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Abstract

This paper addresses the problem of video registration
for dense non-rigid structure from motion under subopti-
mal conditions, such as noise, self-occlusions, considerable
external occlusions or specularities, i.e. the computation
of optical flow between the reference image and each of
the subsequent images in a video sequence when the cam-
era observes a highly deformable object. We tackle this
challenging task by improving previously proposed varia-
tional optimization techniques for multi-frame optical flow
(MFOF) through detection, tracking and handling of uncer-
tain flow field estimates. This is based on a novel Bayesian
inference approach incorporated into the MFOF. At the
same time, computational costs are significantly reduced
through iterative pre-computation of the flow fields. As
shown through experiments, the resulting method performs
superior to other state-of-the-art (MF)OF methods on video
sequences showing a highly non-rigidly deforming object
with considerable occlusions.

1. Introduction
Dense optical flow computation of highly deformable

objects is a challenging task that is useful for multiple com-
puter vision applications. Occlusions at the same time are
an inherent problem in realistic scenarios that can usually
not be avoided. Methods that can handle both aspects
have applications ranging from medical imaging and mo-
tion compensation over video augmentation, occlusion re-
placement and video segmentation up to dense non-rigid
structure from motion (NRSfM) [9], which is our target ap-
plication. Given a template or reference image of an object
and several input images containing highly non-rigid defor-
mations of the object, the task can be described as finding
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Figure 1: The different stages of our proposed MFOF method
with explicit occlusion handling (cf. Section 4.1): (1) reference
image and result of MFOF without explicit occlusion handling; (2)
divergence indicator, counter indicator → initial occlusion proba-
bility map; (3) denoised occlusion probability map; (4) occluded
input frame and occlusion-aware MFOF result. The blue lines
show the pixel correspondences from the reference to the current
image.

the optical flow fields (trajectories/warps) [10] that relate all
the input images back to the reference image. This is sub-
sequently denoted multi-frame optical flow (MFOF). This
complex scenario exhibits a multitude of challenges that
are only partially solved in general. Promising approaches
for the estimation of optical flow fields in long video se-
quences consider temporal coherence based on subspace
constraints [8, 16, 10]. The underlying idea consists in first
deriving a motion basis, either from reliable sparse tracks
or via a predefined basis that describes the general motion
and deformation of the considered object. Subsequently,
the optical flow is described via a linear combination of
these basis trajectories. Different approaches directly esti-
mate the coefficients of the linear combination which yields
hard constraints to the subspace [8, 16]. An improvement
with respect to accuracy and robustness in the presence of
noise and highly non-rigid motion was obtained by allow-
ing some deviation from the basis trajectories via the in-



clusion as soft constraints [10]. The latter method yields
for this scenario currently the most accurate results (to the
best of our knowledge), but leaks explicit occlusion han-
dling that is particularly important for large occlusions as
shown in Figure 1. Occlusion handling is crucial in long
video sequences of real scenarios, since deformable objects
typically occlude themselves or are occluded by external
objects at some point. Occlusions can influence the ac-
curacy of the overall method considerably, since the opti-
cal flow might exhibit random behaviour in occluded and
neighbouring regions. This wrong optical flow fields intro-
duces noise for correspondence computations, see Figure
1. Current MFOF approaches only consider occlusion es-
timation under rather rigid motion with only slightly non-
rigid deformations [16, 17] that is not reliable under high
non-rigidity [17]. Therefore, we introduce an explicit oc-
clusion detection, tracking and handling that is efficient and
gives consistent results in the presence of highly non-rigid
deformations. While we focus on handling different types
of occlusions, we show that other disturbing effects, such as
specularities and noise, are also handled appropriately.
NRSfM methods rely on a decomposition of correspon-
dences to compute (dense) 3D shape and motion, see for
instance [9, 13]. As indicated in [13], these methods tend
to be sensitive to erroneous correspondences (noise). Sta-
ble methods can only compensate for a small amount of
noise, typically 1 to 4% of the considered correspondences.
However, missing data can be better compensated for, for
instance in [13] a 3D reconstruction error of only 5.4%
was reported with 32% of missing correspondences. This
motivates the usage of our algorithm not only to improve
the flow field estimates, but also to provide a method that
detects and tracks uncertain correspondences that should
be excluded from the 3D shape and motion estimates via
NRSfM methods.

