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Abstract
Recently, traditional multi-touch surfaces are extended by
stereoscopic displays and 3D tracking technology. While
reaching and pointing tasks have a long tradition in
human-computer interaction (HCI), the hand pre-shaping
which usually accompanies them has rarely been
considered. The Reach to Grasp task has been widely
investigated by many neuropsychological and robotic
research groups over the last few decades. We believe
that subtle grasping hand postures in combination with
stereoscopic multi-touch displays have the potential to
improve multi-touch 3D user interfaces. We present a
study that aims to identify if the intended object can be
predicted in advance, relying only on detection of the
hand posture.
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Motivation and Background
In recent years, the interaction with 3D data became more
and more popular, but current 3D user interfaces (e.g.
virtual reality systems) are often expert systems with
complex user interfaces and high instrumentation.
Stereoscopic displays allow users to perceive 3D data in an
intuitive and natural way. On stereoscopic displays objects
might be displayed with different parallax paradigms, i. e.
negative, zero, and positive parallax, resulting in different
stereoscopic effects. Objects may appear behind (positive
parallax), at the screen/surface level (zero parallax), or in
front (negative parallax) of the screen. Recently, several
approaches extended traditional multi-touch surfaces by
3D stereoscopic output [2, 3, 4, 16] as well as different
technologies that allow to detect gestures before the user
actually touches the surface [5, 17, 19, 20].

Figure 1: Design concept of a multi-touch enabled stereoscopic surface equipped with
additional depth sensors that can predict the user’s intention during grasping
movements.

Multi-touch technology can be used in order to allow a
rich set of interactions without any instrumentation of the
user. Schöning et al. have considered some of the
challenges of multi-touch interaction with stereoscopically
rendered projections [14]. One limitation of these
approaches is that the interaction and visualization is
often constrained to almost zero parallax. Although the
combination of multi-touch technology, depth cameras
and stereoscopic display promise interesting and novel
user interfaces (see Figure 1), the benefits, possibilities
and limitations of using this combination have not been
examined in-depth and are so far not well understood [15].

Psychological research on the Reach to Grasp task has
shown that the pre-shaping phase of the human hand
allows a prediction of the object a human is going to grab.
Multiple studies were conducted in this direction including
physical objects as well as memorized and virtual objects
that had to be reached and grasped [1, 9, 12]. Research
in this direction has shown evidence, that only a few
variables have an impact on that
prediction [9, 11, 13, 18]. These insights from
neuropsychological and robotic research are promising and
we believe that the information of the reach to grasp
phase can substantially improve interaction with
stereoscopic multi-touch displays. While reaching and
pointing tasks have a long tradition in the HCI field, the
hand pre-shaping has rarely been investigated.

However, due to the availability of low-cost algorithms,
simple off-the-shelf hardware and low instrumentation are
now sufficient to track the human hand above the
interactive surface. Depth cameras provide the possibility
to recognize hand gestures and postures. Furthermore,
when tracking the user’s grasp postures above a
multi-touch display her intented interactions might be



predicted before she or he actually touches the surface.

Figure 2: Experiment setup:
Illustration of the setup including
two kinect cameras and a fixed
mouse used as hand rest and
starting point for each trial.

Figure 3: A subject performing
grasp gestures with a 3D user
interface widget during the
experiment.

Such knowledge has the potential to improve the user
interface of stereoscopic multi-touch surfaces, for
example, by snapping desired objects to the touch surface.
The main contribution of this work is to show the
feasibility of the intended object prediction based on
simple features and light-weight pattern recognition
algorithms. With the knowledge of the user’s intention,
the touch-based user interface can then be adapted before
the user finally reaches the interactive surface with respect
to the user’s intention, i. e., what the user is planning to
do next and with which objects the user interface (see
Figure 1). In order to verify this approach, we performed
an experiment in which we analyzed hand postures above
and on the interactive surface. The aim of this experiment
was to examine whether or not the hand posture allows an
early prediction of the objects the user is intending to
interact with.

Data Aquisition Study
To collect a corpus of grasping postures we have set up a
data aquisition study. In this study we investigated if a

Figure 4: Sample interface
widgets that have to be grasped
by subjects during the study.

stereoscopic rendered object could be detected in advance
while the user reaches to grasp it, based only on hand
posture and determine the parameters that affect this
detection. Therefore participants had to perform typical
Reach to Grasp tasks using different virtual stereoscopic
displayed objects as visual stimuli and recorded their hand
motions with multiple depth cameras.

