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Abstract

The problem of dense point set registration, given a
sparse set of prior correspondences, often arises in com-
puter vision tasks. Unlike in the rigid case, integrating
prior knowledge into a registration algorithm is especially
demanding in the non-rigid case due to the high variabil-
ity of motion and deformation. In this paper we present
the Extended Coherent Point Drift registration algorithm. It
enables, on the one hand, to couple correspondence priors
into the dense registration procedure in a closed form and,
on the other hand, to process large point sets in reason-
able time through adopting an optimal coarse-to-fine strat-
egy. Combined with a suitable keypoint extractor during the
preprocessing step, our method allows for non-rigid regis-
trations with increased accuracy for point sets with struc-
tured outliers. We demonstrate advantages of our approach
against other non-rigid point set registration methods in
synthetic and real-world scenarios.

1. Introduction
Point set registration is a key component in many com-

puter vision tasks such as 3D reconstruction, medical image
registration, computer graphics and shape recognition. The
problem consists in finding correspondences and transfor-
mations between a reference and a template point set that
might show a deformed, partially overlapped and noisy part
of the reference point set. Thus, the objective is to regis-
ter two point sets into a common reference frame. We refer
to rigid point set registration, if the transformation between
the template point set and the reference point set can be en-
tirely determined by parameters of the rigid body motion.
In case of non-rigid point set registration, transformations
can be arbitrary for each point and non-rigid deformations
are possible. We consider a special case of the non-rigid
registration problem, when a sparse set of correspondence
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Figure 1: Non-rigid registration of two 3D point sets from [2] represent-
ing arms in different poses. (a): initial alignment with correspondences
obtained through a comparison of the Persistent Feature Histograms at ISS
3D keypoints; (b): result of the non-rigid registration with CPD; (c): result
of the non-rigid registration with ECPD using the correspondence priors.
Complex non-rigid deformations (combination of supination, flection and
abduction of the arm) in the area of the hand were resolved with higher
precision, compared to (b). See Fig. 3 for detailed comparison.

priors, possibly with outliers, is known in advance.
Non-rigid point set registration is an ill-posed problem.

To obtain a unique solution, additional constraints on the
solution space are required. Constraints originate from as-
sumptions about point sets as well as the type of displace-
ments that the point sets may undergo. They can be for-
mulated as prior knowledge (priors) and included into the
registration procedure in different ways (e.g. through reg-
ularization). An overview of registration methods can be
found in [26] and in Section 2. In this paper we present
the Extended Coherent Point Drift (ECPD) algorithm allow-
ing to include prior information in form of point correspon-
dences into the non-rigid registration process to influence it
in a favourable way (see Fig. 1). Our method builds upon
the Coherent Point Drift (CPD) [20] and thus broadens its
scope. It allows to combine application specific correspon-
dence search algorithms operating on different information
sources with the robust non-rigid point set registration algo-
rithm. Furthermore, we adopt a coarse-to-fine registration
strategy which maintains the impact of the correspondence
priors and accelerates the registration process linearly.