2. Related work and contributions

2.1. Optical flow

The variational formulation for the dense optical flow
problem dates back to the work of Horn and Schunck [12]
in 1980. The problem formulation is composed of a data
term that usually accounts for the brightness constancy as-
sumption and a regularization term that allows to fill-in con-
sistent optical flow estimates in low textured areas. With
variational methods this problem is formulated as an op-
timization problem of an energy function in a continuous
domain. There have been numerous advances with respect
to the method, the data term and the regularization term,
especially for two-frame optical flow (TFOF) estimation;
in [24, 20] an overview of some major approaches can be
found. The methods that are most related to our work build
on the total variation (TVL1) formulation and use efficient

primal-dual methods to solve the optical flow problem with
high accuracy [28, 25]. Due to the high parallelizability of
these methods, real-time capability was achieved [28]. To
consider temporal coherence over many frames with rigid
and non-rigid motion, leading to non-rigid MFOF, the con-
cept of subspace constraints has proven to be useful. It was
introduced in [8], where the flow-fields were reparametrized
via a set of basis trajectories. The accuracy and robust-
ness in the presence of highly non-rigid motion, noise and
(rather small) occlusions was considerably increased by the
recently published method of [10] that includes the sub-
space constraints as soft constraints. This approach can
be interpreted as a generalization of the improved TVL1
method [25] (I-TVL1) for non-rigid objects. The method
gives favorable accuracy with respect to other state-of-the-
art optical flow methods in the presence of non-rigid mo-
tion. However, large occlusions can not be handled as indi-
cated in Figure 1 (left).

2.2. Occlusion handling

There are several rigid TFOF methods that address oc-
clusion estimation and handling. Well known approaches
use robust norms [4] or forward-backward flow estima-
tion [1]. An efficient and simple occlusion detection via
the exploitation of the mapping uniqueness criterion was
proposed in [27]. This method is one of the best per-
forming methods on the famous Middlebury dataset [2].
EpicFlow [15] is the currently best performing method on
the challenging SINTEL benchmark dataset [6]. It couples
occlusion estimation with the optical flow estimation and
extrapolates optical flow into occluded regions, which al-
lows to handle even considerable occlusions. Both meth-
ods are included in our evaluation. Different methods were
proposed for joint motion estimation, segmentation and
occlusion modeling [23] as well as temporal consistence
and pseudo-depth ordering [21, 19] or local layering, with
promissing results even for rather large amount of occlu-
sions in consecutive frames [19]. However, while being
a very promising approaches from the modeling point-of-
view, these multi-layer approaches are computationally ex-
pensive, with a complexity depending on the amount of (lo-
cal) layers and motion candidates. Both have to be large
to accurately compute optical flow in the case of general
highly non-rigid deformations as considered in this work.
Futhermore, other disturbing effects, like specularities are
not considered. Non-rigid TFOF methods are e.g. [22, 14].
The latter is also robust against large self-occlusions by
learning a model for the image distortion and is included
in our evaluation. In the case of MFOF, contributions to ex-
plicit occlusion detection and handling are [16, 17]. Here,
[16] presents a variational approach that estimates visibil-
ity maps for each pixel, using two reference frames and
hard subspace constraints of the pixel displacements. The



same authors improved upon this method in [17] by intro-
ducing a different strategy for visibility labeling and even
more reference images, but the computational complexity
was very high. Furthermore, the authors of [17] explicitly
mention that their method can not deal with the highly de-
formable motion of the waving flag sequence of [10, 8] that
we use in our evaluation. In general, the referenced litera-
ture contains two general concepts for occlusion modelling
and correction. Either occlusions are estimated from a first
uncorrected flow estimation and are then used for correcting
this afterwards (e.g. [1]) or occlusion estimation and correc-
tion are done jointly with the optical flow estimation (e.g.
[23, 26, 3, 19]).