The setup for the study is shown in Figure 2. The study
was performed using a prototype stereoscopic multi-touch
projection wall. For the back projection a projector with
native resolution of 1400× 1050, using a frame-sequential
stereoscopic projection at 120 Hz was used. The
projection uses only a portion of the touch enabled screen

with dimensions 136cm× 102cm, that resulted in an
effective pixel size of approximately 1mm (645 pixel per
in2). Although we could track the subjects’ head
positions, it was not needed, since the subjects remained
in the same position during the entire study. The position
of the virtual camera and its viewing frustum were
adjusted to match the subject’s height. Hand motions
were recorded with two Microsoft Kinect depth sensors as
RAW video streams with resolution of 640× 480 at 30
frames per second (fps). Both sensors were arranged (one
at the left side of the projection and one below it) in such
a way, that the user’s hand was in her field of view during
the whole time of each trial. To indicate the start of each
trial subjects used a common computer mouse, which was
mounted on a camera tripod and also adjusted to each
participant’s height. The study was run on PC with Intel
Core i7 Processor with 8GB of RAM and nVidia GeForce
GTX470 graphics card.

22 participants (3 female), naive to the experimental
conditions, took part in this study. The subjects were
between 22 and 56 years old (M = 28, SD = 6.9) and
none has reported any visual or stereopsis disruptions. All
subjects were members of our institute or university
students and reported, in a 5-Point Likert scale, between
good and excellent experience with touch devices. All
participants were right handed. The entire study took
about 30 minutes. The subjects were allowed to take
breaks at any time during the study. In addition the
subjects had to take mandatory two minute breaks at
regular intervals to minimize errors due to exhaustion or
poor concentration.

In this study subjects were asked to grasp virtual objects
that are graspable counterparts to standard user interface
widgets (see Figure 3). These widgets were designed to



have approximately the same size and are meant to be
interacted via grasp-gestures. Subjects were positioned in

Figure 5: Feature extraction
pipeline: (a) the raw depth image
from Kinect; (b) after
background subtraction, with
regions for hand segmentation;
(c) illustration of the feature
extraction for a row scane line.

front of the projection screen at a distance of
approximately 3/4 parts of their arm length, such that
they could conveniently perform all grasp gestures during
the study with their dominant arm. All trials had to be
performed with the dominant hand. To guarantee a
consistent initial start position at the beginning of each
trial the subject had to press the left button on the mouse
mounted at convenient distance (ca. 25cm) on her right
side. As visual stimuli ten different stereoscopic rendered
virtual objects shown on Figure 4 were projected at five
different object positions: (−a, 0), (a, 0), (0, 0), (0,−a),
(0, a) with a being the half arm length of the subject and
(0, 0) being adjusted to match the orthogonal projection
of the participant’s right shoulder on the surface.

Four trials had to be performed for each object at the five
different positions resulting in a total of 200 trials per
subject. Five trials (not included in the evaluation) have
to be performed at the beginning to ensure that the
subjects understood the task and received some initial
training. After all trials were completed the subjects were
asked to fill out a short questionnaire about their
subjective experience with the interface, visualization
issues, and exhaustion during the performance of the
study.

Analysis
The collected RAW video streams are not applicable for
direct evaluation. Thus we first pre-processed the data set
to extract an image-based set of representative features
for each frame. Afterwards we split the video streams in
time segments, filtered the frame feature sets within time
segment from redundant information and evaluated the
results with correlation based algorithms.

Feature Extraction
For each frame in each video sequence we first removed
the background by clamping all values to zero above a
threshold (i. e. too far away from the camera) and
subtracting a static captured background image from the
resulting frame as shown on Figure 5 (b). This pixel was
used as reference to determine a rectangular subregion of
200× 200 pixels that contained the user’s hand (the red
rectangle on 5 (b)). We then found the weight center of
the region as the mean of the pixel-coordinates of all
non-zero pixels within the region and built up a new
subregion of 100× 150 pixels centered in the weight
center (marked with a green circle on 5 (b)). The hand
contour and the distribution of the depth extrema within
a depth image of the hand have been successfully used in
multiple works as features for hand-gesture
recognition [7, 6]. In our approach similar parameters have
been used as well as the outer contour of the hand. In
order to evaluate the frame data we have extracted from
each region some representative parameters, which seemed
to contain meaningful data about the current hand
posture. Nevertheless, we did not use the hand contour
and topology directly, but extracted from the segmented
subregions some unified representative parameters, that
were more appropriate for direct comparison.

The following parameters have been considered to be
most useful as feature vector (cf. Figure 5 (c)): the
number of depth minimums, as well as their mean,
minimal and maximal values; the mean depth of the
region; the number of non-zero pixels within the region;
for each row - the unprojected positions of the first and
the last non-zero pixel, relative to the unprojected
coordinates of the regions center; the number of contour
edges; the number of non-zero pixel and the mean,
maximal and minimal depths of the row; for each column



– the same parameters as for the rows. This leads to a
2206-dimensional feature vector (6 global image features,
11 features per row and 11 features per column) which
contains, for our considerations, the essential information
of a frame. Such ad-hoc features extraction may indeed
contain a lot of redundant information that can not be
easily determined based on local features. We therefore
performed additional filtering on the entire data set as
described in the next subsection.

