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Abstract 

This paper describes part of a novel view of planning the assembly of cars at the shop floor, which is currently being explored in the EU-funded 
project INTERACT, in which 3D worker simulations are automatically generated from textual descriptions. Under this view, all planning is 
carried out virtually, thereby interactively exploiting the workers’ knowledge.  
We suggest solutions to the subtask of mapping textual descriptions onto motion sequences. Consider a description like “Tighten arm support 
with cordless screw driver on center console”. This text belongs to a controlled natural language that is – different from unconstrained language 
– amenable to unambiguous linguistic analysis. The result is then broken down into a sequence of elementary actions, such as WALK, PICK, or 
PLACE, carried out by a digital human model (DHM) using and manipulating objects in the 3D scene. The representation level of elementary 
actions is designed to provide all information needed for subsequent motion synthesis. For proper 3D visualization, each action requires 
dynamic or static parameters such as the grasp points at the objects, and positions of the DHM and the objects.  
A semantic interpretation of the linguistic results must account for all variations to be expected in the scene. For instance, if the DHM is not 
“near” the object of interest, it must WALK. Evaluating this kind of condition-action rules against constraints imposed by the scene for a given 
textual description leads to a sequence of elementary actions that is then processed further and visualized. When viewing the simulation, the 
human planner can affect some aspects of processing, such as the order of elementary actions, by causing manipulations to the rules. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015. 
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1. Introduction 

The assembly of cars at the shop-floor can be described by 
a sequence of detailed human language task descriptions. The 
worker is supposed to carry out each task accordingly at the 
respective work station, using skills acquired by instruction 
and experience. For new product types, new task descriptions 
are needed, and the ways in which the tasks should be carried 
out are studied and defined before production starts. This 
planning process is currently carried out manually by a group 
of experts discussing the optimum execution of tasks with the 
help of prototypes.  

Using a realistic visual simulation of the assembly 
operations during planning would allow a more complete and 
explicit definition of the task, as the requirements, the 
knowledge, the skills and much of the experience of the 

experts will be reflected in the visual simulation. Alternative 
virtual task executions can be generated on the fly. Such a 
simulation of the assembly process is expected to save time 
and costs. The pre-production planning workshops will make 
use of the simulations, aiming at defining a final sequence of 
task description and, for each task, a complete definition of its 
execution. This process will be supported by the virtual 
simulation, which can be manipulated by the experts to 
improve task execution models.    

For the simulation to be realistic, a model of the shop-floor 
scenario will be required that includes, among many other 
things, the types and locations of objects, as well as ways to 
handle them (grasp points). 

This innovative vision is currently taking shape through the 
ongoing EU-funded project INTERACT (cf. 
http://www.interact-fp7.eu). The present paper focuses on 
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solutions to the initial problem of relating human language 
task descriptions to a level of annotated elementary actions 
that can then be processed further yielding motion primitives. 
This corresponds to the marked left-hand side of Figure 1, 
which sketches the architecture of components and interfaces 
used.  

The task descriptions used for the simulation are the same 
as the ones used for manufacturing. Natural language, if used 
freely, would allow an abundance of statements to express the 
same task, some more specific than others, some ambiguous 
without its author even noticing. Therefore a controlled 
natural language (CNL) is used, which excludes these 
drawbacks (Section 2.1). This guarantees unambiguous, 
homogeneous wordings for the same tasks across shop floors 
and yet preserves the level of human language, which is best 
suited to have planners describe the tasks.  

 
(1) Tighten arm support with cordless screw driver 3x on 

center console. 

CNL task descriptions such as (1), however, are too course-
grained to be mapped directly onto prerecorded motion 
elements. They are underspecified with respect to the scenario 
in which the action is to be carried out, and this is on purpose 
since the task descriptions are meant to generalize over 
concrete shop-floor scenarios. As an interface layer between 
task descriptions and motions, a level of elementary actions 
was defined (Section 2.2) that is complemented with 
constraints derived from the 3D model of the scenario 
(Sections 2.3, 2.4). This representation level is fine-grained 
and specific enough for the Morphable Graphs module 
(MG++) that synthesizes an animation for a digital human 
model (DHM) by further breaking down elementary actions 
into motion primitives. 