2.3. Our approach and contributions

While great advances have been achieved in the area of
accurate and robust dense MFOF for highly non-rigid ob-
ject motion, as well as in the area of occlusion estimation
and handling, mostly for two-frame settings, there are cur-
rently no promising approaches for achieving both together
under large occlusions. This is, however, crucial when aim-
ing at dense real NRSfM applications. Our main contribu-
tions are devoted to overcoming this limitation. First, we
develop a novel occlusion estimation framework by fusing
different occlusion indicators based on a first flow-field es-
timation using a Bayesian filter and smoother. This leads
to reliable detection and tracking of areas containing un-
certain flow information (e.g. due to external occlusions
and/or self-occlusions) in the presence of highly non-rigid
motion. Second, we seamlessly integrate this probabilistic
information into the variational framework during a second
flow-field estimation. Third, we present an iterative pre-
computation scheme, which is shown to increase the con-
vergence speed and accuracy of the method. Through ex-
periments we confirm that the proposed approach outper-
forms state-of-the-art optical flow methods on long video
sequences of a single highly deformable object.

3. Proposed method
Our proposed approach consists of several stages. In

Stage 1, an initial set of optical flow fields is obtained using
a MFOF method similar to [10] without occlusion handling
that we will call base scheme. Stage 2 consists of com-
puting per frame probabilistic occlusion maps efficiently
using Bayesian inference based on the initial flow fields.
Stage 3 consists of a global edge-aware, spatial and tem-
poral variational smoothing. Here, we use an edge-aware
version of the global smoothing approach proposed in [16]
and based on efficient primal dual algorithms [7]. The ex-
act algorithm can be found in the supplementary material.
This stage is not further detailed in this paper. In the fi-
nal Stage 4, the optimized maps are used in our proposed
occlusion-aware MFOF method. A convergence speed-up

of the base scheme for a pyramid based approach, as in
[10], is achieved through iterative pre-computation of the
flow fields, as described in Algorithm 1. The underlying
idea is to use the rather small motions between consecutive
frames to obtain a suitable initialization for the MFOF over
long video sequences. The complete process is visualized
in Figure 1 and stages 1, 2 and 4 are further detailed below.

3.1. Initial flow field estimation (Stage 1)

It is assumed that the input image sequence has F − 1
images and a reference image n0 = 1 has been chosen. The
image

I(x, n) : Ω× {1, . . . , F} → RNc (1)

is a vector-valued image with Nc channels, and denotes the
n-th image in the sequence, with the image domain Ω ⊂ R2.
The point trajectories are represented with the function

u(x;n) =

[
u1(x, n)
u2(x, n)

]
: Ω× {2, . . . , F} → R2. (2)

Thus, for every visible point x ∈ Ω in the reference image
n0, the function u(x, ·) : {2, . . . , F} → R2 is its discrete-
time 2D trajectory over all images of the sequence. At the
reference image the trajectories are defined as u(x, n0) =
0. Linear subspace constraints that allow for some deviation
can be written as

u(x, n) =

R∑
r=1

qr(n)Lr(x) + ε(x, n). (3)

This states that each trajectory u(x, ·) for x ∈ Ω can be
represented (up to some error ε(x, n) ∈ R2) by a lin-
ear combination of R basis trajectories q1(n), . . . ,qR(n) :
{2, . . . , F} → R2 which are independent from the point lo-
cation. The trajectories can be predefined or computed from
pre-computed tracks, see [10] for more details. In order to
estimate the trajectories u(x, n), we propose to minimize
the following energy

Eξ(x,n)[u(x, n),L(x)] =

(1− ξ(x, n))[αEdata] + βElink + Ereg, (4)

Edata =

∫
Ω

F∑
n=2

Φ(I(x + u(x, n), n)− I(x, n0)) dx, (5)

Elink =

∫
Ω

F∑
n=2

|u(x, n)−
R∑
i=1

qi(n)Li(x)|2 dx, (6)

Ereg =

∫
Ω

R∑
r=1

g(x)Φ(∇Lr(x)) dx, (7)



with

u(x, n) =

{∑R
i=1 qi(n)Li(x) if ξ(x, n) = 1

u(x, n) if ξ(x, n) = 0
. (8)

Here, ξ(x, n) denotes the given occlusion maps for all
frames n = 2, . . . , F and will be explained in more detail
in the following sections. Usually, Φ is chosen to be the L1-
norm or the Huber-norm. The space varying weight g(x) in
the regularization term (7) encourages discontinuities in the
flow to coincide with edges of the reference image by re-
ducing the regularization strength near those edges [10, 3].
The energy (4) can be efficiently minimized by alternatingly
optimizing with respect to u(x, n) and L(x), by applying
primal-dual algorithms of [7] as described in the supple-
mentary material. This formulation allows to compute the
initial flow-fields by setting ξ(x, n) = 0 for all frames. In
this case the method is reduced to the one proposed in [10].
Furthermore, it allows the computation of the final trajecto-
ries, given the computed occlusion maps ξ(x, n) (see next
sections). We found that binarized occlusion maps give bet-
ter results than a soft weighting (ξ(x, n) ∈ [0, 1]) in this for-
mulation, since the pre-estimated trajectories u(x, n) might
be very wrong in uncertain regions (e.g. see Figure 1, left).
This could badly influence the final trajectories by using a
soft weighting.