Feature Sets
Since the hand runs through the same phases while
performing reach-to-grasp task (or reaching task in
general), the whole motion can be normalized by the
time [12, 18]. The progress data should be temporally
scaled for each trial, such that the trial begins at “time” 0
and ends at “time” 1. Such a normalization is usually
made to enable direct comparison of the progress relevant
features among all subjects and conditions.

We normalized the trial performance times for each video
sequence in such a way that the mouse click (which
indicated the beginning of the trial) is at “time” 0 and at
“time” 1 the subject’s hand was 1cm away from the
virtual object to be grasped. Each frame, and also each
feature vector was labelled with its normalized time. We
split the set of feature vectors into six groups based on
their normalized time. In the first half of the motion, the
grasp pre-shaping and the wrist transport are in too early
stage, which makes a prediction in this case a very
challenging task. Indeed, in common settings, the wrist
path is unpredictable until the transport phase reaches its
peak velocity, usually at time 0.5 [8]. Thus, the frames
from the set [0, 0.5] were excluded because we were more
interested in robust object prediction in a short interval
before grasping that object.

To reduce information redundancy in the extracted feature
vectors, features with constant values or very low variance
within the datasets of each time segment were removed.
Afterwards the data sets were transformed with algorithms
for principle component analysis (PCA) and the
transformed feature vectors were constrained to the first n
principle components, with n determined such, that at
least 99% of the information was contained in the
components.

Results
None of the participants has appraised the study as being
too long or the task as too difficult, thus we took all the
data acquired into account. The participants were asked
to grasp in a natural way, with moderate but realistic
speed from the resting position to the surface. The mean
task performance time was 1584ms (SD = 363.38ms).

Since we were interested in the influence of different
parameters on the correlation between captured frames
and the visual object we used a very simple correlation
based classification algorithm, i. e. the Naive Bayes
classifier. This classifier is based on maximization of the
cross-correlation within the group of measurements
(represented as multidimensional feature vectors) and
minimization of the between-groups cross-correlation. We
have tested four clustering variables: only the object type
(OT); object type and position (OTP); object type and
user (OTU); object type, position and user (OTPU). For
each clustering variable and each training set a classifier
was trained with 80% of the feature vectors, and its
prediction rate was tested with the other 20% of the set.
This process was repeated ten times and the calculated
prediction rates were further evaluated with statistical
methods. The achieved mean prediction rates in percent
for the left (LEFT) and the bottom (BOTTOM) sensors



are shown in Tables 1 and 2 respectively.

normalized time OT OTP OTU OTPU
0.5-0.6 30.61 45.25 76.75 97.89
0.6-0.7 30.56 45.23 76.98 97.91
0.7-0.8 30.37 45.05 76.26 97.95
0.8-0.9 30.36 45.32 76.44 97.94
0.9-1.0 29.99 45.53 76.44 97.90

Table 1: Mean prediction rates in percent for the LEFT sensor.

normalized time OT OTP OTU OTPU
0.5-0.6 24.51 44.78 55.23 93.59
0.6-0.7 26.74 48.09 61.07 96.19
0.7-0.8 24.30 43.97 58.09 96.11
0.8-0.9 22.19 32.45 52.56 92.79
0.9-1.0 21.90 29.55 49.03 90.65

Table 2: Mean prediction rates in percent for the BOTTOM
sensor.

The data was analyzed with a factorial analysis of variance
(ANOVA), in order to test the within-group effects of the
time set, sensor position and clustering variable. The
analysis revealed a significant main effect for the sensor
position (F = 16556, p < 0.001) as well as for the time
set (F = 684.99, p < 0.001) and clustering variable
(F = 169820, p < 0.001). The subsequent post-hoc
analysis with the Tukey test revealed significant difference
for all the tested conditions and values (with p < 0.01).

Discussion
As initially expected, the results show that the hand
posture reflects the object to be grasped. Thus the object
type could be anticipated in advance based on features
extracted from the captured hand posture. Given the best
prediction rates residing in the time segment [0.6, 0.7) and

the mean task performance time of 1584ms this gives us
about 500ms in advance for use of this information by the
interface. Although, the participants in our study
performed the task slightly slower, then they may do this
in a real user interface, the 500ms is a reasonable amount
of time for an user-interface to adapt to the user’s
intention or to execute complicated background tasks,
reducing the overall latency of the interface. One of the
interesting results is that the prediction rates do not
constantly increase with the hand approaching the visual
object as initially expected, but have its peak values in the
time cluster [0.6, 0.7) and are then falling. We have
currently no explanation for this fact, and will address it
in detail in future research.

