
Available online at www.sciencedirect.com

2212-8271 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015
doi: 10.1016/j.procir.2015.12.106

 Procedia CIRP 41 (2016) 224 – 229

ScienceDirect

48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015

Interactive planning of manual assembly operations:
from language to motion

 Stephan Busemanna*, Jörg Steffena, Erik Herrmanna
aDeutsches Forschungszentrum für Künstliche Intelligenz (DFKI) GmbH

Stuhlsatzenhausweg 3, D-66133 Saarbrücken, Germany

* Corresponding author. +49-681-85775-5286. E-mail address: stephan.busemann@dfki.de

Abstract

This paper describes part of a novel view of planning the assembly of cars at the shop floor, which is currently being explored in the EU-funded
project INTERACT, in which 3D worker simulations are automatically generated from textual descriptions. Under this view, all planning is
carried out virtually, thereby interactively exploiting the workers’ knowledge.
We suggest solutions to the subtask of mapping textual descriptions onto motion sequences. Consider a description like “Tighten arm support
with cordless screw driver on center console”. This text belongs to a controlled natural language that is – different from unconstrained language
– amenable to unambiguous linguistic analysis. The result is then broken down into a sequence of elementary actions, such as WALK, PICK, or
PLACE, carried out by a digital human model (DHM) using and manipulating objects in the 3D scene. The representation level of elementary
actions is designed to provide all information needed for subsequent motion synthesis. For proper 3D visualization, each action requires
dynamic or static parameters such as the grasp points at the objects, and positions of the DHM and the objects.
A semantic interpretation of the linguistic results must account for all variations to be expected in the scene. For instance, if the DHM is not
“near” the object of interest, it must WALK. Evaluating this kind of condition-action rules against constraints imposed by the scene for a given
textual description leads to a sequence of elementary actions that is then processed further and visualized. When viewing the simulation, the
human planner can affect some aspects of processing, such as the order of elementary actions, by causing manipulations to the rules.
© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015.

Keywords: Planning; Knowedge based system; Simulation; Human Language

1. Introduction

The assembly of cars at the shop-floor can be described by
a sequence of detailed human language task descriptions. The
worker is supposed to carry out each task accordingly at the
respective work station, using skills acquired by instruction
and experience. For new product types, new task descriptions
are needed, and the ways in which the tasks should be carried
out are studied and defined before production starts. This
planning process is currently carried out manually by a group
of experts discussing the optimum execution of tasks with the
help of prototypes.

Using a realistic visual simulation of the assembly
operations during planning would allow a more complete and
explicit definition of the task, as the requirements, the
knowledge, the skills and much of the experience of the

experts will be reflected in the visual simulation. Alternative
virtual task executions can be generated on the fly. Such a
simulation of the assembly process is expected to save time
and costs. The pre-production planning workshops will make
use of the simulations, aiming at defining a final sequence of
task description and, for each task, a complete definition of its
execution. This process will be supported by the virtual
simulation, which can be manipulated by the experts to
improve task execution models.

For the simulation to be realistic, a model of the shop-floor
scenario will be required that includes, among many other
things, the types and locations of objects, as well as ways to
handle them (grasp points).

This innovative vision is currently taking shape through the
ongoing EU-funded project INTERACT (cf.
http://www.interact-fp7.eu). The present paper focuses on

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015

225 Stephan Busemann et al. / Procedia CIRP 41 (2016) 224 – 229

solutions to the initial problem of relating human language
task descriptions to a level of annotated elementary actions
that can then be processed further yielding motion primitives.
This corresponds to the marked left-hand side of Figure 1,
which sketches the architecture of components and interfaces
used.

The task descriptions used for the simulation are the same
as the ones used for manufacturing. Natural language, if used
freely, would allow an abundance of statements to express the
same task, some more specific than others, some ambiguous
without its author even noticing. Therefore a controlled
natural language (CNL) is used, which excludes these
drawbacks (Section 2.1). This guarantees unambiguous,
homogeneous wordings for the same tasks across shop floors
and yet preserves the level of human language, which is best
suited to have planners describe the tasks.

(1) Tighten arm support with cordless screw driver 3x on

center console.