Algorithm 1 Iterative pre-computation for MFOF.

Input: Downsampled image sequence
(on highest pyramid level)
Output: Pre-estimate for MFOF (on highest pyramid
level)
Set: u(x, 1) = 0;
for n = 2 to F do

Compute: u(x, n) by minimizing the energy in
Equ. (4) with initial guess u(x, n − 1), by only con-
sidering image I(1) and I(n)

end for

3.2. Occlusion filter (Stage 2)

The major goal of this stage is to obtain a good initial
guess for the occlusion maps denoted by ξ̃(x, n) ∈ [0, 1]
for each image of the sequence (n = 1, . . . , F ). These ini-
tial guesses will be globally smoothed in Stage 3 and bina-
rized to obtain the final occlusion maps ξ(x, n). The latter
will then be used in the optimization in Equ. (4), in order to
correct the flow-fields. Here, the occlusion map for image
n contains the probability of each pixel x in the reference
image being occluded in image n. For efficiently estimating
these probabilities, while (1) fusing information from indi-
cators for different types of occlusions and (2) taking tem-
poral and spatial coherence into account, we use discrete

Bayes filters and optimal smoothers [18]. More precisely,
we use per pixel estimators for tracking the binary state of
each pixel in the reference image being occluded or visible
in the subsequent images. The local estimates have shown
to provide a sufficiently accurate initial guess, while at the
same time being efficient and parallelizable (in the spatial
domain).

3.2.1 Bayes filter, smoother and state-space model

For each pixel in the reference image we estimate its prob-
ability of being occluded in a subsequent image In via a
Bayes filter, followed by a Bayes smoother, with finite state
space Yn,k ∈ {0, 1}. Here, for a pixel in image n, Yn,1
denotes occluded and Yn,0 denotes visible. Starting from
the prior assumption P (Y1,0) = 1 and P (Y1,1) = 0 (i.e.
the pixel is visible in the reference image), the posterior es-
timates for n = 2, . . . , F are recursively calculated from
sequences of measurements and control inputs up to time
n. These are denoted by Z1:n and U1:n (as further defined
in Sections 3.2.2, 3.2.3) respectively. The posterior is thus
[18]

Pf(Yn,k|Z1:n, U1:n) =

ηP (Zn|Yn,k)
∑

i∈{0,1}

P (Yn,k|Yn−1,i, Un)P (Yn−1,i) (9)

with η = 1/
(∑

k∈{0,1} P (Yn,k)
)

. Equ. (9) al-
lows to incorporate different assumptions and occlu-
sion indicators through the state transition probabil-
ities P (Yn,k|Yn−1,i, Un) and measurement likelihoods
P (Zn|Yn,k). The above filtering density incorporates mea-
surements and control inputs only up to image n, while we
have all information, Z1:F and U1:F , available at any time.
Hence, for exploiting this fact to obtain even more reliable
estimates, we compute the posterior probability via optimal
Bayesian smoothing [18] as

P (Yn,k|Z1:F , U1:F ) = Pf(Yn,k|Z1:n)∑
i∈{0,1}

P (Yn+1,i|Yn,k, Un+1)P (Yn+1|Z1:F )∑
j∈{0,1} P (Yn+1,i|Yn,j , Un+1)Pf(Yn,j |Z1:n)

.

(10)

Note, while the per pixel filtering probabilities are com-
puted based on a forward recursion (n → n + 1), the
smoothing probabilities are computed based on a back-
ward recursion (n + 1 → n). The occlusion probabili-
ties P (Yn,1|Z1:F , U1:F ) throughout the image sequence for
each pixel then comprise the above mentioned occlusion
maps ξ̃(x, n). In the following, the proposed filter models
are described.