Not surprisingly the object type by its own is not sufficient
as clustering variable. Indeed, the hand posture depends
on the personal preference of the user. This may have led
to the significantly better prediction rates in the condition
OTU. Nevertheless, it is currently unclear, if there is a
(perhaps broader) set of typical hand postures which
could be mapped on a single object to compensate for the
personal differences. Surprisingly, the object position has
also a significant effect on the prediction rates, although
its effect is not as strong as the personal preferences. This
might be due to our initial feature extraction, which does
not fully compensate for different hand orientations. We
expect that using more advanced feature extraction
techniques will reduce or eliminate this effect. Indeed,
more evolved feature set, which compensate for different
hand orientations and sizes, could be extracted from each
frame as well as from the frame sequence. Such feature
extraction would then make the recognition
user-independent.

In general, in our implementation the recognition of an



object to be grasped depends on different parameters
including the users’ personal properties and habits, which
may make a robust mapping of objects to grasp posture a
challenging task. Nevertheless, our approach shows the
feasibility of the task at hand and provides an easily
reproducible procedure for establishing an initial corpus of
training data. Based on the reported prediction rates,
which have been achieved even with this very simple
algorithm, we believe that a complex alternative method
(cf. [10]) feed with our training corpus may achieve
remarkable, in many cases user-independent, prediction
rates.

The findings of the experiment have also shown that the
affordance of an object plays an important role. Because
there are often multiple ways to grasp an object a careful
design of the UI items has to be taken into account.
Hence, it sounds reasonable to design objects with
unambiguous affordances that reduces the variability of
possible grasps to a single gesture. It is now possible to
design user interfaces that can be dynamically adapted
based on predictions of the user’s intention. Adaptation
means that stereoscopically displayed 3D objects serve as
virtually graspable objects of their real counterparts,
which respond to the user’s grasping behavior. Thus, an
immersive interaction experience can be realized by
“touching” virtual objects together with haptic feedback
through the physical border of the interactive surface.

Conclusion and Future Work
In this paper we presented a study in which we collect a
corpus of grasp postures for stereoscopic objects. The
analysis of the gathered data shows that a recognition of
the grasp posture during the Reach to Grasp phase is
feasible a certain amount of time ( 500ms) before the
user reaches the surface. This can be used to improve

interaction and gives rise to novel user interfaces. These
findings show that the objects the user wants to interact
with can be predicted unambiguously before the user
actually touches these objects. Following this, information
about the grasp intention now allows the adaptation of
the user interface to improve interaction. With such
knowledge the potential of novel interaction techniques
and improvements in UIs might be tremendous. In the
workshop we like to discuss the novel design space of
multi-touch interaction which derive if the grasp phase
above the touch-sensitive surface is taken into account.

As next step we plan to develop and thoroughly evaluate
an adaptive user interface system that makes use of the
techniques and concepts proposed in this paper. There
are different potential domains that can benefit from this
UI and interaction concepts. A good example for cluttered
interfaces is a (virtual) 3D UI for DJs that emulates a real
mixer console. The browsing and interaction in large
image databases visualized in 3D might be another
interesting direction to investigate.
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[4] A. Cohé, F. Dècle, and M. Hachet. tBox: A 3D

Transformation Widget designed for Touch-screens.
In Proc. of CHI ’11, pages 3005–3008. ACM, 2011.

[5] O. Hilliges, S. Izadi, A. D. Wilson, S. Hodges,
A. Garcia-Mendoza, and A. Butz. Interactions in the
air: adding further depth to interactive tabletops. In
Proc. of UIST ’09, pages 139–148. ACM, 2009.

[6] H. Lahamy and D. Litchi. Real-time hand gesture
recognition using range cameras. In Proc. of the
2010 Canadian Geomatics Conference and
Symposium of Commission I, 2010.

[7] X. Liu and K. Fujimura. Hand gesture recognition
using depth data. In FGR’ 04: Proceedings of the
Sixth IEEE international conference on Automatic
face and gesture recognition, pages 529–534. IEEE
Computer Society, 2004.

[8] C. L. MacKenziea, R. G. Marteniuka, C. Dugasa,
D. Liskea, and B. Eickmeiera. Three-dimensional
movement trajectories in fitts’ task: Implications for
control. The Quarterly Journal of Experimental
Psychology Section A, 39(4):629–647, 1987.

[9] J. Maycock, B. Blaesing, T. Bockemühl, H. J. Ritter,
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