2. Related Work
Early works on non-rigid point set registration used

probabilistic Gaussian Mixture Models (GMM) positioned
along contours. The contours were modelled by splines al-
lowing non-rigid transformations, but the method was re-
stricted to contour-like registrations [14], [23]. Several ex-
tensions of the Iterative Closest Point (ICP) for the non-
rigid case were proposed [11], [3]. They evince the same
drawbacks as their rigid counterpart, namely high sensitiv-
ity to outliers. One of the widely used non-rigid point set
registration methods is based on modelling the transforma-
tion with thin plate splines (TPS) [6] followed by robust
point matching (RPM) and is known as the TPS-RPM [9].
It uses deterministic annealing and alternates between up-
dates of the soft assignment and estimation of transforma-
tion parameters. The authors showed how the expectation-
maximization (EM) algorithm can be embedded into a de-
terministic annealing scheme [8]. An optimized implemen-
tation of the TPR-RPM on GPU for point sets with thou-
sands of elements was addressed in [19]. A correlation
based approach was proposed in [27] and later improved
in [16]. It tries to align two distributions whereby each of
the point sets represents GMM centroids. CPD method was
introduced in [21] and further improved in [20]. It employs
an EM algorithm to optimize the GMM and the regulariza-
tion originating in the motion coherence theory [29], [30].
Compared to TPS-RPM, CPD offers superior accuracy and
stability with respect to non-rigid deformations in presence
of outliers. An additional parameter for outlier modelling
of CPD was introduced for a hybrid optimization with the
Nelder-Mead simplex method in [28]. CPD was also mod-
ified by imposing the Local Linear Embedding topological
constraint to cope with highly articulated non-rigid defor-
mations [13]. However, this extension performs poorly on
data with inhomogeneous density and is more sensitive to
noise than CPD. Recently, a non-rigid registration method
based on Student’s Mixture Model (SMM) showed to be
even more robust and accurate on noisy data than CPD
method [33].
Several methods were proposed for improving registra-
tion quality in challenging cases through embedding prior
knowledge and constraining the solution space. Some are
based on shape priors and address registration of a human
template to human scans [15]. A recent approach for hu-
man shape registration [5] not only registers the geomet-
ric shape, but also the appearance of shapes and the opti-
cal flow between shapes obtained from textured 3D scans.
Some spectral differential geometry methods, constituting
rather a separate class of algorithms, are able to regard prior
correspondences [17]. Compared to point set registration
methods, they are more noise sensitive and typically oper-
ate on meshes (i.e. need surfaces and normals), whereas
real-world scans are usually noisy point clouds. In the con-

text of the related problem of medical image registration,
several methods utilize correspondences between SIFT key-
points or hybrid detectors and couple them into the registra-
tion procedure [18], [31]. No further assumptions about the
content of the image are made, which allows to decouple
correspondence search and image registration.
For acceleration purposes, subsampling of point sets can
be applied. In the rigid case the recovered transformation
refers simultaneously to all points. Hence, the transforma-
tion, recovered for a subsampled point set, can be directly
generalized to the initial one [24]. In opposite, in the case
of non-rigid registration such transformation does not gen-
eralize to the initial dense point set.

Our contributions are stated as follows. We derive ECPD
method by embedding the correspondence priors into CPD
in a closed form and thus extend its scope. To the best of our
knowledge, utilizing the correspondence priors for point set
registration in a closed-form was not shown in the literature
so far, at least for the probabilistic case. We suggest how
subsampling can be adopted in the context of non-rigid reg-
istration resulting in linear speedup as a function of the sub-
sampling factor and point sets sizes. We also show an effi-
cient implementation of ECPD in a heterogeneous environ-
ment with a GPU. Finally, we demonstrate several applica-
tion specific approaches for finding correspondence priors
and show that their appropriate utilization in combination
with the proposed ECPD can address diverse issues, espe-
cially 1) resolving complex non-rigid deformations, not ad-
dressed by the original coherency constraint; 2) obtaining
accurate registrations in the regions of interest (ROI) for
point sets with structured outliers; 3) obtaining registration
results linearly faster with respect to CPD.

3. Coherent Point Drift

CPD method [20] considers alignment of two D-
dimensional point sets XN×D = (x1, . . . ,xN )T and
YM×D = (y1, . . . ,yM )T as a probability density estima-
tion problem where one point set represents the GMM cen-
troids (YM×D) and the other one represents the data points
(XN×D). According to different deformation models be-
tween the two point sets, an appropriate rigid or non-rigid
transformation can be selected. At the optimum two point
sets become aligned and the correspondences are obtained
using the maximum of the GMM posterior probability for
a given data point. Core to CPD method is to force the
GMM centroids to move coherently as a group to preserve
the topological structure of the point sets. The GMM prob-
ability density function of CPD method can be written as

p(x) =

M+1∑
m=1

P (m)p(x|m). (1)



To explicitly model outliers, the density function is split in
the following form

p(x) = w
1

N
+ (1− w)

M∑
m=1

P (m)p(x|m), (2)

with p(x|m) = 1
(2πσ2)D/2

exp(−‖x−ym‖
2

2σ2 ) and 0 ≤ w ≤ 1

— a weight parameter that reflects the assumption about
the amount of outliers in the reference point set. The GMM
centroids are adjusted by a set of transformation parame-
ters θ that can be estimated by minimizing the negative log-
likelihood function

E(θ, σ2) = −
N∑
n=1

log

M+1∑
m=1

P (m)p(xn|m). (3)