Mapping course-grained, underspecified linguistic task 
descriptions onto a sequence of more detailed elementary 
actions involves adding information. In the case in hand, this 
information is gathered from the model of the 3D scene (cf. 
Figure 1). For instance, depending on the respective state of 
the scenario, the DHM will be made to walk, and to pick, 
carry and place objects – fine-grained actions never mentioned 
at the level of task descriptions. In (1) intuition tells that a 
DHM must get hold of an arm support, a screw driver and 
three screws and possibly fetch them to the assembly place.  

The mapping is carried out in two steps: the creation of 
CNL-compliant task descriptions (Sections 3.1), and the 
breakdown onto the level of elementary actions, delivering all 
information needed for the motion synthesis component 
(Section 3.2). In the sequel we refer to both these steps jointly 
as “CNL processing”. 

While a first implementation shows the feasibility of the 
suggested methods, the interaction with the planning experts, 
who may need to manipulate some aspects of the breakdown, 
requires additional features that are currently under 
development (Section 4).  

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1. System architecture.  
 

2. Levels of knowledge representation 

2.1. Controlled natural language 

Controlled natural languages [1-3] are subsets of natural 
languages such as English. Not all words are permitted, not all 
grammatical constructions are allowed, and certain stylistic 
rules are in place to guide the writers.  

CNLs were developed to avoid ambiguity in natural 
language (consider the ambiguous sentence “Sue met Tania 
because she wanted to apologize.”). In CNLs, the use of 
pronouns usually is prohibited.  

Natural language statements are often unspecific. Consider 
“The door must be opened before entering” or “The screw 
driver should be placed near the screws”. In both examples, 
the actors are not mentioned. In technical writing, specifying 
the actors is essential. CNLs usually forbid the use of modal 
verbs and of passive constructions. “Open the door before 
entering”, or “Place the screwdriver near the screws” are valid 
expressions in many CNLs.  

Natural language statements are often very complex. While 
parsing free text has made tremendous progress, there are still 
constructions that cannot be parsed successfully yet. A CNL is 
defined in such a way that all its expressions can be 
guaranteed to parse correctly.  

For INTERACT, a CNL is needed for all of the above 
reasons. Planners must be able to express their intentions in a 
normalized, canonical fashion that can be understood easily by 
the workers. Task descriptions are short imperative clauses 
(usually up to 15 words). Assembly operations can be 
described by an activity that determines a set of semantic roles. 
For instance, “tighten” requires roles for the object to be 
tightened, for the target, to which the object is tightened, and 
for the means of tightening (usually a tool, and/or fasteners). 
The number of tightening operations can be specified 
optionally, as in (1) above.   
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An additional benefit of using the CNL is a unified 
linguistic terminology across the company since objects und 
actions are described in a unique manner. Finally, as is 
generally recognized, using CNLs allows for considerably 
easier solutions to the notorious problem of multilingual 
expressions.  

2.2. Elementary actions 

The level of elementary actions was defined as an interface 
between the CNL breakdown and the motion synthesis 
components of the INTERACT system. The actions were 
defined by analyzing what was needed for the pilot cases 
defined for the project, among them the tasks of center 
console preassembly and rear light mounting. A total of 22 
different elementary actions have been identified, among 
them actions  

 
 changing the position of objects: INSERT, TURN, 

WALK, CARRY, MOVE;  
 changing the status of object attachment:  RELEASE, 

ATTACH, DETACH;  
 changing both: PICK, PLACE;  
 interacting with the scene in other ways: TOUCH, USE 

TOOL.  
 

At the current stage of implementation, the elementary 
actions WALK, PICK, CARRY and PLACE are supported as 
these are generic to all pilot cases. 