Figure 2: Shown are the conditional probability functions and a
diagram of the state transition model (upper row and lower left).
On the lower right are the two conditional probability functions
for the measurement model. The functions are not normalized.

3.2.2 State transition model

The state transition model is based on the assumption of
temporal and spatial coherence as well as flow field infor-
mation modelled as uncertain control input Un. The latter
utilizes the mapping uniqueness criterion, i.e. the observa-
tion that multiple pixels in the reference image mapping to
the same point in a target image can indicate an occlusion.
For the considered pixel x and a local neighborhoodA (typ-
ically a 7 × 7 pixels patch) this criterion can be formalized
as [26]

Un(A,x,u(x, n))) :=
1

|A|
∑
x∈A

T (m(x+u(x, n))−1, 0, 1).

(11)
Here m(·) is the counter of reference pixels that map to (a
small region around) the pixel (x + u(x, n)) in the current
image using forward warping. The function T (a, l, h) trun-
cates the value of a to [l, h]. The averaging over patch A
was included for also taking spatial coherence into account.
Equ. (11) in particular provides a good indicator for self-
occlusions which is incorporated into the state transition
model as uncertain control input U (cf. Figure 3). Thus, the
four conditional probability functions comprising the full
model (P (Yn,k|Yn−1,i, Un) = P (Yk|Yi, U), i, k ∈ {0, 1})
have been defined as shown in Figure 2. By design, through
the truncation of the linear mappings the model prefers state
preservation over state change in order to account for tem-
poral coherence.

3.2.3 Measurement model

The measurement model is based on the divergence of the
flow fields that are calculated in the first stage. The diver-
gence is known to measure sinks (negative divergence) and
sources (positive divergence) in the flow fields. The nega-

Figure 3: Left to right: Occlusion probabilities of counter indica-
tor, divergence indicator, pre-estimate (Stage 2) and final occlusion
map (Stage 3) after global smoothing. While the counter indicator
detects self-occlusions, but fails to provide a complete detection of
external occlusions, the divergence indicator detects both, but also
introduces spurious detections at the borders. Fusing both types of
information in combination with global smoothing results in reli-
able occlusion maps. See Figure 1 for the color scale.

tive divergence essentially measures the same as the counter
indicator described above was already used to indicate oc-
clusions produced by foreground objects [3]. However, we
are not only interested in self-occlusions, but also in exter-
nal occlusions due to newly incoming objects, which result
in positive divergence. Moreover, we observed that local
divergences of the flow estimated in Stage 1 show a high
variance in external occlusion regions. This can be inter-
preted as flow uncertainty resulting in spurious sinks and
sources. As occlusion measurementZ for pixel x, we there-
fore propose an indicator that relies on the weighted diver-
gence variance calculated over the local neighborhood A
(typically 7× 7 pixels) around x

Zn(u(x, n)) := wdiv varA(div(u(x, n)). (12)

In order to fit the measurements Zn into the margin Z ∈
[0, 1] we truncate Zn at a maximum value Zmax = 1 that
can be influenced via the weighting wdiv . This is a pa-
rameter that can be adapted in order to allow for different
sensitivities with respect to the divergence of the estimated
flow-fields. We typically choose wdiv ∈ [0, 1], usually
wdiv = 1, where larger values amount for higher sensi-
tivity with respect to sinks and sources in the flow-fields.
The measurement likelihood model P (Zn|Yn,k) is then de-
fined as shown in Figure 2. The indicator is shown in Figure
3. Note that both the state transition and the measurement
probability functions were designed in a way to avoid prob-
abilities close to zero and one in order to account for the
inherent uncertainty. In both cases we choose P = 0.1 as
a lower bound and P = 0.9 as an upper bound. More-
over, the continuous functions are discretized through a his-
togram approximation, in order to be usable in Equ. (9) and
(10), while at the same time ensuring that the discrete prob-
abilities sum up to one.