An EM algorithm is used to find θ and σ2. The E-step con-
structs a guess of the parameter values based on the previous
(“old”) values and then uses the Bayes’ theorem to compute
a posteriori probability distribution P old(m|xn). The M-
step updates the parameters by minimizing an upper bound
of the negative log-likelihood function in Eq. (3). Leaving
out the terms constant w.r.t. σ2 and θ the objective function
can be written as

Q(θ, σ2) =
1

2σ2

N∑
n=1

M∑
m=1

P old(m|xn)‖xn − T (ym, θ)‖2

+
NPD

2
log σ2 (4)

where T (ym, θ) is a transformation applied to Y and Np =∑N
n=1

∑M
m=1 P

old(m|xn) and

P old(m|xn) =
exp(− 1

2‖
xn−T (ym,θ

old)
σold

‖2)∑M
k=1 exp(− 1

2‖
xn−T (yk,θold)

σold
‖2) + c

(5)

with c = (2πσ2)D/2 w
1−w

M
N . Based on the formulas above

the transformation T can be specified for rigid, affine and
non-rigid point set registration.

4. Extended CPD
Let (yj ,xk) be a set of correspondence priors with in-

dices (j, k) ∈ Nc ⊂ N2. We model correspondence priors
by a product of particular independent density functions

Pc(Nc) =
∏

(j,k)∈Nc

pc(xj ,yk) (6)

with

pc(xj ,yk) =
1

(2πα)D/2
exp(−‖xj − T (yk, θ)‖2

2α2
). (7)

Due to the Gaussian form of the distribution the parameter
α > 0 reflects the priors’ degree of reliability. We incorpo-
rate correspondence priors into CPD method by including
the prior probability Pc(Nc) into the GMM in Eq. (1) and
obtain a modified GMM with the density function

p̃(x) = Pc(Nc)p(x). (8)

The modified energy function can be derived by considering
the negative logarithm of the combined modified GMM

Ẽ(θ, σ2) = − log

(
Pc(Nc)

N∏
i=1

p(xn)

)
(9)

= E(θ, σ2)−
∑

(j,k)∈Nc

log(pc(xj ,yk)).

An objective function Q̃ can now be derived utilizing the
same derivation as in Eq. (4). Rewriting the last term of
Eq. (9) and leaving out the constants the modified objective
function reads

Q̃ = Q+
1

2α2

∑
(j,k)∈Nc

‖xj − T (yk, θ)‖2

= Q+
1

2α2

N∑
n=1

M∑
m=1

P̃m,n‖xn − T (ym, θ)‖2 (10)

with the M ×N matrix P̃ of entries

p̃j,k =

{
1 for (j, k) ∈ Nc
0 else

. (11)

This matrix can be precomputed once. The EM algorithm
of ECPD with correspondence priors now reads: 1) in the
E-step compute the probability matrix (Eq. (5)); 2) in the
M-step, the modified objective function (Eq. (10)) has to
be minimized w.r.t. (θ, σ2).

4.1. Non-rigid Point Set Registration

In the proposed approach the case of general non-rigid
alignment can be addressed by defining the displacement
field for Y as

T (Y, v) = Y + v(Y). (12)

We build upon the regularizing prior on the displacement
field of CPD [20]. In the Bayesian framework it can be
formulated as p(v) = exp(−λ2φ(v)) with a weighting pa-
rameter λ ∈ R and a regularization function φ(v). By mul-
tiplying the density function (1) with p(v) or equivalently
adding the exponent to the negative likelihood function (3)
we integrate the regularizing prior into the GMM and obtain

f(v, σ2) = E(v, σ2) +
λ

2
φ(v). (13)



In this work we extend this framework by including the ad-
ditional correspondence priors (6) into Eq. (9) and obtain
the following energy function

f̃(v, σ2) = Ẽ(v, σ2) +
λ

2
φ(v). (14)

To solve the M-step, the energy function (14) needs to be
minimized w.r.t. v and σ2. Following the same principles as
in Eq. (4) we derive an upper bound for the energy function
(14) that reads