The PICK elementary action describes the process of 
picking up an object with either one or both hands. PICK has 
the effect of attaching the object to the corresponding hand 
joints of the DHM.  Objects connected by attachment both 
change their position whenever one of them is moved. In the 
case of PICK, the object picked changes its position whenever 
the DHM moves. 

PLACE is the inverse of PICK: The DHM places an object 
at a specific position, which causes the object to be detached 
from the corresponding hand joints. It possibly gets attached 
to a another object, e.g. when placing a tool onto a trolley. 

WALK describes a collision-free movement of the DHM 
from its current to a specified position with empty hands, 
whereas CARRY does so with the DHM holding an object. 

2.3. Constraints 

Elementary actions are always accompanied by a set of 
constraints. In INTERACT constraints describe the conditions 
that an animation must fulfil in order to produce a valid, 
naturally looking result. Constraints are associated with joints 
of the DHM skeleton. A joint has a position consisting of x, y 
and z coordinates in the global coordinate system and an 
orientation consisting of Euler angles in the x, y and z plane. 
Constraints on both position and orientation can be 
underspecified. We differentiate between trajectory 
constraints and key frame constraints.  

Trajectory constraints define a spline for a joint based on a 
sequence of control points each specifying the position and/or 
orientation. The trajectory is supposed to be applied as a 

constraint on the whole elementary action. For instance, a 
path for WALK or CARRY would be defined as a trajectory 
constraint for the root joint of the DHM skeleton.  

Key frame constraints, on the other hand, define the 
position and/or orientation of a joint that needs to be reached 
at a certain key frame. Key frames are manually annotated 
frames depicting key elements of a motion primitive. As CNL 
processing has no access to the explicit key frame index in the 
canonical timeline of a motion primitive, which is part of the 
motion synthesis component, a key frame constraint refers to 
a key frame using a predefined identifier that is shared with 
the MG++ component. For instance, the key frame constraint 
associated to PICK refers to the key frame “start_contact” and 
determines the position and orientation of the hand joints 
when they contact the grip points of the object to be picked. 
Accordingly, the constraint associated to PLACE refers to the 
key frame “end_contact” and determines the position and 
orientation of the hand joints when they release the grip points 
of the object placed. 

Additionally, key frame constraints are annotated in order 
to reflect changes of the actual scene (as caused by e.g. 
picking and placing actions), the objects involved, and their 
mutual attachment status. This is needed since the MG++ 
module does not have access to the model of the 3D scene.  

2.4. Interface to the model of the 3D scene 

Obviously the sequence of elementary actions representing 
a task description depends on the objects and the actual scene 
the task is supposed to take place in. To make this information 
available for CNL processing, an interface to the model of the 
3D scene has been defined. This interface also allows CNL 
processing to update the 3D scene with any changes. In the 
following we describe the main methods of the interface. 

Positions and the “nearness” relation between objects are 
essential for CNL processing. The interface offers methods to 
retrieve the position for an object and also to query the scene 
if one object is reachable from the position of another object, 
the latter one usually being the DHM. If an object to be 
handled by the DHM is not reachable from its position, a 
WALK elementary action has to be inserted. In this case, 
CNL processing needs to retrieve a valid target position for 
the walk, so that after walking there, the nearness between the 
DHM and the initial object is given. For that purpose, the 
interface offers a method to get a collision free path leading 
the DHM “near” an object. 

When handling an object, CNL processing must query the 
knowledge base of the 3D scene to learn if this requires one or 
both hands. The interface provides methods to retrieve this 
information. It determines the constraints of a PICK 
elementary action to apply. Moreover, it might also be 
necessary to insert other elementary actions beforehand, e.g. 
in case the DHM is already holding an object and the next 
object to handle requires both hands. In this case, the object in 
hand has to be put down first. The interface offers a method 
that returns a suitable position for temporarily placing an 
object. 