3.3. Occlusion-aware MFOF (Stage 4)

After the global smoothing (Stage 3, see [16] and the
supplementary material) has been applied to ξ̃(x, n), we bi-
narize the probability map with a threshold of 0.5, resulting



Method Original Noise Occl. L. occl.
LDOF [5] 1.71 4.35 2.01 —

I-TVL1 [25] 1.43 2.61 1.89 —
S-Occl-R [14] 1.24 1.94 1.27 —

Best MFOF [10] 0.69 1.43 0.76 —
MDP [27] 0.79 2.98 0.90 1.71

EpicFlow [15] 0.55 2.56 0.59 1.08
Base scheme 0.2939 1.19 0.49 1.44

MFOF Prop.-1 0.34 1.11 0.35 0.58
MFOF Prop.-2 0.32 1.04 0.33 0.46
MFOF (sparse) 0.31 0.92 0.34 0.42
MFOF Prop.-3 0.2906 0.89 0.32 0.34

Table 1: Quantitative evaluation of different versions of our pro-
posed method against other MFOF and TFOF methods in terms of
pixel EPE on the waving flag benchmark dataset.

in ξ(x, n), which is used in Equ. (4) for correcting the opti-
cal flow. Thus, the coefficients for the subspace constraints
are only computed from reliable data of visible regions.
This information is extrapolated into the occluded regions
(via the minimization) and, thus, still considers the general
non-rigid motion. Therefore, this procedure enables us to
robustly compute pixel trajectories of a non-rigidly deform-
ing object, even if the object is largely occluded in several
frames. Note that the restriction to the subspace constraints
is only strictly imposed in regions that are marked occluded.
The accuracy outside of those regions is up to the used op-
tical method and does not influence other potential features
of the method such as handling of large displacements.

4. Evaluation

In this section we quantitatively and qualitatively eval-
uate the proposed method. We start with the quantitative
evaluation on a challenging sequence with respect to non-
rigid motion in a video sequence of a waving flag with given
ground truth data 1. This dataset has been created to cover
the complexity of realistic non-rigid motion with rather
small occlusions synthetically added in [10] and larger oc-
clusions added for the evaluation of our work. To the best of
our knowledge, there is currently no other publicly available
dataset that provides groundtruth optical flow with respect
to one reference frame for a long video sequence showing
a highly non-rigid object.The popular optical flow datasets
Middlebury [2], SINTEL [6] and KITTI [11] only provide
ground truth flow for consecutive frames, while we are in-
terested in registering each image in a video sequence with
respect to one chosen reference frame as required for dense
NRSfM (e.g. [9]). Note, when considering only two con-
secutive frames, our algorithm reduces to the underlying I-
TVL1 algorithm [25] with the colour extension of [9] and

1http://www0.cs.ucl.ac.uk/staff/lagapito/
subspace_flow/

the presented occlusion handling which is also related to
[3]. Both latter algorithms have already been tested on
the Middlebury dataset and we do not claim to largely out-
perform these methods in the typical two-frame scenarios.
In order to show the improvement of our approach in the
highly non-rigid multi-frame scenario, we adapted differ-
ent top performing optical flow algorithms to our setting by
registering each image separately to the reference image.
We compare against EpicFlow [15] and Motion Detail Pre-
serving (MDP) optical flow [27] which both include explicit
occlusion handling (cf. Section 2.2) as well as against other
standard and state-of-the-art algorithms in the benchmark
dataset with rather small occlusions. Finally, we present
qualitative results including moving specularities and large
occlusions on a real dataset of a beating heart during a By-
pass surgery2. Further results can be found in the supple-
mentary material.

4.1. Test on benchmark dataset (waving flag)

The authors of [10] provide different versions of the wav-
ing flag sequence consisting of 60 images with a resolution
of 500×500 pixels, showing the flag in colour, as gray-scale
images, with different forms of noise and (rather small) oc-
clusions. The dataset has been used to compare different
optical flow methods with respect to accuracy in the pres-
ence of non-rigid motion. Different variants of the MFOF
method published in [10] outperformed other state-of-the-
art methods regarding this task, such as, the I-TVL1 [25],
the Large Displacement Optical Flow method (LDOF) [5]
and an optical flow method based on self-occlusion reason-
ing [14]. The best performing MFOF variant throughout
the tests was the one working on colour images with a PCA
basis of different ranks (R = 50, or full rank R = 120)
for the subspace constraints. The subspace basis was ob-
tained via PCA from ground truth data for the base scheme,
MFOF Prop.-1,-2,-3 or from sparse KLT tracks as described
in [16] for MFOF (sparse). We compared our method with
the above mentioned ones as well as EpicFlow [15] and the
MDP method [27], using the same rank of subspace con-
straints. We choose the same setting as mentioned in [10],
use the same amount of iterations and the same constants
for the data and linking terms for the occlusion sequence,
namely 20 alternation iterations, β = 0.4 and α = 18/