Q̃(v, σ2) =

1

2σ2

N∑
n=1

M∑
m=1

P old(m|xn)‖xn − T (ym, v, σ
2)‖2

+
1

2α2

N∑
n=1

M∑
m=1

P̃m,n‖xn − T (ym, v, σ
2)‖2

+
NPD

2
log σ2 +

λ

2
φ(v). (15)

The regularization function of CPD can be written in the
Reproduction Kernel Hilbert Space as

φ(v) =

∫
RD

|ṽ(s)|2

G̃(s)
ds. (16)

Here, G̃ is the Fourier transform of a kernel function G
which in turn describes a positive function that approaches
zero as ‖s‖ → ∞. As in [20] we use a Gaussian ker-
nel function G(s) = exp(−‖ sβ ‖

2). Furthermore, ṽ is the
Fourier transform of the displacement field v in Eq. (12)
and s is a frequency domain variable. This regularization
can be interpreted as low-pass filtering with respect to the
displacement field v. The filtered frequencies can be ad-
justed via the parameter β. To obtain v, we minimize the
objective function (15) with respect to v by treating σ2 as a
constant. Note that due to our choice to integrate the corre-
spondence priors (Eq. (6)) the minimizing function for the
corresponding energy (14) still has the form of a radial basis
function as in [21, 20], i.e.

v(z) =

M∑
m=1

wmG(z− ym) (17)

(we provide a proof as well as clarification of the sym-
bol wm in supplementary material). To compute the dis-
placement field v(Y) = GW minimizing the energy (14)
(where in our case G is a symmetric Gram matrix with
entries Gi,j = exp(−‖yi−yjβ ‖2)), we substitute v into Eq.

(15) and leave out all terms independent of v. This yields

Q̃(W) =
1

2σ2

N∑
n=1

M∑
m=1

P old(m|xn)‖xn − T (ym,W)‖2

+
1

2α2

N∑
n=1

M∑
m=1

P̃m,n‖xn − T (ym,W)‖2

+
λ

2
WTGW. (18)

Minimizing Q̃ with respect to W will minimize the energy
function (14) with respect to v. Setting the derivative of Q̃
to zero in matrix form yields

∂Q̃

∂W
= G

(
1

σ2
[d(P1)(Y + GW)−PX] (19)

+
1

α2
[d(P̃1)(Y + GW)− P̃X]

)
+ λGW = 0.

Here, d(·) is a diagonal matrix. Multiplying the whole equa-
tion with G−1σ2 (which always exists for a Gaussian kernel
[21]) and rearranging it, we obtain(

d(P1)G +
σ2

α2
d(P̃1)G + λσ2I

)
W = (20)

PX− d(P1)Y +
σ2

α2
(P̃X− d(P̃1)Y).

The transformed positions of ym are found according to Eq.
(12) as T (Y,W) = Y + GW. Thereafter, we obtain σ2

by setting the corresponding derivative of Eq. (15) to zero.
This yields the same result as in [20], i.e.

σ2 =
1

NPD

N∑
n=1

M∑
m=1

‖xn − T (ym,W)‖2

=
1

NPD
(tr(XT d(PT1)X)− 2tr((PX)TT)

+tr(TT d(P1)T)). (21)

ECPD is summarized in Algorithm 1. Convergence criteria
are defined in terms of the maximum number of iterations
and the smallest feasible step size of the EM algorithm.

5. Implementation
For fast registration of large point sets several ap-

proaches were introduced in [20] for CPD. First, the Fast
Gauss Transform (FGT) allows to efficiently compute sums
of exponentials in O(M + N) time. It can be applied
in exactly the same way for ECPD. The second method
is the low-rank matrix approximation of the Gram matrix
Ĝ = QΛQT , where ΛK×K denotes the diagonal matrix
of the largest eigenvalues and QM×K the corresponding



Algorithm 1 ECPD with Correspondence Priors
Input: Point sets X,Y and index set for correspondence priors Nc

Output: Aligned point set T (Y)

• Initialization: W = 0 , σ2 = 1
DMN

∑M,N
m,n=1 ‖xn − ym‖2,

0 ≤ w ≤ 1, β > 0, λ > 0.

Construct G: Gi,j = exp
(− 1

2β2
‖yi−yj‖2),

Precompute P̃, as in Eq. (11).

• EM optimization, repeat until convergence:

– E-Step: compute P, with pm,n = P old(m|xn) as in Eq.
(5).