When creating constraints for PICK and PLACE 
elementary actions, the grip points of the associated objects 
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must be known. The interface contains methods to retrieve the 
grip points for the right and left hand of the DHM. Also, in 
the case of placing an object, the interface contains methods 
to get the absolute positions of the right and left hand grip 
points for the target position of the placed object. These are 
the positions where the hand joints of the DHM have to be 
moved to, as expressed in the constraints of the PLACE 
elementary action. 

In case of a PLACE elementary action, the target position 
for the object needs to be retrieved. On the CNL side, the 
target position is usually described by referring to a target 
object together with a preposition, e.g. “place on table”. The 
interface contains a method that is able to derive a proper 
target position. 

Whenever an elementary action would cause changes in 
the 3D scene, the 3D scene model has to be updated 
accordingly. For that purpose, the interface offers methods to 
update the position of an object and also to declare objects as 
attached to each other, or as detached. Whenever the position 
for an object is changed in the 3D scene, the positions of all 
attached objects would be adapted accordingly, too. 

When referring to objects in the 3D scene, their object 
identifiers must be known. For that purpose, the interface 
offers access to a mapping between natural language labels of 
objects used in the CNL and object identifiers used in the 3D 
scene model. This is required for creating CNL task 
descriptions, as described in the following Section 3.1.  

3. From language to motion 

3.1. Creation of CNL task descriptions 

The CNL in INTERACT is characterized by a very limited 
version of English in which assembly tasks can be expressed. 
Basically it consists of more or less complex verb phrases (e.g. 
(1)). Different from the standard use of CNL, which requires 
the user to learn and apply the CNL “by heart” when writing 
e.g. technical reports [4], CNL task descriptions in 
INTERACT can be interactively generated by guiding the 
user through the available choices. To describe a task in the 
CNL system, the user selects the activity (tighten) and assigns 
the individual components (arm support, cordless screw driver, 
center console) to semantic roles of the activity (theme object, 
tool, goal) using a menu-based interface.  

The user decides about the proper components based on an 
association of the linguistic description (e.g. “arm support”) to 
all available instances in the scene (e.g. “arm_suppt11”). If 
there are multiple candidate instances, the user is requested to 
make a choice.   

After selecting an activity, which is expressed by a verb, 
the process to generate a task description starts with a 
template consisting of predefined surface strings and 
placeholders for the roles that remain to be filled (2). 

 
(2) Tighten <NP:THEME> <PP:TOOL> <NUM:1-5>? 

<PP:GOAL>. 

Roles are depicted by a syntactic and a semantic type 
separated by a colon. The syntactic type describes the 
syntactic category of a role filler. We distinguish NP (for 

noun phrases), PP (for prepositional phrases) and NUM (for 
numbers). Optional roles are marked by a question mark. The 
semantic type defines the meaning of a role within the activity. 
There are no more than 10-12 semantic types. The major ones 
include 

 
 THEME: the part  that is handled; 
 GOAL: the place towards which the activity happens, e.g. 

the part with which the THEME part is to be assembled; 
 SOURCE: the place from where the activity happens, e.g. 

the place at which the THEME part is located initially; 
 TOOL: the tool with which the activity is executed; 
 FASTENER: a fastener to connect parts, e.g. a screw. 

Numeric roles define a number interval instead of a 
semantic category. The interval defines the possible role 
fillers. Additionally an “x” is appended to the number. 

A set of semantic roles is called a case frame [5]. Verbs are 
assigned to case frames, forming together the required 
semantics of the sentence. A filled case frame together with 
the verb and the component identifications suffices to define 
the linguistic surface structure of the CNL expression.  

Only for the PP:SOURCE and PP:GOAL roles, 
prepositions must be chosen by the user since they may 
depend on both the verb and the role context in the work task 
description. PP:GOAL may be complemented by prepositions 
like “to”, “in”, “on”, “onto” or “at”, whereas  PP:SOURCE 
could be used with e.g. “of”, “from” or “out of”.  

By filling all roles, a CNL expression such as (1) with the 
identified components is generated by the system. At the same 
time, a filled case frame such as (3) is generated. 