CNL task descriptions such as (1), however, are too course-
grained to be mapped directly onto prerecorded motion
elements. They are underspecified with respect to the scenario
in which the action is to be carried out, and this is on purpose
since the task descriptions are meant to generalize over
concrete shop-floor scenarios. As an interface layer between
task descriptions and motions, a level of elementary actions
was defined (Section 2.2) that is complemented with
constraints derived from the 3D model of the scenario
(Sections 2.3, 2.4). This representation level is fine-grained
and specific enough for the Morphable Graphs module
(MG++) that synthesizes an animation for a digital human
model (DHM) by further breaking down elementary actions
into motion primitives.

Mapping course-grained, underspecified linguistic task
descriptions onto a sequence of more detailed elementary
actions involves adding information. In the case in hand, this
information is gathered from the model of the 3D scene (cf.
Figure 1). For instance, depending on the respective state of
the scenario, the DHM will be made to walk, and to pick,
carry and place objects – fine-grained actions never mentioned
at the level of task descriptions. In (1) intuition tells that a
DHM must get hold of an arm support, a screw driver and
three screws and possibly fetch them to the assembly place.

The mapping is carried out in two steps: the creation of
CNL-compliant task descriptions (Sections 3.1), and the
breakdown onto the level of elementary actions, delivering all
information needed for the motion synthesis component
(Section 3.2). In the sequel we refer to both these steps jointly
as “CNL processing”.

While a first implementation shows the feasibility of the
suggested methods, the interaction with the planning experts,
who may need to manipulate some aspects of the breakdown,
requires additional features that are currently under
development (Section 4).

Fig. 1. System architecture.

2. Levels of knowledge representation

2.1. Controlled natural language

Controlled natural languages [1-3] are subsets of natural
languages such as English. Not all words are permitted, not all
grammatical constructions are allowed, and certain stylistic
rules are in place to guide the writers.

CNLs were developed to avoid ambiguity in natural
language (consider the ambiguous sentence “Sue met Tania
because she wanted to apologize.”). In CNLs, the use of
pronouns usually is prohibited.

Natural language statements are often unspecific. Consider
“The door must be opened before entering” or “The screw
driver should be placed near the screws”. In both examples,
the actors are not mentioned. In technical writing, specifying
the actors is essential. CNLs usually forbid the use of modal
verbs and of passive constructions. “Open the door before
entering”, or “Place the screwdriver near the screws” are valid
expressions in many CNLs.

Natural language statements are often very complex. While
parsing free text has made tremendous progress, there are still
constructions that cannot be parsed successfully yet. A CNL is
defined in such a way that all its expressions can be
guaranteed to parse correctly.

For INTERACT, a CNL is needed for all of the above
reasons. Planners must be able to express their intentions in a
normalized, canonical fashion that can be understood easily by
the workers. Task descriptions are short imperative clauses
(usually up to 15 words). Assembly operations can be
described by an activity that determines a set of semantic roles.
For instance, “tighten” requires roles for the object to be
tightened, for the target, to which the object is tightened, and
for the means of tightening (usually a tool, and/or fasteners).
The number of tightening operations can be specified
optionally, as in (1) above.

CNL
Processing

CNL Task
Description

Creation

MG++

 Task
Description
Breakdown

3D Scenario
Model

Knowledge

Scene

Object

Filled Case Frame

Object
Labels

Scene State
& Object
Properties

Scene
State

Changes

Elementary Actions
& Constraints

226 Stephan Busemann et al. / Procedia CIRP 41 (2016) 224 – 229

An additional benefit of using the CNL is a unified
linguistic terminology across the company since objects und
actions are described in a unique manner. Finally, as is
generally recognized, using CNLs allows for considerably
easier solutions to the notorious problem of multilingual
expressions.

2.2. Elementary actions

The level of elementary actions was defined as an interface
between the CNL breakdown and the motion synthesis
components of the INTERACT system. The actions were
defined by analyzing what was needed for the pilot cases
defined for the project, among them the tasks of center
console preassembly and rear light mounting. A total of 22
different elementary actions have been identified, among
them actions

 changing the position of objects: INSERT, TURN,

WALK, CARRY, MOVE;
 changing the status of object attachment: RELEASE,

ATTACH, DETACH;
 changing both: PICK, PLACE;
 interacting with the scene in other ways: TOUCH, USE

TOOL.

At the current stage of implementation, the elementary
actions WALK, PICK, CARRY and PLACE are supported as
these are generic to all pilot cases.