– M-Step: Solve for T, σ2.

– Solve Eq. (20) with respect to W.

– NP = 1TP1,T = Y +GW.

– σ2 = 1
NPD

[tr(XT d(PT 1)X)

−2tr((PX)TT) + tr(TT d(P1)T)].

• The aligned point set is T (Y,W) = Y +GW.

• The probability for correspondences is given by P.

eigenvectors in matrix form. Also the Woodbury matrix
identity can be applied to efficiently solve the linear sys-
tem for the transformation W. In our case we need to solve
the modified system (20) and rewrite it as follows

([d(P1) +
σ2

α2
d(P̃1)︸ ︷︷ ︸

d(P̂1)

]G + λσ2I)W =

PX− d(P1)Y +
σ2

α2
(P̃X− d(P̃1)Y)︸ ︷︷ ︸

F

⇐⇒ (G + λσ2d(P̂1)−1)W = d(P̂1)−1F. (22)

Therefore, the Woodbury matrix identity for solving the
modified system (20) with the low-rank matrix approxima-
tion reads

(QΛQT + λσ2d(P̂1)−1)−1 =

1

λσ2

[
F − d(P̂1)Q

(
λσ2Λ−1 + QT d(P̂1)Q

)−1
QTF

)
.

We aim at the non-rigid registration of large point sets
(> 105 points) and thus opt for an optimized implementa-
tion of ECPD on a system with a multicore CPU and a GPU.
The FGT was implemented as a heterogeneous function ap-
plying acceleration techniques similar to those described in
[10]. Here, the tangible impact on the performance yields
both the enabling of high occupancy and extensive use of
faster shared and register memory for reusable data. For
computation of the eigenvalue decomposition, which the
low-rank approximation of the Gram matrix G is based on,
we rely on Implicitly Restarted Lanczos Method [7] (pro-
vided by the library ARPACK [1]) in combination with the

FGT. In the final iterations of the EM optimization — when
the width of Gaussians becomes small — the algorithm
switches to the truncated Gaussian approximation mode
(truncated mode) and the complexity increases toO(MN).
The acceleration of this mode is achieved by taking advan-
tage of the parallel portable shared memory programming
model offered by OpenMP [22]. Even though the imple-
mentation of the truncated mode is scalable with the number
of multiprocessors, the improvement on a multicore CPU is
still not sufficient to compensate for the increase in the com-
putation time caused by the O(MN) complexity.

5.1. Coarse-To-Fine Strategy

To reduce the registration time further, we introduce
the procedure of correspondence preserving subsampling
(CPS) and adopt a coarse-to-fine strategy. CPS is a joint
subsampling procedure of two (generally k) point sets
which reduces the number of points in one or several point
sets according to some subsampling rule (e.g. uniformly)
and guarantees to preserve established correspondence pri-
ors between those sets. Suppose nc to be the number of
correspondence priors between the point sets and t the sub-
sampling factor. Then, the subsampled template contains at
most bNt c+ nc points.
ECPD in subsampled mode operates as follows: 1) perform
the CPS on the template point set; 2) register the subsam-
pled template point set with the reference point set; 3) regis-
ter the registered subsampled template (result of the second
step) as a reference with the initial dense template. Thereby
amount of points in the result remains unchanged, indepen-
dently of the subsampling factor. We observe an important
property of the CPS. Since correspondences between the
subsampled template and the initial template are known,
they can be taken as strong correspondence priors on the
final registration step. In the following we give a rough
comparison of a number of operations required to register
a given dataset with and without CPS.
For the number of operations Tplain required by the plain
non-rigid registration it holds

Tplain = c1MN, (23)

and for the number of operations Tsubs. required by ECPD
with subsampling it holds

Tsubs. = c2

(
M · N

t
+
N

t
·N
)

= c2
N(M +N)

t
, (24)

where c1 and c2 are constants. Thus, the speedup of the
algorithm with subsampling can be estimated as

s(m,n, t) =
Tplain
Tsubs.