 
(3) [theme: arm_suppt11, tool: cdless_drv2, goal: ccon1, 

num: 3] 
 

This approach has not only the benefit of being cost-
effective, as expensive training of CNL users is obsolete, but 
also allows for the unambiguous analysis of CNL expressions 
generated by this system, yielding a filled case frame such as 
(3) as a result. The next section describes how such case 
frame representations are broken down into elementary 
actions.     

3.2. Breakdown of task descriptions 

The breakdown of a case frame into elementary actions 
depends on the state of the scenario the action shall be carried 
out on. In order for the DHM to get hold of the screw driver, 
the screws and the arm support, various instances of walking, 
picking, etc. may be needed. 

Obviously many parameters influence the generation of a 
precise sequence of elementary actions to be visualized. Some 
parameters depend on the objects at stake. For instance, a 
screw is picked up differently than an arm support (with one 
vs. both hands). The knowledge about each object that can be 
grasped by the DHM is depicted in the knowledge base. Other 
parameters are based on the state of the 3D scenario at the 
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point of time when the action is carried out. They include the 
positions of the DHM and of the objects at stake.  

We assume that the knowledge base and the 3D scene 
contain information on all objects that may be involved in 
assembly operations at any time. For each activity, a minimal 
list of elementary actions is defined that is absolutely 
necessary to execute the associated activity. Depending on the 
state of the scene, additional elementary actions are derived 
during the breakdown and inserted into this list. The minimal 
list for the pick-and-place activity is PICK and PLACE. 

For each elementary action we define a set of 
preconditions, scene updates and postconditions. For an 
elementary action to be executed, all of its preconditions must 
hold in the scene. When executed, the 3D scene is updated. 
The postconditions state the effects of the executed 
elementary action that hold in the 3D scene. 

Tables 1-4 show the data for the elementary actions 
discussed above. 

Table 1. PICK preconditions, scene updates and postconditions. 

Preconditions Hand(s) to handle object must be empty. 

DHM is near object. 

Scene updates Detach object from all other objects. 

Attach object to hand joint(s) of DHM. 

Postconditions DHM holds the object. 

Table 2. PLACE preconditions, scene updates and postconditions. 

Preconditions DHM holds the object. 

DHM must be near the target object where the object is 

to be placed. 

Scene updates Detach object from hand joint(s) of DHM. 

Attach object to target object. 

Update object’s position. 
Postconditions DHM has empty hand(s). 

Table 3. WALK preconditions, scene updates and postconditions. 

Preconditions DHM has empty hand(s). 

Scene updates Update position of DHM. 

Postconditions DHM is near target position. 

Table 4. CARRY preconditions, scene updates and postconditions. 

Preconditions DHM holds object to be carried. 

Scene updates Update position of DHM. 

Postconditions DHM is near target position. 

 
If the preconditions of an elementary action scheduled to 

be executed are not met by the current 3D scene – e.g., the 
DHM is not near an object to be PICKed – one or more 
additional elementary actions have to be carried out 
beforehand in such a way that their effects lead to a state of 
the 3D scene that is compatible with the preconditions of the 
initial elementary action – in the example, the DHM is made 
to WALK near the object.  

The information required for deciding on the applicability 
of an action on the one hand and the updates to the 3D scene 
model caused by the execution of the action on the other hand 
are transmitted via the interface to the 3D scene model, as 
described in Section 2.4 and depicted in Figure 1.  

Any breakdown for (3) must ensure that the arm support, 
the screw driver and three screws are located near the 
assembly station for the car containing the center console 
before the tightening activity can start. (We leave it to future 
work to accommodate ways to carry more than two objects at 
the same time, using e.g. pockets.)  