√
3,

to obtain a fair comparability. For the divergence indica-
tor we use wdiv = 1 for all tests. Table 1 shows the root
mean squared end-point error (EPE) in pixels of the dif-
ferent optical flow methods averaged over the sequence, to-
gether with our results on different versions of the sequence.
As [10] we compute the EPE over all foreground pixels of
the whole sequence. (Original) is the original sequence.
(Noise) is a version of the sequence with additional Gaus-

2Video is available on http://hamlyn.doc.ic.ac.uk/
vision



Figure 4: Comparison of the EPE of each frame on the flag se-
quence with large occlusions. It can be clearly seen that the EPE
of our proposed approach is particularly lower in the case of large
occlusions and non-rigid motion around frame 25 and 38.

sian noise. (Occl.) denotes a version of the sequence with
additional occlusions. All these sequences are presented on
the above mentioned website. Moreover, we included a ver-
sion of the sequence with large occlusions (L. occl.), where
some frames with the occlusions can be observed in Figure
4. Our base scheme consists in computing the initial flow
with the above settings for all frames (cf. Section 3.1) with
the proposed pre-iterations in Alg. 1. It can be observed
that the base scheme gives quite accurate results for the
original sequence, without occlusions. However, the accu-
racy degrades as more occlusions are included. The method
MFOF Prop.-1 consists of a fast version of the whole ap-
proach, without pre-iterations and only 5 alternation itera-
tions, in order to compare against the same fast approach
MFOF Prop.-2, with the pre- iterations. It can be observed
that the pre-iterations increase the accuracy of the method
MFOF Prop.-2 in particular in the presence of large oc-
clusions. This originates from the increase in convergence
speed due to the initialization via the pre-computed fields.
The proposed occlusion estimation and handling increases
the accuracy of both methods in particular in the case of
occlusions. The method MFOF Prop.-3 or MFOF Pro-
posed is the most accurate method and is based on the full
approach, with the same amount of alternation iterations as
the base scheme. The proposed approach with occlusion
handling does not degrade the accuracy of the base scheme
in the original sequence without occlusions and yields con-
sistently more accurate results in the presence of noise,
and in the presence of small as well as large occlusions.
The method MFOF (sparse) uses the same parameters as
MFOF Prop.-3 and is based on pre-computed sparse tracks.
This indicates that the performance of the method does
not depend on highly accurate point tracks for the trajec-
tories to obtain the subspace constraints. However, the rank
(R) should be appropriate (rather low) for large occlusions,

Figure 5: Comparison of the EPE (∈ [0..10] pixels, left to right:
EpicFlow, MDP, MFOF Base, MFOF Proposed) at frame 25 on
non-rigid motion of the flag with small and large occlusions. All
methods can reasonably well handle the small occlusion (black
disc in Figure 1), but only our proposed scheme is able to esti-
mate an accurate flow in the presence of the large occlusion (green
leaves in Figure 1).

Method Runtime
MDP [27] 25172 sec. (419 min. 30 sec.)

EpicFlow [15] 750 sec. (12 min. 30 sec.)
Base scheme 308 sec. (5 min. 13 sec.)

MFOF Prop.-3 5101 sec. (85 min. 01 sec.)
MFOF (sparse) 5108 sec. (85 min. 08 sec.)
MFOF Prop.-2 699 sec. (11 min. 39 sec.)

Table 2: Single core runtimes on sequence (L. Occl.).

since this restricts the motion in the occlusion to the most
expressive motion. It can be observed that different versions
of our method outperform all other methods considerably
on the different versions of the dataset, which is due to the
superior handling of the challenging task of accurately cap-
turing the non-rigidity, together with an appropriate occlu-
sion handling. Figure 4 shows a diagram of the EPE on each
frame of different methods over the whole sequence with
large occlusions. It can be seen that the proposed method
gives consistently low errors. Figure 5 shows a compari-
son of the methods on frame 25, where each method has the
largest error in the sequence. The occlusion indicators and
occlusion maps in the different stages for this case can be
observed in Figure 1. Table 2 compares the different run-
times of EpicFlow, MDP and two versions of our method.
All methods have been executed, using only one CPU, over
the whole sequence (L. Occl.). The time needed to compute
initial tracks, if needed (EpicFlow and our methods), was
included. The computations were performed on an Intel-
Xeon CPU E3-1245 V2 with 3.4 GHz and 16GB RAM. It
can be observed that MFOF Prop.-2 yields comparable run-
ning time to the highly efficient EpicFlow. MFOF Prop.-3,
MFOF (sparse) need a reasonable runtime compared to the
MDP method, while providing higher accuracy in all cases.
Note that our Bayesian inference approach works on a per
pixel bases and is thus highly parallelizable like the base
scheme [10] and therefore our proposed schemes.