=
c1MN

c2N(M+N)
t

= cs
Mt

M +N
(25)

To achieve a speedup s, according to Eq. (25), the subsam-
pling factor t should be chosen as d s(M+N)

M e. Note that the



Figure 2: Non-rigid registration of a 2D ”Fish” dataset. The reference is shown in red, the template is shown in blue. (a): initialization of the point sets; (b):
rigid prealignment with established correspondence priors; note that rigid CPD recovers prior correspondences by far not correct; results of the registrations
with non-rigid ICP [11] (c); TPS-RPM [9] (d); CPD [20] with two different parameter sets: β = 1.0, λ = 1.0 (e) and β = 2.0, λ = 2.0 (f); proposed
approach ECPD with two different parameter sets: β = 14.0, λ = 14.0, α = 10−8 (g) and β = 8.0, λ = 0.8, α = 10−8 (h).

given estimate does not consider the constant time spent for
the template subsampling and approximation of the Gram
matrix G for the template.

6. Evaluation
We run ECPD on a system with 32 GB RAM, Intel Xeon

processor and NVIDIA GTX 660 Ti graphics card and eval-
uate it on synthetic and real data. The experiments are de-
signed to verify the main advantages of ECPD — improve-
ment of registration quality — both in the presence of struc-
tured outliers and without those, when correspondence pri-
ors are available. Where appropriate we compare our ap-
proach against CPD (which we consider the baseline) and
other non-rigid registration methods.
Experiments on Synthetic Data. In our first experiment
we compare the performances of ECPD, CPD as well as two
widely used non-rigid registration methods (non-rigid ICP
[11] and TPS-RPM [9]) on a synthetic 2D ”Fish” dataset
(Fig. 2, (a)). Implementations of the latter ones are taken
from [9] and parameters of the algorithms are not altered.
The reference point set represents a non-rigidly transformed
section of the template point set. Accordingly, not all points
of the template have valid correspondences in the reference
point set. Points without valid correspondences are outliers
which are not uniformly distributed, but are rather struc-
tured. We are especially interested in preserving the topol-
ogy of these points. In the preprocessing step the point
sets were prealigned using rigid CPD [20]. The rigid reg-
istration produces a rough estimation of correspondences
(Fig. 2, (b)) and its outcome serves as an input for the
non-rigid registrations. Fig. 2, (c), (d) shows registration
results of non-rigid ICP and TPS-RPM algorithms respec-
tively. Both algorithms minimize energy functions without
further constraints on the non-rigid transformations. This
circumstance leads to flattening and breaking of the topol-
ogy of the template point set. The experiments show that
these algorithms perform poor in the presence of structured
outliers. Segmentation of the point sets could improve per-

formance in this case, but would assume outlier detection
beforehand. In opposite, the coherency constraint valid both
in CPD and ECPD, preserves the outliers from breaking up
the topology. Though in the case of CPD, either the cor-
respondences between inliers are assigned precisely while
the topology of the outliers is broken (Fig. 2, (e)); or the
topology of the outliers is preserved while a significant part
of correspondences between the inliers still is not assigned
precisely (Fig. 2, (f)). Through the synergetic effect of its
constraints on the displacement field, ECPD is able to re-
cover the non-rigid transformation between the inliers reli-
ably (Fig. 2, (g), (h)). The synergetic effect originates in
simultaneous impact of appropriately weighted coherency
constraint and prior correspondences. Crucial is that struc-
tured outliers are modelled as a part of the point sets. Prior
correspondences enforce the registration to restrict itself to
predefined areas, decreasing the influence of structured out-
liers. Concurrently, the coherency constraint insures point
topology to be preserved in all regions.
The above experiment was designed to illustrate the advan-
tage of ECPD against other non-rigid registration methods
in presence of structured outliers. The parameters were cho-
sen for emphasizing particular effects peculiar to the algo-
rithms in general. The correspondences obtained through
rigid prealignment were assumed to be reliable. This as-
sumption of course may not always be valid in practice.
Prior knowledge about the underlying point sets (e.g. shape
prior) often allows to extract a sparse set of correspondences
which is eventually used to prealign point sets rigidly. How-
ever, robust correspondence priors establishment is appli-
cation specific. Most registration algorithms handle corre-
spondences established through rigid prealignment as cor-
respondence priors implicitly. For instance, non-rigid ICP
assigns higher weights to those points from the beginning
on. In opposite, ECPD can additionally incorporate an arbi-
trary set of correspondences explicitly.
Experiments on Real Data. In the second experiment we
show how embedding the correspondence priors improves