The PICK elementary action describes the process of
picking up an object with either one or both hands. PICK has
the effect of attaching the object to the corresponding hand
joints of the DHM. Objects connected by attachment both
change their position whenever one of them is moved. In the
case of PICK, the object picked changes its position whenever
the DHM moves.

PLACE is the inverse of PICK: The DHM places an object
at a specific position, which causes the object to be detached
from the corresponding hand joints. It possibly gets attached
to a another object, e.g. when placing a tool onto a trolley.

WALK describes a collision-free movement of the DHM
from its current to a specified position with empty hands,
whereas CARRY does so with the DHM holding an object.

2.3. Constraints

Elementary actions are always accompanied by a set of
constraints. In INTERACT constraints describe the conditions
that an animation must fulfil in order to produce a valid,
naturally looking result. Constraints are associated with joints
of the DHM skeleton. A joint has a position consisting of x, y
and z coordinates in the global coordinate system and an
orientation consisting of Euler angles in the x, y and z plane.
Constraints on both position and orientation can be
underspecified. We differentiate between trajectory
constraints and key frame constraints.

Trajectory constraints define a spline for a joint based on a
sequence of control points each specifying the position and/or
orientation. The trajectory is supposed to be applied as a

constraint on the whole elementary action. For instance, a
path for WALK or CARRY would be defined as a trajectory
constraint for the root joint of the DHM skeleton.

Key frame constraints, on the other hand, define the
position and/or orientation of a joint that needs to be reached
at a certain key frame. Key frames are manually annotated
frames depicting key elements of a motion primitive. As CNL
processing has no access to the explicit key frame index in the
canonical timeline of a motion primitive, which is part of the
motion synthesis component, a key frame constraint refers to
a key frame using a predefined identifier that is shared with
the MG++ component. For instance, the key frame constraint
associated to PICK refers to the key frame “start_contact” and
determines the position and orientation of the hand joints
when they contact the grip points of the object to be picked.
Accordingly, the constraint associated to PLACE refers to the
key frame “end_contact” and determines the position and
orientation of the hand joints when they release the grip points
of the object placed.

Additionally, key frame constraints are annotated in order
to reflect changes of the actual scene (as caused by e.g.
picking and placing actions), the objects involved, and their
mutual attachment status. This is needed since the MG++
module does not have access to the model of the 3D scene.

2.4. Interface to the model of the 3D scene

Obviously the sequence of elementary actions representing
a task description depends on the objects and the actual scene
the task is supposed to take place in. To make this information
available for CNL processing, an interface to the model of the
3D scene has been defined. This interface also allows CNL
processing to update the 3D scene with any changes. In the
following we describe the main methods of the interface.

Positions and the “nearness” relation between objects are
essential for CNL processing. The interface offers methods to
retrieve the position for an object and also to query the scene
if one object is reachable from the position of another object,
the latter one usually being the DHM. If an object to be
handled by the DHM is not reachable from its position, a
WALK elementary action has to be inserted. In this case,
CNL processing needs to retrieve a valid target position for
the walk, so that after walking there, the nearness between the
DHM and the initial object is given. For that purpose, the
interface offers a method to get a collision free path leading
the DHM “near” an object.

When handling an object, CNL processing must query the
knowledge base of the 3D scene to learn if this requires one or
both hands. The interface provides methods to retrieve this
information. It determines the constraints of a PICK
elementary action to apply. Moreover, it might also be
necessary to insert other elementary actions beforehand, e.g.
in case the DHM is already holding an object and the next
object to handle requires both hands. In this case, the object in
hand has to be put down first. The interface offers a method
that returns a suitable position for temporarily placing an
object.

When creating constraints for PICK and PLACE
elementary actions, the grip points of the associated objects

227 Stephan Busemann et al. / Procedia CIRP 41 (2016) 224 – 229

must be known. The interface contains methods to retrieve the
grip points for the right and left hand of the DHM. Also, in
the case of placing an object, the interface contains methods
to get the absolute positions of the right and left hand grip
points for the target position of the placed object. These are
the positions where the hand joints of the DHM have to be
moved to, as expressed in the constraints of the PLACE
elementary action.

In case of a PLACE elementary action, the target position
for the object needs to be retrieved. On the CNL side, the
target position is usually described by referring to a target
object together with a preposition, e.g. “place on table”. The
interface contains a method that is able to derive a proper
target position.