  
(4) near(arm_sppt11, station) 

 
Different ways of reasoning are available to derive or 

establish goals like (4). Forward inferencing would, as long as 
the goal is not reached, check for which elementary actions 
the preconditions are fulfilled and establish the updates and 
postconditions, which will render further elementary actions 
applicable. For instance, if the DHM is not near the arm 
support, it may WALK to where it is located. If the DHM 
does not hold the arm support, it may PICK it. If the DHM is 
not at the station, it may CARRY the arm support to the 
station and PLACE it there. A widely accepted way of 
implementing forward reasoning involves condition-action 
rules parameterized by the objects and their locations, which 
are interpreted by a standard production system [6, 7, 8].   

However, also backward inferencing is a valid approach 
here. Starting from a goal like (4), a chain of elementary 
actions is found, the final one of which has its preconditions 
met by the scene. We believe that an informed decision 
should be taken in view of a more substantial set of defined 
breakdowns. At the time being the breakdowns are 
provisionally implemented as conditional statements. 

Some behavior of the CNL breakdown is configurable by 
parameters. For instance, one hand of the DHM can be 
marked as preferred. For objects to be handled by one hand, 
the DHM would always try to use the preferred hand. If the 
preferred hand is not empty, another parameter controls if the 
DHM would use the other hand or PLACE the object it is 
currently holding. This way, some personal worker 
preferences can be simulated. 

4. Ongoing Work 

While the basic mechanisms for the CNL processing and 
for the enrichment with information from the 3D scene and 
knowledge base are fully implemented and tested, two major 
directions are followed by ongoing work. 

Just like in the case of a new production line, the definition 
of CNL task descriptions and related objects is being extended 
to cover the pilot cases. This will affect the CNL mechanisms 
(cf. Section 3.1) only to a small extent, as they cover a wide 
range of task description patterns. The semantic-pragmatic 
breakdown into elementary actions described in Section 3.2, 
however, must be defined anew for each task description.   

This is a manual task that requires a deep understanding of 
the assembly task in order to appropriately represent the full 
range of its elementary actions, parameters, constraints and 
contextual decisions. Therefore the process of defining 
breakdowns will in the future be supported by specific editing 
tools. The breakdown definitions will have to be manipulated 
through a GUI, i.e. outside of the code base, which renders a 
clear separation of the definitions and their interpreter 
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mandatory. The definitions will be encoded in a formal syntax 
with a descriptive semantics that supports manipulation by 
developers.  

The second direction of work introduces the same 
requirement. User interaction during the planning workshops 
should be supported on at least two levels. First, the order of 
tasks should be changeable. This is outside of the current 
topic, which focuses on single task descriptions. Second, 
elementary actions should be added, deleted or their order be 
modified. These changes will be executed by non-expert users. 
The compatibility of pre- and postconditions of each 
elementary action with the respective states of the 3D scenario 
will be preserved. This is a necessary and sufficient condition 
to ensure that user modifications will not lead to ill-formed 
breakdowns. For instance, deleting PICK from a “PICK PICK 
CARRY PLACE” sequence is permitted, whereas deleting 
CARRY is not. Accordingly, additions and changes of order 
are constrained. 

There will be another GUI offered to the workshop 
participants. They will be able to edit the result of a 
breakdown, i.e. a sequence of elementary actions, in the above 
ways. All edits will be preserved, enabling users to return to 
previous versions. A “permanent” edit causes the underlying 
rules to be modified in such a way that future breakdowns of 
the task description will be compatible with the latest edit 
state. 

It remains to be investigated to which extent the GUI-
induced rule modification can be carried out automatically. 

5. Conclusion 

In this contribution, we have suggested novel methods for 
connecting human language task descriptions to a level of 
representation designed to synthesize naturally looking, valid 
motion sequences that simulate assembly operations in car 
manufacturing. The concept of CNL is well known from 
language technology, and reasoning methods similar to those 
proposed for the breakdown are widely used in artificial 
intelligence systems. 

Still it appears that applying the proposed interdisciplinary 
combination of methods to assembly planning has not been 
tried so far and is thus novel. It promises an unequalled level 
of support to both planners and workers.  

The results based on four out of 22 elementary actions are 
encouraging. Ongoing work on the INTERACT pilot cases 
will tell how well the approach scales up to more complex 
data.  
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