the accuracy of non-rigid registrations in real world applica-
tions. We register 3D scans of arms in different poses. The
scans were taken from [2]. First, initial correspondences
between the scans are precomputed (Fig. 1, (a)). For this
purpose we use an approach similar to those described in
[25]. We extract 3D keypoints on the point clouds with an
Intrinsic Shape Signature descriptor [32], determine Persis-
tent Feature Histograms (PFH) [25] at those keypoints and
establish correspondences by comparing the PFH’s. In the
next step we register the scans with CPD and ECPD. In both
cases the established correspondences are used to rigidly
prealign the point clouds, whereas in the case of ECPD the
correspondences are additionally applied as correspondence
priors. In the case of CPD we show the result with β = 8.0,
λ = 8.0 and in case of ECPD with β = 1.0, λ = 1.0,
α = 10−2 and t = 20 (Fig. 1, (b) and (c) respectively).
Note that for CPD this is the best achieved result (with the
smallest cloud-to-cloud mean distance) and parameters β
and λ differ from those of ECPD. Again, in the case of CPD
only the coherency constraint is applied and complex non-
rigid deformations (combination of supination, flection and
abduction of the arm) in the area of the hand can not be
resolved. Employing the correspondence priors improves
registration accuracy significantly. Moreover, performance
of ECPD is less sensitive to the selection of algorithm’s pa-
rameters in the latter case as was ascertained in the course
of the experiment. Fig. 3 displays the comparisons of the
arm registrations in the area of the hands in more detail.

In another experiment we show an application of ECPD
in the scenario of scan-template registration of human heads
recovered with [12] from multiple views under real-world
conditions. Point sets representing scans of human heads
exhibit a high variety compared to other body parts. Of-
ten they contain areas with structured outliers (parts of the
clothes, hair). We are especially interested in high registra-
tion quality in the facial area. The first dataset we analyse
is the ”woman with a scarf” shown in Fig. 4. The scan
and the template contain 2.9 · 105 and 9 · 104 points re-
spectively. After prealignment with rigid CPD we run CPD
and ECPD with correspondence priors. We obtain corre-
spondence priors between the scan and the template in the
following way. Positions of the 3D keypoints on the tem-
plate are known and the template is kept the same for all
registrations (shown in Fig. 4, (c)). For detecting 3D key-
points on the scan we start with extracting 2D facial key-
points with the Chehra face tracker [4] on one of the frontal
views (Fig. 4, (a)). We obtain normalized texture coordi-
nates by dividing 2D keypoint coordinates by extent of the
image in respective dimensions and project the frontal view
onto the mesh (we know the projection matrices from the
multiview setting). Next, we determine a vertex with tex-
ture coordinate, closest to the keypoint’s one, and retrieve
the corresponding 3D keypoint on the scan (Fig. 4, (b)). Fi-

Figure 3: Comparison of the registration results of the arms in the area
of the hands with CPD (top row) and ECPD (bottom row) methods. (a):
reference; (b): registered template; (b): overlapped view ((a) + (b)); (d):
cloud-to-cloud distance in Blue<Green<Yellow<Red scale. Red corre-
sponds to 0.0171 distance units. The mean distance and standard deviation
amounts to (0.0029; 0.003) distance units for CPD and (0.0024; 0.0015)
distance units for ECPD.

Figure 4: Scan-template non-rigid registration of the ”woman with a
scarf” dataset. (a): keypoints, extracted on the frontal view; (b): keypoints,
transferred to the mesh as 3D keypoints; (c): template with predefined 3D
keypoints; (d), (e): results of the registration with CPD, w = 0.1 and
w = 0.4 respectively; (f): result of ECPD with correspondence priors,
α = 10−6. In this experiment β = 20.5 and λ = 20.5 are the same
for CPD and ECPD. The mean distance and standard deviation amounts to
(0.05; 0.043), (0.048; 0.046) and (0.023; 0.024) distance units for (d), (e)
and (f) respectively.

nally, the correspondences are established, since the order
of extracted keypoints both on the scan and on the template
is known. The result of the registration with CPD can be ob-
served in the Fig. 4, (d) and (e). As expected, the method is
not able to register the facial area accurately, since the out-
liers are not uniformly distributed. Eventually we registered
the point clouds with ECPD with facial correspondence pri-
ors. The results can be observed in Fig. 4, (f). We notice
significantly enhanced alignment precision in the ROI.