Whenever an elementary action would cause changes in
the 3D scene, the 3D scene model has to be updated
accordingly. For that purpose, the interface offers methods to
update the position of an object and also to declare objects as
attached to each other, or as detached. Whenever the position
for an object is changed in the 3D scene, the positions of all
attached objects would be adapted accordingly, too.

When referring to objects in the 3D scene, their object
identifiers must be known. For that purpose, the interface
offers access to a mapping between natural language labels of
objects used in the CNL and object identifiers used in the 3D
scene model. This is required for creating CNL task
descriptions, as described in the following Section 3.1.

3. From language to motion

3.1. Creation of CNL task descriptions

The CNL in INTERACT is characterized by a very limited
version of English in which assembly tasks can be expressed.
Basically it consists of more or less complex verb phrases (e.g.
(1)). Different from the standard use of CNL, which requires
the user to learn and apply the CNL “by heart” when writing
e.g. technical reports [4], CNL task descriptions in
INTERACT can be interactively generated by guiding the
user through the available choices. To describe a task in the
CNL system, the user selects the activity (tighten) and assigns
the individual components (arm support, cordless screw driver,
center console) to semantic roles of the activity (theme object,
tool, goal) using a menu-based interface.

The user decides about the proper components based on an
association of the linguistic description (e.g. “arm support”) to
all available instances in the scene (e.g. “arm_suppt11”). If
there are multiple candidate instances, the user is requested to
make a choice.

After selecting an activity, which is expressed by a verb,
the process to generate a task description starts with a
template consisting of predefined surface strings and
placeholders for the roles that remain to be filled (2).

(2) Tighten <NP:THEME> <PP:TOOL> <NUM:1-5>?

<PP:GOAL>.

Roles are depicted by a syntactic and a semantic type
separated by a colon. The syntactic type describes the
syntactic category of a role filler. We distinguish NP (for

noun phrases), PP (for prepositional phrases) and NUM (for
numbers). Optional roles are marked by a question mark. The
semantic type defines the meaning of a role within the activity.
There are no more than 10-12 semantic types. The major ones
include

 THEME: the part that is handled;
 GOAL: the place towards which the activity happens, e.g.

the part with which the THEME part is to be assembled;
 SOURCE: the place from where the activity happens, e.g.

the place at which the THEME part is located initially;
 TOOL: the tool with which the activity is executed;
 FASTENER: a fastener to connect parts, e.g. a screw.

Numeric roles define a number interval instead of a
semantic category. The interval defines the possible role
fillers. Additionally an “x” is appended to the number.

A set of semantic roles is called a case frame [5]. Verbs are
assigned to case frames, forming together the required
semantics of the sentence. A filled case frame together with
the verb and the component identifications suffices to define
the linguistic surface structure of the CNL expression.

Only for the PP:SOURCE and PP:GOAL roles,
prepositions must be chosen by the user since they may
depend on both the verb and the role context in the work task
description. PP:GOAL may be complemented by prepositions
like “to”, “in”, “on”, “onto” or “at”, whereas PP:SOURCE
could be used with e.g. “of”, “from” or “out of”.

By filling all roles, a CNL expression such as (1) with the
identified components is generated by the system. At the same
time, a filled case frame such as (3) is generated.

(3) [theme: arm_suppt11, tool: cdless_drv2, goal: ccon1,

num: 3]

This approach has not only the benefit of being cost-
effective, as expensive training of CNL users is obsolete, but
also allows for the unambiguous analysis of CNL expressions
generated by this system, yielding a filled case frame such as
(3) as a result. The next section describes how such case
frame representations are broken down into elementary
actions.

3.2. Breakdown of task descriptions

The breakdown of a case frame into elementary actions
depends on the state of the scenario the action shall be carried
out on. In order for the DHM to get hold of the screw driver,
the screws and the arm support, various instances of walking,
picking, etc. may be needed.

Obviously many parameters influence the generation of a
precise sequence of elementary actions to be visualized. Some
parameters depend on the objects at stake. For instance, a
screw is picked up differently than an arm support (with one
vs. both hands). The knowledge about each object that can be
grasped by the DHM is depicted in the knowledge base. Other
parameters are based on the state of the 3D scenario at the

228 Stephan Busemann et al. / Procedia CIRP 41 (2016) 224 – 229

point of time when the action is carried out. They include the
positions of the DHM and of the objects at stake.