4.2. Test on real data

Please note that the base scheme that we build on has al-
ready been applied to several challenging real world exam-



(a) Reference frame (b) Frame 23 (c) EpicFlow (d) Base scheme (e) MFOF Proposed

Figure 6: Comparison of the different methods on a beating heart sequence with a large occlusion due to the robot arm (marked by circle).
Note the different performance of the approaches regarding the correspondences (yellow lines). The correspondences of the proposed
method are least affected by the occlusion.

(a) Base scheme (b) MFOF Proposed

Figure 7: Dense NRSfM reconstruction of frame 23 with the tex-
ture of the reference frame using [13], based on the correspon-
dences from MFOF Base scheme (a) and the proposed method,
MFOF (sparse) (b).

ples [10] including dense NRSfM [9]. We tested our method
on a challenging dataset of a beating heart during a bypass
surgery showing non-rigid deformations (self-occlusions),
moving specularities and large occlusions due to a robot
arm entering the scene. Since no ground truth data is avail-
able, we show qualitative results based on visual effects of
the estimated flow fields. We used the same parameters and
iterations as mentioned above with the method MFOF Pro-
posed (MFOF Prop.-3), by working on the RGB gradients
of the images (a 6 dimensional vector) for the base scheme
and the proposed MFOF (sparse) method, due to the bet-
ter performance on some textureless parts. The basis for
the subspace constraints were obtained from sparse KLT
tracks (R = 10), see [16]. Figure 6 shows every 10-th
point correspondence of the dense optical flow computed
via EpicFlow, the base scheme and our proposed scheme
in a selected region of interest. It can be observed that the
point tracks show inconsistent patterns in the occlusion part
for the base scheme. The point tracks based on EpicFlow
look much better due to an inherent occlusion considera-
tion, but, show distorted tracks at the edges (right part of
Figure 6(c)). The proposed method shows a more consis-
tent pattern of estimated correspondences in the region that
is occluded by the robot arm (Figure 6(e)). In Figure 7 dense
NRSfM reconstructions, based on uncorrected correspon-
dences (from the base scheme) and the proposed MFOF

method, are shown. The increase in reconstruction quality,
obtained from the correspondences of the proposed method,
with no distortions on the right part, is clearly visable. Fur-
ther results of dense NRSfM reconstructions based on the
base scheme and the proposed scheme of the waving flag
sequence with large occlusions as well as applications to a
“turning head scenario” and a video of a “deforming human
back” can be found in the supplementary material.

5. Conclusions

We propose a novel method for accurate video registra-
tion of highly deformable objects under sub-optimal con-
ditions including occlusions of different size and type (e.g.
self-occlusions, external occlusions), noise and speculari-
ties. To this end, we developed a new flow uncertainty es-
timation method based on Bayesian inference that fuses co-
herence assumptions with (an extendable set of) different
occlusion indicators together into an occlusion pre-estimate
that is thereafter globally smoothed to obtain a spatially and
temporally consistent estimate of an occlusion probability.
Furthermore, we include this information into an occlusion-
aware MFOF method to compute corrected optical flow
fields. This has been shown to increase the accuracy, in
particular in regions of large occlusions, in the challenging
case of the video registration of highly non-rigid objects.
We also proposed an iterative pre-computation scheme that
further increases the overall convergence speed and accu-
racy of the method and thus leads to an efficient occlusion
aware video registration method. The latter eases the way to
accurate dense NRSfM methods in challenging real world
scenarios. Future work will focus on an automatic estima-
tion of the underlying parameters, in particular wdiv from
the data. A suitable integration with dense NRSfM meth-
ods on a GPU is also planned.
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