Figure 5: Scan-template non-rigid registration of the ”man with a hood” dataset. (a): keypoints, extracted on the frontal view; (b): keypoints, transferred
to the mesh as 3D keypoints; (c), (d): results of the registration with CPD, w = 0.1 and 0.4 respectively; (e): result of ECPD with correspondence
priors, α = 10−5. In this expermient β = 8.0 and λ = 16.0 are the same for CPD and ECPD. The mean distance and standard deviation amounts to
(0.049; 0.047), (0.048; 0.047) and (0.019; 0.018) distance units for (c), (d) and (e) respectively.

We also evaluate the performance of ECPD on varying
values of the subsampling factor t. We measure runtimes of
the algorithm and compute the speedup and cloud-to-cloud
metrics (mean distance error and standard deviation) of the
results depending on different t. The speedup is measured
as ratio between the runtime of ECPD without subsampling
and the runtime of ECPD with a particular value of t.

subs.
factor

runtime,
sec

speedup mean
distance

std. de-
viationestimated achieved

1 4124.0 1.0 1.0 0.0228 0.0240
4 1360.2 2.99 3.03 0.0226 0.0236
8 576.4 5.98 7.15 0.0235 0.0243
16 338.78 11.97 12.17 0.0225 0.0240
32 196.37 23.97 21.00 0.0236 0.0241
64 122.13 47.88 33.77 0.0236 0.0248
128 81.08 95.75 50.86 0.0293 0.0339

Table 1: Speedup of ECPD as a function of the subsampling factor for the
”woman with a scarf” dataset

As expected, a discrepancy between estimated and
achieved speedup is observed (see Table 1). For low values
of t (4-16) the achieved speedup is larger than estimated,
as (25) does not consider convergence criteria hidden in
the multiplicative factor. For larger values of t (32-128)
the speedup is smaller than estimated. With increasing val-
ues of t the time spent for subsampling and computation of
the Gram matrix (which the speedup estimation (25) does
not consider as well) is also increasing, relative to the algo-
rithm’s core computation time. For t varying from 4 to 64
results are qualitatively similar. Indeed, the smallest mean
distance and sigma values are obtained with t = 16 and not
without subsampling (t = 1) as one might expect. As the
value of t exceeds 128, the amount of points in the subsam-
pled template is not sufficient to capture the variation of the
reference point cloud and the mean error/sigma increases.
An optimal value of t in this experiment amounted to 64
leading to more than a thirtyfold speedup.
Another challenging dataset in this experiment was the

”man with a hood” (the scan contained 7.65 · 104 points). It
was processed analogously and we show results in Fig. 5.
Choosing Parameters. Proper parameterization is crucial
for desired registration results. The more different the regis-
tered point sets, the smaller should be β allowing higher va-
riety in deformations. λ balances the relative impact of the
coherency constraint and the energy function with prior cor-
respondences. Empirically, setting β = λ often works well.
We typically choose β ∈ [1, 20] and α ∈ [10−8, 1]. The
smaller value of α is most suited for highly reliable prior
correspondences, whereas 1 depreciates their influence.

7. Conclusions

We propose the non-rigid point set registration algorithm
Extended Coherent Point Drift. To the best of our knowl-
edge, this is the first non-rigid point set registration algo-
rithm, at least for the probabilistic case, which allows to
embed correspondence priors in a closed-form. ECPD em-
ploys correspondence preserving subsampling counterbal-
ancing the polynomial complexity by splitting the prob-
lem into two subproblems of smaller size and reducing the
number of operations by a linear factor. Our experiments
demonstrated that in applications where correspondence
priors are available, ECPD significantly improves registra-
tion quality and enhances robustness of point set registra-
tion under complex non-rigid deformations (Fig. 1) and in
presence of structured outliers (Fig. 4), compared to the
baseline method CPD. In future work we plan to investi-
gate automatic parameter selection as well as combine key
point extractors and large-scale non-rigid registration with
the dynamic vectorial α into a single framework.
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