We assume that the knowledge base and the 3D scene
contain information on all objects that may be involved in
assembly operations at any time. For each activity, a minimal
list of elementary actions is defined that is absolutely
necessary to execute the associated activity. Depending on the
state of the scene, additional elementary actions are derived
during the breakdown and inserted into this list. The minimal
list for the pick-and-place activity is PICK and PLACE.

For each elementary action we define a set of
preconditions, scene updates and postconditions. For an
elementary action to be executed, all of its preconditions must
hold in the scene. When executed, the 3D scene is updated.
The postconditions state the effects of the executed
elementary action that hold in the 3D scene.

Tables 1-4 show the data for the elementary actions
discussed above.

Table 1. PICK preconditions, scene updates and postconditions.

Preconditions Hand(s) to handle object must be empty.

DHM is near object.

Scene updates Detach object from all other objects.

Attach object to hand joint(s) of DHM.

Postconditions DHM holds the object.

Table 2. PLACE preconditions, scene updates and postconditions.

Preconditions DHM holds the object.

DHM must be near the target object where the object is

to be placed.

Scene updates Detach object from hand joint(s) of DHM.

Attach object to target object.

Update object’s position.
Postconditions DHM has empty hand(s).

Table 3. WALK preconditions, scene updates and postconditions.

Preconditions DHM has empty hand(s).

Scene updates Update position of DHM.

Postconditions DHM is near target position.

Table 4. CARRY preconditions, scene updates and postconditions.

Preconditions DHM holds object to be carried.

Scene updates Update position of DHM.

Postconditions DHM is near target position.

If the preconditions of an elementary action scheduled to

be executed are not met by the current 3D scene – e.g., the
DHM is not near an object to be PICKed – one or more
additional elementary actions have to be carried out
beforehand in such a way that their effects lead to a state of
the 3D scene that is compatible with the preconditions of the
initial elementary action – in the example, the DHM is made
to WALK near the object.

The information required for deciding on the applicability
of an action on the one hand and the updates to the 3D scene
model caused by the execution of the action on the other hand
are transmitted via the interface to the 3D scene model, as
described in Section 2.4 and depicted in Figure 1.

Any breakdown for (3) must ensure that the arm support,
the screw driver and three screws are located near the
assembly station for the car containing the center console
before the tightening activity can start. (We leave it to future
work to accommodate ways to carry more than two objects at
the same time, using e.g. pockets.)

(4) near(arm_sppt11, station)

Different ways of reasoning are available to derive or

establish goals like (4). Forward inferencing would, as long as
the goal is not reached, check for which elementary actions
the preconditions are fulfilled and establish the updates and
postconditions, which will render further elementary actions
applicable. For instance, if the DHM is not near the arm
support, it may WALK to where it is located. If the DHM
does not hold the arm support, it may PICK it. If the DHM is
not at the station, it may CARRY the arm support to the
station and PLACE it there. A widely accepted way of
implementing forward reasoning involves condition-action
rules parameterized by the objects and their locations, which
are interpreted by a standard production system [6, 7, 8].

However, also backward inferencing is a valid approach
here. Starting from a goal like (4), a chain of elementary
actions is found, the final one of which has its preconditions
met by the scene. We believe that an informed decision
should be taken in view of a more substantial set of defined
breakdowns. At the time being the breakdowns are
provisionally implemented as conditional statements.

Some behavior of the CNL breakdown is configurable by
parameters. For instance, one hand of the DHM can be
marked as preferred. For objects to be handled by one hand,
the DHM would always try to use the preferred hand. If the
preferred hand is not empty, another parameter controls if the
DHM would use the other hand or PLACE the object it is
currently holding. This way, some personal worker
preferences can be simulated.

4. Ongoing Work

While the basic mechanisms for the CNL processing and
for the enrichment with information from the 3D scene and
knowledge base are fully implemented and tested, two major
directions are followed by ongoing work.

Just like in the case of a new production line, the definition
of CNL task descriptions and related objects is being extended
to cover the pilot cases. This will affect the CNL mechanisms
(cf. Section 3.1) only to a small extent, as they cover a wide
range of task description patterns. The semantic-pragmatic
breakdown into elementary actions described in Section 3.2,
however, must be defined anew for each task description.

