loop resulting in a changed distribution. Forwarding is done in the FPGA. Due to the limited
available bandwidth because of the high traffic the mean response time of all devices is relatively high for all devices.

0

2

4

6

8

10

F
L

p
a
n

F
L

in
n

er

F
L

ou
te

r

F
L

st
ee

r

F
L

d
ri

ve

F
L

se
n

s

F
R

p
a
n

F
R

in
n

er

F
R

ou
te

r

F
R

st
ee

r

F
R

d
ri

ve

F
R

se
n

s

R
L

p
an

R
L

in
n

er

R
L

ou
te

r

R
L

st
ee

r

R
L

d
ri

ve

R
L

se
n

s

R
R

p
an

R
R

in
n

er

R
R

ou
te

r

R
R

st
ee

r

R
R

d
ri

ve

R
R

se
n

s

A
rm

B
as

e

A
rm

1

A
rm

2

A
rm

3

A
rm

4

A
rm

5

A
rm

6

A
rm

S
en

s

R
T

T
(m

s)

(b) Results for the SherpaTT system. The slower response characteristic of the sensing microcontroller at the end of
each chain are clearly seen. The bandwidth crossing done there causes a large step in minimum RTT, caused by the
Store & Forward performed. Using the slower low level transport and FPGA type beyond the ArmBase also influences
the response behaviour. The high available bandwidth on the rest of the devices, e.g. low bus congestion, produces faster
mean response times.

Figure 5: Measured RTT for the SherpaTT and Charlie system using 10 000 Ping messages sent randomly from
the embedded PC. Visualized as Violin Plot to show the distribution of observed RTT for every device in the
system. Devices are plotted in the order they appear on their chain and an additional gap between each chain
is inserted. The naming scheme for device names in the legs of both systems is using a FL for Front Left for
example, while RR represents Rear Right.

7

5 Outlook

Being able to transmit messages in a standardized
manner from all devices connected to an NDLCom net-
work allows to synchronize the local clocks of every de-
vice across the system using an algorithm like Simple
Network Time Protocol [14, #14]. Such synchronized
clocks allow for advanced sensor fusing algorithms and
stream alignment of jittered data packets prior to ac-
tual processing.

One possible application of synchronized clocks
would be to correlate timing information from dis-
tributed embedded microphones located inside the sys-
tem using algorithms based on the Time Difference of
Arrival (TDOA) applied to detected peaks. With the
speed of sound of 330 m s−1 and a global accuracy of
distributed clocks better than 50 µs the error in dis-
tance when triangulating should be below 17 mm, well
below the typical dimension of a robotic system.

Automatic runtime assessment of link-quality and
node availability is possible for example by sending
broadcast beacon messages of actively querying each
device from a central location. It might be possible to
deduce the current bus load by monitoring the mean
response time of devices behind the network. Auto-
matic shape detection of the network tree can be done
by collecting and analyzing the routing tables of all
devices.

Swapping and reusing electronics as well as code be-
tween systems after an initial implementation phase
speeds up the development process and reduces the
learning curve for newly participating engineers. In
model based robot design, it becomes easier to gener-
ate code for involved platforms as the communication
infrastructure is shared. To facilitate reuse in other
environments it is planned to release the C and VHDL
implementation under an Open Source license.

References

[1] SM Parkes and Philippe Armbruster. SpaceWire:
a spacecraft onboard network for real-time com-
munications. In Real Time Conference, 2005. 14th
IEEE-NPSS, pages 6–10. IEEE, 2005.

[2] ISO 11898-1:2015. Road vehicles – Controller area
network (CAN) – Part 1. [Online; accessed 7-
January-2016].

[3] Stefan Poferl, Markus Becht, and Piet De Pauw.
150 Mbit/s MOST, the Next Generation auto-
motive infotainment system. In 2010 12th Inter-
national Conference on Transparent Optical Net-
works, 2010.

[4] Wikipedia. OSI model — Wikipedia, The Free
Encyclopedia, 2016. [Online; accessed 14-January-
2016].

[5] Zach Shelby, Petri Mähönen, Janne Riihijärvi,
Ossi Raivio, and Pertti Huuskonen. NanoIP: The

Zen of Embedded Networking. In Communica-
tions, 2003. ICC’03. IEEE International Confer-
ence on, volume 2, pages 1218–1222. IEEE, 2003.

[6] Adam Dunkels. Design and Implementation of the
lwIP TCP/IP Stack. Swedish Institute of Com-
puter Science, 2:77, 2001.

[7] ISO 13239:2002. Telecommunications and infor-
mation exchange between systems – High-level
data link control (HDLC) procedures. [Online; ac-
cessed 12-January-2016].

[8] Keith Hogie, Ed Criscuolo, and Ron Parise. Using
Standard Internet Protocols and Applications in
Space. Comput. Netw. ISDN Syst., 47(5):603–650,
April 2005.

[9] D. Kuehn, M. Schilling, T. Stark, M. Zenzes, and
F. Kirchner. System Design and Field Testing of
the Hominid Robot Charlie. submitted to Journal
of Field Robotics, July 2015.

[10] Peter Kampmann and Frank Kirchner. Towards a
fine-manipulation system with tactile feedback for
deep-sea environments. Robotics and Autonomous
Systems, 67:115–121, 2015.

[11] Florian Cordes, Christian Oekermann, Ajish
Babu, Daniel Kuehn, Tobias Stark, and Frank
Kirchner. An Active Suspension System for
a Planetary Rover. In Proceedings of the In-
ternational Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS
2014), June 17-19, Montreal, Canada. o.A., 6
2014.

[12] Roland U Sonsalla, Florian Cordes, Leif Chris-
tensen, Steffen Planthaber, Jan Albiez, Ingo
Scholz, and Frank Kirchner. Towards a heteroge-
neous modular robotic team in a logistics chain for
extended extraterrestial exploration. In Proceed-
ings of the 12th International Symposium on Ar-
tificial Intelligence, Robotics and Automation in
Space-i-Sairas, 2014.

[13] JEDEC Standard 65B, September 2003.

[14] D. Mills, J. Martin, J. Burbank, and W. Kasch.
Network Time Protocol Version 4: Protocol and
Algorithms Specification. RFC 5905 (Proposed
Standard), June 2010.

8

	Introduction
	Design of NDLCom
	Message Layout
	Framing and Escaping
	Forwarding
	Routing
	Resource Usage

	Application
	Charlie
	Gripper
	SherpaTT

	Evaluation
	Methodology
	Measured Response Time

	Outlook