This is a manual task that requires a deep understanding of
the assembly task in order to appropriately represent the full
range of its elementary actions, parameters, constraints and
contextual decisions. Therefore the process of defining
breakdowns will in the future be supported by specific editing
tools. The breakdown definitions will have to be manipulated
through a GUI, i.e. outside of the code base, which renders a
clear separation of the definitions and their interpreter

229 Stephan Busemann et al. / Procedia CIRP 41 (2016) 224 – 229

mandatory. The definitions will be encoded in a formal syntax
with a descriptive semantics that supports manipulation by
developers.

The second direction of work introduces the same
requirement. User interaction during the planning workshops
should be supported on at least two levels. First, the order of
tasks should be changeable. This is outside of the current
topic, which focuses on single task descriptions. Second,
elementary actions should be added, deleted or their order be
modified. These changes will be executed by non-expert users.
The compatibility of pre- and postconditions of each
elementary action with the respective states of the 3D scenario
will be preserved. This is a necessary and sufficient condition
to ensure that user modifications will not lead to ill-formed
breakdowns. For instance, deleting PICK from a “PICK PICK
CARRY PLACE” sequence is permitted, whereas deleting
CARRY is not. Accordingly, additions and changes of order
are constrained.

There will be another GUI offered to the workshop
participants. They will be able to edit the result of a
breakdown, i.e. a sequence of elementary actions, in the above
ways. All edits will be preserved, enabling users to return to
previous versions. A “permanent” edit causes the underlying
rules to be modified in such a way that future breakdowns of
the task description will be compatible with the latest edit
state.

It remains to be investigated to which extent the GUI-
induced rule modification can be carried out automatically.

5. Conclusion

In this contribution, we have suggested novel methods for
connecting human language task descriptions to a level of
representation designed to synthesize naturally looking, valid
motion sequences that simulate assembly operations in car
manufacturing. The concept of CNL is well known from
language technology, and reasoning methods similar to those
proposed for the breakdown are widely used in artificial
intelligence systems.

Still it appears that applying the proposed interdisciplinary
combination of methods to assembly planning has not been
tried so far and is thus novel. It promises an unequalled level
of support to both planners and workers.

The results based on four out of 22 elementary actions are
encouraging. Ongoing work on the INTERACT pilot cases
will tell how well the approach scales up to more complex
data.

Acknowledgements

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement n° 611007. The
authors are indebted to Klaus Fischer (DFKI) and Martin
Manns (Daimler AG) for numerous fruitful discussions.

References

[1] O’Brien S. Controlling controlled English. An analysis of several
controlled language rule sets. The Joint Conference of the 8th
International Workshop of the European Association for Machine
Translation and the 4th Controlled Language Applications Workshop
(EAMT/CLAW), 2003.

[2] Wojcik R., Hoard, J. Controlled languages in industry. In:. Cole R,
Mariani J, Uszkoreit H, Varile G, Zaenen A, Zampolli A, editors. Survey
of the state of the art in human language technology. Cambridge:
Cambridge university press; 1997. p. 238-239. Available online at
http://www.lt-world.org/hlt-survey/master.pdf.

 [3] Funk A., Tablan V., Bontcheva K., Cunningham H., Davis B, Handschuh
S. CLOnE: Controlled language for ontology editing. In: Aberer K, et al.,
editors. The semantic web. Proceedings of 6th international semantic web
conference, 2nd Asian semantic web conference (ISWC/ASWC).
Springer: Berlin, Heidelberg; 2007. p. 143-155.

[4] Kamprath C, Adolphson E, Mitamura T, Nyberg E. Controlled language
for multilingual document production: Experience with Caterpillar
technical English. 1998. Available online at http://www.researchgate.net

[5] Fillmore C. The case for case. In: Bach, Harms, editors. Universals in
linguistic theory. New York: Holt, Rinehart, and Winston; 1968. p. 1-88.

[6] Davis R, King J. An overview of production systems. In: Elcock, Michie,
editors. Machine representations of knowledge. Machine Intelligence, 8,
Wiley, NY; 1977.

[7] Brownston L, Farrell R, Kant E, Martin N. Programming expert systems
in OPS5. Addison-Wesley; 1985.

[8] Busemann S. Best-first surface realization. In: Scott D. editor.
Proceedings of Eighth international natural language generation workshop.
Herstmonceux, Univ. of Brighton; 1996. p. 101-110. Available online at
http://xxx.lanl.gov/abs/cmp-lg/9605010.

